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Overview

What is this course about?

• how to design and build systems using microprocessors

What are some examples of microprocessor-based systems?

Why are more and more systems using microprocessors?

• microprocessors are very cheap (< $1 at the low end)

• an off-the-shelf microprocessor + software can replace a lot 
of application-specific logic

• software enables flexible, sophisticated features that would 
be difficult or impossible otherwise

• software is typically easier to debug & fix than hardware

• more and more information is being stored and transmitted 
in digital form
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ics (not in order)

& assembly language programming
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Memory

• Stores instructions (programs) & data

• Organized as an array of locations (addresses), each storing 
one byte (8 bits).  Reading (retrieving data from) a 
particular location always returns the last value stored (sent 
to) that location.

I/O devices

• Let system interact with the world

• Device interface (a.k.a. controller or adapter) is digital 
logic that connects actual device to bus

• examples?

• I/O device registers look just like memory to the CPU: a 
bunch of locations that can be accessed over the bus. 
However, I/O device registers are connected to other things 
(external wires, device control logic, etc.)

• Result:
1. reads usually don’t return last value written (e.g., may 

be value of last key pressed on keyboard instead)
2. writes usually have side effects (e.g., display character 

on screen)

Course top

• PowerPC architecture 

• Bus designs, protocols

• Standard busses (PCI

• Common I/O devices:
• Timers
• Analog-to-digital, d
• Serial I/O
• Video

• Interrupts: I/O devices

• DMA: I/O devices talk 

• Memory technologies:
synchronous, Rambus
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