
4-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction permits a program to call on the system to perform
a service, by causing a system call exception handler to be invoked.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

• The execution of an instruction that causes a floating-point exception that is enabled
invokes the floating-point enabled exception handler.

• The execution of a floating-point instruction that requires system software assistance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”

4.2 PowerPC UISA Instructions
The PowerPC user instruction set architecture (UISA) includes the base user-level
instruction set (excluding a few user-level cache-control, synchronization, and time base
instructions), user-level registers, programming model, data types, and addressing modes.
This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions
The integer instructions consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as performing an unsigned operation. For example, Multiply High-
Word Unsigned (mulhwu) and Divide Word Unsigned (divwu) instructions interpret both
operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instruction, addic., set CR bits 0–3 (CR0) to characterize the result of the
operation. CR0 is set to reflect a signed comparison of the result to zero.

Chapter 4. Addressing Modes and Instruction Set Summary 4-11

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze, always set the XER bit, CA, to reflect the carry out of
bit 0. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. Except for the multiply low and divide instructions, these integer
arithmetic instructions reflect the overflow of the result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CR0 and the XER are set, they reflect the value placed in the
target register.

4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic
Operand
Syntax

Operation

Add Immediate addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into rD.

Add Immediate
Shifted

addis rD,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

Add add
add.
addo
addo.

rD,rA,rB The sum (rA) + (rB) is placed into rD.

add Add
add. Add with CR Update. The dot suffix enables the update of the

CR.
addo Add with Overflow Enabled. The o suffix enables the overflow

bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the

update of the CR and enables the overflow bit (OV) in the
XER.

Subtract From subf
subf.
subfo
subfo.

rD,rA,rB The sum ¬ (rA) + (rB) +1 is placed into rD.

subf Subtract From
subf. Subtract from with CR Update. The dot suffix enables the

update of the CR.
subfo Subtract from with Overflow Enabled. The o suffix enables the

overflow bit (OV) in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit
(OV) in the XER.

Add Immediate
Carrying

addic rD,rA,SIMM The sum (rA) + SIMM is placed into rD.

Add Immediate
Carrying and
Record

addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The CR is updated.

Subtract from
Immediate
Carrying

subfic rD,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into rD.

4-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Add Carrying addc
addc.
addco
addco.

rD,rA,rB The sum (rA) + (rB) is placed into rD.

addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the

update of the CR.
addco Add Carrying with Overflow Enabled. The o suffix enables the

overflow bit (OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit
(OV) in the XER.

Subtract from
Carrying

subfc
subfc.
subfco
subfco.

rD,rA,rB The sum ¬ (rA) + (rB) + 1 is placed into rD.

subfc Subtract from Carrying
subfc. Subtract from Carrying with CR Update. The dot suffix

enables the update of the CR.
subfco Subtract from Carrying with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Add
Extended

adde
adde.
addeo
addeo.

rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.

adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the

update of the CR.
addeo Add Extended with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit
(OV) in the XER.

Subtract from
Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.

subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix

enables the update of the CR.
subfeo Subtract from Extended with Overflow. The o suffix enables

the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow
(OV) bit in the XER.

Add to Minus
One Extended

addme
addme.
addmeo
addmeo.

rD,rA The sum (rA) + XER[CA] added to 0xFFFF_FFFF is placed into rD.

addme Add to Minus One Extended
addme. Add to Minus One Extended with CR Update. The dot suffix

enables the update of the CR.
addmeo Add to Minus One Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR Update.

The o. suffix enables the update of the CR and enables the
overflow (OV) bit in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-13

Subtract from
Minus One
Extended

subfme
subfme.
subfmeo
subfmeo.

rD,rA The sum ¬ (rA) + XER[CA] added to 0xFFFF_FFFF is placed into rD.

subfme Subtract from Minus One Extended
subfme. Subtract from Minus One Extended with CR Update. The dot

suffix enables the update of the CR.
subfmeo Subtract from Minus One Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the CR and
enables the overflow bit (OV) in the XER.

Add to Zero
Extended

addze
addze.
addzeo
addzeo.

rD,rA The sum (rA) + XER[CA] is placed into rD.

addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix enables

the update of the CR.
addzeo Add to Zero Extended with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Subtract from
Zero Extended

subfze
subfze.
subfzeo
subfzeo.

rD,rA The sum ¬ (rA) + XER[CA] is placed into rD.

subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with CR Update. The dot suffix

enables the update of the CR.
subfzeo Subtract from Zero Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR Update.

The o. suffix enables the update of the CR and enables the
overflow bit (OV) in the XER.

Negate neg
neg.
nego
nego.

rD,rA The sum ¬ (rA) + 1 is placed into rD.

neg Negate
neg. Negate with CR Update. The dot suffix enables the update of

the CR.
nego Negate with Overflow. The o suffix enables the overflow bit

(OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables

the update of the CR and enables the overflow bit (OV) in the
XER.

Multiply Low
Immediate

mulli rD,rA,SIMM The low-order 32 bits of the product (rA) ∗ SIMM are placed into rD.

This instruction can be used with mulhdx or mulhwx to calculate a full
64-bit product.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Multiply Low mullw
mullw.
mullwo
mullwo.

rD,rA,rB The 32-bit product (rA) ∗ (rB) is placed into register rD.

This instruction can be used with mulhwx to calculate a full 64-bit
product.

mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the

update of the CR.
mullwo Multiply Low with Overflow. The o suffix enables the overflow

bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables the
overflow bit (OV) in the XER.

Multiply High
Word

mulhw
mulhw.

rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into rD.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables

the update of the CR.

Multiply High
Word Unsigned

mulhwu
mulhwu.

rD,rA,rB The contents of rA and of rB are interpreted as 32-bit unsigned integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit product
are placed into rD.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix

enables the update of the CR.

Divide Word divw
divw.
divwo
divwo.

rD,rA,rB The dividend is the signed value of rA. The divisor is the signed value of
rB. The quotient is placed into rD. The remainder is not supplied as a
result.

divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the update

of the CR.
divwo Divide Word with Overflow. The o suffix enables the overflow bit

(OV) in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix enables

the update of the CR and enables the overflow bit (OV) in the
XER.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB The dividend is the zero-extended value in rA. The divisor is the zero-
extended value in rB. The quotient is placed into rD. The remainder is not
supplied as a result.

divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix enables

the update of the CR.
divwuo Divide Word Unsigned with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-15

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using
an addi instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation. The subf instructions subtract the second operand (rA)
from the third operand (rB). Simplified mnemonics are provided in which the third operand
is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” for
examples.

4.2.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 4-2
summarizes the integer compare instructions.

Appendix F, “Simplified MnemonicsFor 32-bit implementations, the L field must be
cleared, otherwise the instruction form is invalid.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of
the designated CR field, and clear the other two. XER[SO] is copied into bit 3 of the CR
field.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics.”

Table 4-2. Integer Compare Instructions

Name Mnemonic Operand Syntax Operation

Compare
Immediate

cmpi crfD,L,rA,SIMM The value in register rA is compared with the sign-extended value of
the SIMM operand, treating the operands as signed integers. The
result of the comparison is placed into the CR field specified by
operand crfD.

Compare cmp crfD,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand crfD.

Compare
Logical
Immediate

cmpli crfD,L,rA,UIMM The value in register rA is compared with 0x0000 || UIMM, treating the
operands as unsigned integers. The result of the comparison is placed
into the CR field specified by operand crfD.

Compare
Logical

cmpl crfD,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as unsigned integers. The result of the
comparison is placed into the CR field specified by operand crfD.

4-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.1.3 Integer Logical Instructions
The logical instructions shown in Table 4-3 perform bit-parallel operations on 32-bit
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CR0 (bits 0 to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO],
XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” for simplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

Operation

AND
Immediate

andi. rA,rS,UIMM The contents of rS are ANDed with 0x0000 || UIMM and the result is placed
into rA.
The CR is updated.

AND
Immediate
Shifted

andis. rA,rS,UIMM The content of rS are ANDed with UIMM || 0x0000 and the result is placed
into rA.
The CR is updated.

OR
Immediate

ori rA,rS,UIMM The contents of rS are ORed with 0x0000 || UIMM and the result is placed
into rA.

The preferred no-op is ori 0,0,0

OR
Immediate
Shifted

oris rA,rS,UIMM The contents of rS are ORed with UIMM || 0x0000 and the result is placed
into rA.

XOR
Immediate

xori rA,rS,UIMM The contents of rS are XORed with 0x0000 || UIMM and the result is placed
into rA.

XOR
Immediate
Shifted

xoris rA,rS,UIMM The contents of rS are XORed with UIMM || 0x0000 and the result is placed
into rA.

AND and
and.

rA,rS,rB The contents of rS are ANDed with the contents of register rB and the result
is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update of the CR.

OR or
or.

rA,rS,rB The contents of rS are ORed with the contents of rB and the result is placed
into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

XOR xor
xor.

rA,rS,rB The contents of rS are XORed with the contents of rB and the result is
placed into rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the CR.

Chapter 4. Addressing Modes and Instruction Set Summary 4-17

NAND nand
nand.

rA,rS,rB The contents of rS are ANDed with the contents of rB and the one’s
complement of the result is placed into rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.
Note that nandx, with rS = rB, can be used to obtain the one's complement.

NOR nor
nor.

rA,rS,rB The contents of rS are ORed with the contents of rB and the one’s
complement of the result is placed into rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the CR.
Note that norx, with rS = rB, can be used to obtain the one's complement.

Equivalent eqv
eqv.

rA,rS,rB The contents of rS are XORed with the contents of rB and the
complemented result is placed into rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of

the CR.

AND with
Complement

andc
andc.

rA,rS,rB The contents of rS are ANDed with the one’s complement of the contents of
rB and the result is placed into rA.

andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the

update of the CR.

OR with
Complement

orc
orc.

rA,rS,rB The contents of rS are ORed with the complement of the contents of rB and
the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the

update of the CR.

Extend Sign
Byte

extsb
extsb.

rA,rS The contents of the low-order eight bits of rS are placed into the low-order
eight bits of rA. Bit 24 of rS is placed into the remaining high-order bits of
rA.

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the

update of the CR.

Extend Sign
Half Word

extsh
extsh.

rA,rS The contents of the low-order 16 bits of rS are placed into the low-order 16
bits of rA. Bit 16 of rS is placed into the remaining high-order bits of rA.

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables the

update of the CR.

Count
Leading
Zeros Word

cntlzw
cntlzw.

rA,rS A count of the number of consecutive zero bits starting at bit 0 of rS is
placed into rA. This number ranges from 0 to 32, inclusive.

If Rc = 1 (dot suffix), LT is cleared in CR0.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables

the update of the CR.

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

4-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from position 0 enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of ‘1’ bits from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’
bits elsewhere. The values of Mstart and Mstop range from 0 to 31. If Mstart > Mstop, the
‘1’ bits wrap around from position 31 to position 0. Thus the mask is formed as follows:

if Mstart ≤ Mstop then

mask[mstart–mstop] = ones
mask[all other bits] = zeros

else
mask[mstart–31] = ones
mask[0–mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0–2] according to the
contents of rA at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “Simplified Mnemonics,” for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions
Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by
a left-rotation of 64 – n, where n is the number of bits by which to rotate right. It also allows
right-rotation of the contents of the low-order 32 bits of a register to be performed by a left-
rotation of 32 – n, where n is the number of bits by which to rotate right.

Chapter 4. Addressing Modes and Instruction Set Summary 4-19

The integer rotate instructions are summarized in Table 4-4.

4.2.1.4.2 Integer Shift Instructions
The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics”) are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by
2n. The setting of XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts.”

Table 4-4. Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left
Word
Immediate
then AND with
Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits
specified by operand SH. A mask is generated having 1 bits from
the bit specified by operand MB through the bit specified by
operand ME and 0 bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of the
CR.

Rotate Left
Word then
AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
by operand in the low-order five bits of rB. A mask is generated
having 1 bits from the bit specified by operand MB through the bit
specified by operand ME and 0 bits elsewhere. The rotated word is
ANDed with the generated mask and the result is placed into rA.

rlwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update.

The dot suffix enables the update of the CR.

Rotate Left
Word
Immediate
then Mask
Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1 bits from the bit
specified by operand MB through the bit specified by operand ME
and 0 bits elsewhere. The rotated word is inserted into rA under
control of the generated mask.

rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the CR.

4-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The integer shift instructions are summarized in Table 4-5.

4.2.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

Note that MSR[FP] must be set in order for any of these instructions (including the floating-
point loads and stores) to be executed. If MSR[FP] = 0 when any floating-point instruction
is attempted, the floating-point unavailable exception is taken (see Section 6.4.8, “Floating-
Point Unavailable Exception (0x00800)”). See Section 4.2.3, “Load and Store
Instructions,” for information about floating-point loads and stores.

Table 4-5. Integer Shift Instructions

Name Mnemonic
Operand
Syntax

Operation

Shift Left
Word

slw
slw.

rA,rS,rB The contents of rS are shifted left the number of bits specified by operand in
the low-order six bits of rB. Bits shifted out of position 0 are lost. Zeros are
supplied to the vacated positions on the right. The 32-bit result is placed into
rA.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the update

of the CR.

Shift Right
Word

srw
srw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by the low-
order six bits of rB. Bits shifted out of position 31 are lost. Zeros are supplied
to the vacated positions on the left. The 32-bit result is placed into rA.

srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables the

update of the CR.

Shift Right
Algebraic
Word
Immediate

srawi
srawi.

rA,rS,SH The contents of rS are shifted right the number of bits specified by operand
SH. Bits shifted out of position 31are lost. The result is sign extended and
placed into rA.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot

suffix enables the update of the CR.

Shift Right
Algebraic
Word

sraw
sraw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by the low-
order six bits of rB. Bits shifted out of position 31 are lost. The result is
placed into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the CR.

