Bus Topics Synchronous Bus

Y ou should be familiar by now with the basic operation of the
MPC823 bus. In this section, we will discuss alternative bus CLK
structures and advanced bus operation.

ADDR 2 X a1 X 2 X a2 X =

» Arbitration: supporting multiple masters DATA 7 >< D1>< 7? >< D2 >< 7

» Synchronization styles

* Burst transf —
urst transfers RD/WR 7 \fn »

ENABLE \ / \ /

* Pipelining
* Address/data multiplexing

* Splittransactions » Everything synchronized to bus clock, every transaction

takes one clock cycle

» All master outputs valid on rising edge of CLK, stay valid
through falling edge of CLK; slave output (for read) valid

Synchronization: How do master & slave agree on when data by falling edge of CLK

isvalid, or when transaction is over?

1. Synchronous (“fully” synchronous) * Setup & hold times part of bus specification

2. Semi-synchronous * Advantage:

3. Asynchronous . Disadvantages:

EECS 373 F99 Notes 10-1 © 1998, 1999 Steven K. Reinhardt

Semisynchronous Bus Semisync Bus (cont’d)

CLK L * Variation: replace ACK with WAIT; assume minimum
transaction time unless device asserts WAIT
ADDR 7 X A1 X=X A2 & - ACK or WAIT can be driven by:
* deviceitsdf (if it provides such athin
DATA 7 7 X2 Y= (ifitp o)
» “wait state generator”: dedicated counter/FSM logic,
RD/WR 7? 7? 7 delays ENABLE by fixed number of cyclesto generate
ACK (based on device response time)
ENABLE
ACK

» Everything synchronized to bus clock, but transactions take
variable number of cycles

e Saveasserts ACK to indicate that dataisvalid at clock
edge (must be synchronized to clock)

» Control signal edges convey no timing information

e Minimum transaction usually multiple cycles (2 in example,
on MPC823; 4 on 8086)

» Extraclock cycles between start and end (due to late ACK)
are called wait states

EECS 373 F99 Notes 10-2 © 1998, 1999 Steven K. Reinhardt

Asynchronous Bus

ADDR 7 X a1 X = X a2 X =
pATA 72 X b1 X=X b2 X =
RD/WR 7’ \ 7 7

* Noclock: all timing based on control signal edges:

» STROBE: master to slave valid signal (slave reads on
falling edge)

* ACK: daveto master valid signal (master reads on
falling edge)
» fully interlocked: no device timing dependencies
1. master asserts STROBE until it sees ACK

2. dave asserts ACK until it sees STROBE deasserted

EECS 373 F99 Notes

Asynchronous Bus (cont’d)

M 68000 can be operated in this fashion (slaves can ignore
clock and use control signal edges only)

» key: ACK isasynchronous; no setup time w.r.t. clock
» synchronized internally to CPU
partially interlocked:

* bus specifies minimum, maximum pulse widths for
STROBE & ACK

» relieson devicesto meet spec, breaksif pulses too short
or too long

o PCpardld (printer) interfaceislike this

Advantages:

Disadvantages:

© 1998, 1999 Steven K. Reinhardt

Bus Arbitration

Who gets to be master next?

MPCB823 protocol istypical, see section 13.4.6. Three control
signals are used:

« BR (Bus Request)
» from master to arbiter: | want bus
« oneper master: BRO, BRL, etc.
« BG (BusGrant)
» from arbiter to master: you can have it next
« BGO, BGL, etc.
« BB (BusBusy)

» shared among masters (open-collector wired-OR)

EECS 373 F99 Notes

10-4

Arbitration Protocol

Arbiter looks at all BR signals, asserts exactly one BG

may use priorities or round-robin

To become master:

1.

2.

assert BR

wait for (BG and not BB)
deassert BR, assert BB
do transaction

deassert BB

© 1998, 1999 Steven K. Reinhardt

Bus Arbitration Example

CLKJ L

BRO
BR1 /

BGO

BG1

BB

A[631] »n >< A0

% X A

D[0:31] » X oo X %

TS

TA

» arbitration overlaps with previous transaction

» dill lose one cycleto switch masters

EECS 373 F99 Notes

Bus Parking

CLKJ L

BRO N

BR1

BGO .

BG1

T T T

BB

A[6:31] » X AO X Al

D[0:31] » X po X %

TS

TA

« “busparking”: arbiter leaves BG on last master if no BR
« check BG & !BB same cycle as assert BR
» saveacycle (or more) if no switch in masters

« no need to wait on BB if you're driving it yourself

© 1998, 1999 Steven K. Reinhardt

Advanced Bus Techniques

How to make busses work more efficiently or cheaply:

* Burst transfers
* Pipelining
* Address/data multiplexing

* Split transactions

EECS 373 F99 Notes

Burst Transfers

» First cycle of every MPC823 bus transaction transfers

address; minimum transaction is two cycles

* Thislimits datatransfers to one word every other cycle

* Wecan beat thislimit by transferring multiple wordsin one

transaction using one address cycle:

CLK B

A[6:31] 2 X A0 X 7

D[0:31] » X oo X b1 X b2 X b3 X 7

RD/WR 7 ”
TS

ENVAVAVAVEERE

(Some additional control signals are required, not shown in the
diagram.)

* What fraction of bus cycles can we transfer data on now?

© 1998, 1999 Steven K. Reinhardt

Burst Transfers (cont’d) MPC823 Burst Transfer Example

. . -
What addresses are used for additional data words® CLK L

Al6:31] 72 X AO Xz
D[0:31] 7 X oo X b1 X 2 X b2 X D3><£
RDAWR 7 / N7

* Where do burst requests come from?

* How areburst transfers initiated?

* MPCB823 hastwo primary signals: _
» Slave can hold TA asserted on adjacent cycles (no need to

e BURST: from master: | want to do burst deassert asin previous example)

« BI: from slave: | can’t do bursts (823 will convert to + Savecan dtill insert wait states by not asserting TA
regular “single-beat” requests) _
* BDIP: from master: | still expect another word (simplifies
« Only 16-byte (4-word) bursts supported, so no need to slave control)
indicate specific size

EECS 373 F99 Notes 10-7 © 1998, 1999 Steven K. Reinhardt

Pipelining Pipelining (cont’d)

Burst transfers et us transfer data on n out of every n+1 cycles. « The MPC823 bus does not support address/data pipelining,
How can we do better? but (like most busses) does pipeline the arbitration phase.
* Noticethat Qata busis not used duri_ng address cycle, and « The P6 (Pentium Pro/Pentium 1) bus has five pipeline
address bus is not really needed during data cycles. stages (arbitration, request (address), error, snoop, and
. . response/data).
» Overlap address cycle of each transaction with data cycles
of previous transaction. « By thetimetransaction nistransferring data, transaction
n+3 may be issuing its request.
LK
c J L * minimum transaction length = 9 cycles
ADDR >< Al >< £l >< A2 >< s » can dtart anew transaction every 3 cycles
pATADO.2 D0.3 D1.0X D1.1X D1.2X D1.3X D2.0X_ « with burst transfers (4x 64 bits = 32 bytes), can keep

data bus busy 100% of the time

S\ / ./
TA /' A

» Disadvantages of pipelining?

» Thisiscalled transaction pipelining.

* Ingeneral, any two phases of atransaction that use a
separate set of physical signals (wires) can be pipelined.

EECS 373 F99 Notes 10-8 © 1998, 1999 Steven K. Reinhardt

Address/Data Multiplexing Split Transactions

» Pipelining takes advantage of the fact that one transaction » Back to high performance... what happens on a pipelined
does not use both address & data busses at the same time. bus when a transaction requires wait states?

» If thegoal isto reduce cost (not increase performance), how
might we exploit this fact differently?

* A gplit-transaction bus splits each transaction into two
largely independent parts, a request (address part) and a
reply (datapart for reads). Replies may appear in any order.

ADDR X A1 X A2 X A3 X A4 X
DATA X b1 X 22 X b3 X pa X b2 X_

wait
state

» Just as masters arbitrate to initiate a transaction on the
address bus, slaves must now arbitrate to put their reply on
the data bus.

* Advantage:

* Disadvantages:

EECS 373 F99 Notes 10-9 © 1998, 1999 Steven K. Reinhardt

