Bus Protocols and Interfacing
(adopted Steven and Marios’s slides)

* Bus basics
¢ I/O transactions
« MPC823 bus

Reference:
Chapter 13 of “White Book”

Basic example

* Discuss a basic bus protocol
— Asynchronous (no clock)
— Initiator and Target
— REQ#, ACK#, Data[7:0], ADS[7:0], CMD
* CMD=0 is read, CMD=1 is write.
* REQ# low means initiator is requesting something.

* ACK# low means target has done its job.

A read transaction

 Say initiator wants to read location 0x24
— Initiator sets ADS=0x24, CMD=0.
— Initiator then sets REQ# to low. (why do we need a delay?
How much of a delay?)
— Target sees read request.
— Target drives data onto data bus.
— Target then sets ACK# to low.
— Initiator grabs the data from the data bus.
— Initiator sets REQ# to high, stops driving ADS and CMD

— Target stops driving data, sets ACK# to low terminating
the transaction

Read transaction

ADS[7:0] 72 0x24 G

cp N\ IR

Data[7:0] 2? 0x55 2

REQ# |

ACK# —
AB C D E FG

A write transcation
(write 0xF4 to location 0x31)

— Initiator sets ADS=0x31, CMD=1, Data=0xF4
— Initiator then sets REQ# to low.
— Target sees write request.

— Target reads data from data bus. (Just has to store in a
register, need not write all the way to memory!)

— Target then sets ACK# to low.

— Initiator sets REQ# to high & stops driving other lines.

— Target sets ACK# to high terminating the transaction

The push-button

(if ADS=0x04 write 0 or 1 depending on button)

ACK#

Datal[0]

What about
CMD?

Button (0 or 1) Data[7]

The LED
_ _ MPC823 Bus
(1 bit reg written by LSB of address 0x05)
ADS[0] The basic function of the MPC823 bus is similar, though slightly
ADS[1] more complicated. (Chapter 13 of “White Book™)
oo P ACKs . N
ADS[4] « Timing is controlled by a global clock; all signals are in reference
QBZ{Z: to the rising edge of this clock.
ADS[7] Flip-flop + 32-bit data bus D[0:31]
REQ# which « 26-bit address bus A[6:31]
DATAL) controls LED * A[0:5] not sent off chip
DATA[I] On-chip peripherals still see 32 address bits
gﬂ:ﬁ]] « Basic control lines:
DAT:M;H * RD/#WR
Bﬂim « #TS (transfer start)—like #REQ but only asserted on first
DATA[T————— | clock cycle of transaction
* #TA (transfer acknowledge)—like #ACK

MPC823 Read MPC823 Read
* Master drives address, RD/#WR, and #TS to initiate a read CLK

transaction. Address and RD/#WR guaranteed valid at same
rising clock edge that TS’ is asserted. Master deasserts #TS

after one cycle, but keeps driving address and RD/#WR until Al6:31] ?7? Al 7 A2 7
it sees #TA.

D[0:31] n [)< n D2X??
* Slaves look at address and RD/#WR when #TS asserted.
One of them will drive data and assert #TA. Master smaples RDAEWR 72 27 2
data on same rising clock edge when #TA is asserted.
* Minimum transactions takes two clock cycles. #TS -
» Transactions can take longer; slow slaves add wait states by #TA f

not asserting #TA.

read @ Al read @ A2

o MPC823 Write

R [[1 1 | 1
| | | |
2 | R | FECENE JUIS CRANT AjD BUS BUSYINECATED | * Same start as for a read, except for polarity of RD/WR#.

lusSERT BE, BRIVE ADDREES AND ASSERTTE
L AW I | I

| | o
. | |
Al i | }: rf
T T

* Master drives data by 2" cycle.

T T
|]
Aome f f : : \ ‘ * Slaves look at address and RD/#WR when #TS is asserted.
TSEAATI] | |)(| | X | 1 One of them will read data and assert #TA.
L 1 I I T I
L I I I A1 I
& ﬁ/ | ; T n * As with reads, minimum transaction length is two cycles.
: : __:/ ! \%/ : Slaves can take longer, however, by not asserting #TA. Master
DATA | | i M i | keeps driving address, RD/#WR, and data until it sees #TA
iy I T T T T asserted.

Ig
DATA IS VALD

Figure 13-4. Single Beat Read Cycle—Basic Timing—Zero Wait States

MPC823 Write

cax LTI L

Al6:31] 77 AL |2 A2
D[0:31] D0 G D2
RDAWR 2?2 2

7

7”

7

#TS \

#TA f

write @ Al write @ A2

Of course, things aren’t that simple

» TSI[0:1] - Specifies the size of the data to be transferred.
e DPJ[0:3] — Data parity

o #Burst — Indicates a burst transaction

» #BDIP — Burst Data In Progress (more burst stuff)

o #BI - Burst Inhibit. Indicates that the slave doesn’t
support burst transactions

* Many More...

Example of complexity:
The Burst Mechanism (13.4.4)

* Burst transfers are used to move 16 bytes at a time
* #BURST must be asserted by master

» #BI must not be asserted by slave

* Must be a 16-byte aligned access

« Supports critical word first.

cakout

A Gerh T T
LD ISUALD svaiD VALD

Figure 13-11. Burst-Read Cycle-32-Bit Port Size-Zero Wait State

Arbitration (page 13-28)

Requesting device Arbiter

Grant bus arbitration
Assert #BG
>\ Terminate Arbitration
Negate #BG

Request the bus
*Assert #BR

ACK bus mastership

*Wait for #BB to be deasserted
*Assert #BB

*Negate #BR

Perform data transfer

Transfer Alignment

Il Il Il
ox1000 [[T [[TTL{TTITITT{LITTITLITITITTL

0 7'8 15'16 2324

MPC823 external bus supports natural address alignment
* Byte access: Any address alignment
* Half-word access: Address bit 31 equal to 0
* Word access: Address bits 31 and 30 equal to 0

31

Dealing with Smaller Accesses: Reads

Il Il Il
ox1000 [[T[T [TT{TITTITL]TITITTI]ITTITT]
0 78

15'16 2324 31

Assume that the word value 0x12345678 is stored at 0x1000 and
that r4 contains 0x1000. What happens on the following transfers?
D[0:7] D[8:15] D[16:23] D[24:31]
elbz 3, 0 (r4)
elbz 3, 1 (r4)
elbz 3, 2 (r4)
elbz 3, 3 (r4)
elhz 3, 0 (r4)
elhz 3, 2 (r4)

Table 13-2. Data Bus Requirements For Read Cyclas

TRANSFER | TSIZE | INTERNAL 32-BIT PORT SIZE 16-BIT PORT SIZE | $-BIT
SIZE 10:1] | ADDRESS PORT
SIZE
420 | 31 | D1-D7 | D8-D15 | D16-D23 | D24-D31 | DO-DF | DE-DIS | DO-DT
Byte of[1] o]0 | or — — B B = oPo
o[1[o 1] = op1 = — = op1 | opt
a1 1 0 = — op2 = op2 s oP2
a1 1 1 — — — opz — Qp3 oP3
Half-Word 1|0 o o apo aP1 — - apa aP1 oPa
1o 1o = — opz ops | oPz | ops | opz
Word ofof o] o] om | om op2 ops | om0 | opt | ome

NOTE — Denateshat a byle is not required during that red cycle.

INTERFACE
e am Pl am oP3 = QUTPUT
REGISTER
Dii:T) D15 D{16:23) Djz4:31)
b ¥ b ¥
| ar | ol | ar2 | oF3 | 2-BIT PORT SIZE
am w1
15-EIT PORT SEE
ar2 oFe
am
Pl
BT PORT SIE
ar2
om
Figure 13-19. Interface To Different Port Size Devices
Table 13-3. Data Bus Contents for Write Cycles
TRANSFER | TSIZE | INTERNAL EXTERNAL DATA BUS PATTERN
SIZE [0:1] | ADDRESS
430 | A31 | DO-D7 | DE-D1s | D16-D23 D24-D31
Byts o1]|ofo 0P — — —
o | 1| o] api oPt - =
o |1 |0 oP2 - oPz —
o |1 1 1 oP3 oP3 - oP3
Half-Word tlaflo]o oPo oPt — —
[HERERE opP2 oP3 oPz2 oP3
Word o|lao|o|o oPo oP oPz oP3

NCOTE: — Denotes that a byt is not required during that read cyde.

Dealing with Smaller Accesses: Writes

| | |
0x1000 [[[T TTT{TITITICILITITTIITITIT]
0 78

15'16 2324 31

How about the following transfers?
D[0:7] D[8:15] D[16:23] D[24:31]
estb 12, 0(14)
estb 12, 1(r4)
estb 12, 2 (r4)
estb 12, 3 (4)
esth 12, 0 (r4)
esth 12, 1(r4)

Dealing with Smaller Accesses

* On a write access, which two factors determine which bits
in a 32-bit word are updated?

* On most wide buses, the master drives byte enable lines
instead of less significant address bits

* Moto 68000 (16 bits): LDS’, UDS’ (no address LSB)

* 32-bit buses: Replace low 2 address bits with 4 byte
enables

* MPC823 does not:
« Full byte address provided

« Size (byte, halfword, word) encoded on two control
lines TSIZ[0-1]

Unaligned Accesses

\]
\]
15'16 2324

[[1T]
[[1T]
8

Consider two adjacent 32-bit memory locations and assume that
r4 = 0x1000. What happens when the CPU executes the
following instructions?

elwz 13,2 (14)

elwz 13,1 (14)

Problems with Unaligned Accesses

‘What are some problems with unaligned accesses?

Basic bus issues

¢ What are the basic wires for specifying the transaction and
moving the data
— What are the types of transactions? How are they specified?
— How is length of data transfer specified?
¢ Who can delay (insert wait states?)
¢ How is arbitration done?
¢ Out-of-order transfers allowed?
— Any restrictions?
¢ Error reporting?
¢ Weirdness?

— Alignment for example.

Transaction types

 Usually read/write with a length
— But in a given domain, other info might be
important.
 Data vs. Code access.
* 1/0 vs. memory access
* Hints to target device

— Length might be arbitrary.

Delaying

* Who can delay and how
— Usually a target (slave) can delay
— Sometimes initiator (master) can delay
— Sometimes initiator can drop the transaction

— Sometimes the target has options on how to
delay.

Arbitration

* Fairness
— Even sharing, priority sharing, weighted sharing
* Mechanism
— Centralized arbiter
— Distributed arbiter
— Combination
e Duration
— Until done
— Until someone else requests
— Until certain time passes.
— Combination

Out-of-order Out-of-order: Ordering problem

* Does the bus allow transactions to complete Processor 1 * Processor 2
out-of-order? write I=1 Write J=2
write J=1 Write I=2

— If so, can increase bandwidth (why?)
— If so, might have to worry about ordering issues

¢ Memory consistency models not a topic for this

class (take EECS 570!) but basics are pretty easy to It both programs are executed in order, is there any
grasp setting of J and I which is impossible?

