
© 1998, 1999 Steven K. Reinhardt

this course fit in?

ECS 280

ECS 270

EECS 373

ming in HLLs

 Digital Systems

Building Digital Systems
using Microprocessors

t of Gates
EECS 373 F99 Notes 1-1

EECS 373

Design of Microprocessor-based Systems

Fall 1999 Course Notes

Prof. Steven K. Reinhardt

Where does

E

E

EECS 370

Program

Building

Microprocessors as

ou

Digital Systems

© 1998, 1999 Steven K. Reinhardt

neral-purpose systems

ystem that is dedicated to a specific
arger product is referred to as an
 embedded systems get much less
mber general-purpose systems in the

ber of 32-bit microprocessors shipped
rocessors shipped in embedded
rocessors shipped in general-purpose
art does not include hundreds of

 embedded processors.

ssor Report
EECS 373 F99 Notes 1-2

Overview

What is this course about?

• how to design and build systems using microprocessors

What are some examples of microprocessor-based systems?

Why are more and more systems using microprocessors?

• microprocessors are very cheap (< $1 at the low end)

• an off-the-shelf microprocessor + software can replace a lot
of application-specific logic

• software enables flexible, sophisticated features that would
be difficult or impossible otherwise

• software is typically easier to debug & fix than hardware

• more and more information is being stored and transmitted
in digital form

Embedded vs. ge

A microprocessor-based s
task or tasks as part of a l
embedded system. Although
publicity, they vastly outnu
market.

This chart shows the num
in 1997. On the left are p
systems; on the right are p
systems. Note that this ch
millions of 8-bit and 16-bit

Source: Microproce

© 1998, 1999 Steven K. Reinhardt

ased System Features

u built in EECS 270, the physical
ts in a microprocessor-based
 function. The system’s function is
e software (instructions) executed by

stem components are connected to a
ply a group of signals (wires) that
veral devices. Two devices
evice (typically the processor) sends
om another device over the bus.

ystem bus is composed of three

 the device and location within the
cessed
ata value that is being communicated
nals that indicate what’s going on on
usses

CPU) is the core of the processor
cuted. Instructions are encoded in
aps every instruction to a binary
e assembly language in this class,

e encoding of the same set of

 + c
1, r2, r3
1100001000100001101000010100
EECS 373 F99 Notes 1-3

Generic microprocessor-based system Microprocessor-b

Unlike the digital systems yo
interconnection of componen
system doesn’t indicate its
primarily determined by th
the processor.

Instead, all the primary sy
common bus. A bus is sim
communicates among se
communicate when one d
data to or requests data fr

A typical microprocessor s
smaller busses:
1. address bus: indicates

device that is being ac
2. data bus: carries the d
3. control bus: control sig

the address and data b

The central processing unit (
where instructions get exe
machine language, which m
value. We will primarily us
which is a human-readabl
instructions.

high-level language:a = b
assembly language: add r
machine language: 0111

CPU

Memory

I/O Device

I/O Device

Bus

© 1998, 1999 Steven K. Reinhardt

ics (not in order)

& assembly language programming

, and interfacing

, USB, etc) & bus bridging

igital-to-analog conversion

 demand attention

directly to memory

 SRAM, DRAM (page mode, EDO,
), Flash, etc.
EECS 373 F99 Notes 1-4

Memory

• Stores instructions (programs) & data

• Organized as an array of locations (addresses), each storing
one byte (8 bits). Reading (retrieving data from) a
particular location always returns the last value stored (sent
to) that location.

I/O devices

• Let system interact with the world

• Device interface (a.k.a. controller or adapter) is digital
logic that connects actual device to bus

• examples?

• I/O device registers look just like memory to the CPU: a
bunch of locations that can be accessed over the bus.
However, I/O device registers are connected to other things
(external wires, device control logic, etc.)

• Result:
1. reads usually don’t return last value written (e.g., may

be value of last key pressed on keyboard instead)
2. writes usually have side effects (e.g., display character

on screen)

Course top

• PowerPC architecture

• Bus designs, protocols

• Standard busses (PCI

• Common I/O devices:
• Timers
• Analog-to-digital, d
• Serial I/O
• Video

• Interrupts: I/O devices

• DMA: I/O devices talk

• Memory technologies:
synchronous, Rambus

	Where does this course fit in?
	Overview
	Embedded vs. general-purpose systems
	Generic microprocessor-based system
	Microprocessor-based System Features
	1. address bus: indicates the device and location within the device that is being accessed
	2. data bus: carries the data value that is being communicated
	3. control bus: control signals that indicate what’s going on on the address and data busses

	Memory
	I/O devices
	1. reads usually don’t return last value written (e.g., may be value of last key pressed on keybo...
	2. writes usually have side effects (e.g., display character on screen)

	Course topics (not in order)

