Procedures and Stacksin Assembly Language

Procedures (functions) are very important for writing modular,
reusable, maintainable code, in assembly language just like in
high-level languages.

PowerPC features for procedure/function calls:

e link register (LR)

¢ bl: branch andihk

* blr: branch toink register

EECS 373 F99 Notes

4-1

ABIs

To implement a procedure call, the calling procedure (the
caller) and the called procedure (tbalee) must agree on:
* how to pass in parameters

* how to return the return value (if any)

« where the call stack is (for local variables etc.)
* eftc.

The PowerPGurchitecture defines none of this
Instead, these are defined by convention

An application binary interface (ABI) defines everything

needed for a binary object file to run on a system (CPU plus

operating system), so that it can:

« call system library routines

« call (and be called by) code generated by other people &
other compilers

The ABI includes:

o file format

» rules for linker operation

e procedure calling conventions
* register usage conventions

PowerPC has different (but very similar) ABIs for MacOS,
AIX. embedded systems (EABI), SVR4 Unix, Windows NT

© 1998, 1999 Steven K. Reinhardt

A Very Simple Calling Convention A problem

* Arguments are passed in GPRs r3 to r10
g P int func2(int a, int b)

« first argumentin r3, second in r4, etc. {
return func(a, b);

* more than eight arguments: use stack (in memory) }
e Return value is passed back in r3

Example:

int func(int a, int b)

{
\ return (a+b); func2(3, 4);
func(3, 4);

EECS 373 F99 Notes 4-2 © 1998, 1999 Steven K. Reinhardt

The Sack Func2revisited

* Need to save per-function-invocation information (e.g. link

register value) on theall stack int func2(int a, int b)

{

« Each function invocation has its owstack frame (a.k.a. return func(a, b);

activation record) }
« Conventional PowerPC stack pointer is rl1
» Other stack conventions:
» stack pointer is always doubleword-aligned (8 byte)
» stack grows down (toward address 0)

e rl points to lowest stack address (bottom of current
stack frame)

« first item in stack frame (offset O from rl) is address of
previous stack frame

« second item (offset 4) is saved link register
e minimum stack frame is 8 bytes
» stack frame optional for “leaf” functions

« always use update addressing mode to allocate stack
frame atomically

EECS 373 F99 Notes 4-3 © 1998, 1999 Steven K. Reinhardt

L ocal variables Register Usage Convention

int func3(int a, int b, int c) Need some rules about who gets to use which registers

{

Callee-save

I nt tenp;
tenp = func2(b, c);

return func2(tenp, a);

* Where can we keegp? » Caller-save

* Reserved

« PowerPC ABI conventions:
+ Caller-save: r0, r3-r12, LR, CTR, CRO, CR1, CR5-7

¢ Callee-save: r14-r31, CR2-CR4

* Reserved: rl, r2, r13

EECS 373 F99 Notes 4-4 © 1998, 1999 Steven K. Reinhardt

	Procedures and Stacks in Assembly Language
	ABIs
	A Very Simple Calling Convention
	A problem
	The Stack
	Func2 revisited
	Local variables
	Register Usage Convention

