
1

Bus Protocols and Interfacing
(adopted Steven and Marios’s slides)

• Bus basics
• I/O transactions
• MPC823 bus

Reference:
Chapter 13 of “White Book”

Basic example

• Discuss a basic bus protocol
– Asynchronous (no clock)
– Initiator and Target
– REQ#, ACK#, Data[7:0], ADS[7:0], CMD

• CMD=0 is read, CMD=1 is write.
• REQ# low means initiator is requesting something.
• ACK# low means target has done its job.

A read transaction

• Say initiator wants to read location 0x24
– Initiator sets ADS=0x24, CMD=0.
– Initiator then sets REQ# to low. (why do we need a delay?

How much of a delay?)
– Target sees read request.
– Target drives data onto data bus.
– Target then sets ACK# to low.
– Initiator grabs the data from the data bus.
– Initiator sets REQ# to high, stops driving ADS and CMD
– Target stops driving data, sets ACK# to low terminating

the transaction

Read transaction

ADS[7:0]

CMD

Data[7:0]

REQ#

ACK#

?? ??0x24

?? ??0x55

A B C D E FG

A write transcation
(write 0xF4 to location 0x31)

– Initiator sets ADS=0x31, CMD=1, Data=0xF4
– Initiator then sets REQ# to low.
– Target sees write request.
– Target reads data from data bus. (Just has to store in a

register, need not write all the way to memory!)
– Target then sets ACK# to low.
– Initiator sets REQ# to high & stops driving other lines.
– Target sets ACK# to high terminating the transaction

The push-button
(if ADS=0x04 write 0 or 1 depending on button)

ADS[0]
ADS[1]
ADS[2]
ADS[3]
ADS[4]
ADS[5]
ADS[6]
ADS[7]
REQ#

Button (0 or 1)

0

Data[0]

Data[7]

..

..

..

..

..

Delay ACK#

What about
CMD?

2

The LED
(1 bit reg written by LSB of address 0x05)

ADS[2]

ADS[0]
ADS[1]

ADS[3]
ADS[4]
ADS[5]
ADS[6]
ADS[7]
REQ#

Flip-flop
which
controls LEDclock

D

DATA[2]

DATA[0]
DATA[1]

DATA[3]
DATA[4]
DATA[5]
DATA[6]
DATA[7]

Delay ACK#

MPC823 Bus

The basic function of the MPC823 bus is similar, though slightly
more complicated. (Chapter 13 of “White Book”)

• Timing is controlled by a global clock; all signals are in reference
to the rising edge of this clock.
• 32-bit data bus D[0:31]
• 26-bit address bus A[6:31]

• A[0:5] not sent off chip
• On-chip peripherals still see 32 address bits

• Basic control lines:
• RD/#WR
• #TS (transfer start)—like #REQ but only asserted on first

clock cycle of transaction
• #TA (transfer acknowledge)—like #ACK

MPC823 Read
• Master drives address, RD/#WR, and #TS to initiate a read
transaction. Address and RD/#WR guaranteed valid at same
rising clock edge that TS’ is asserted. Master deasserts #TS
after one cycle, but keeps driving address and RD/#WR until
it sees #TA.

• Slaves look at address and RD/#WR when #TS asserted.
One of them will drive data and assert #TA. Master smaples
data on same rising clock edge when #TA is asserted.

• Minimum transactions takes two clock cycles.

• Transactions can take longer; slow slaves add wait states by
not asserting #TA.

MPC823 Read

CLK

A[6:31]

D[0:31]

RD/#WR

#TS

#TA

?? ?? ??

?? ?? ??

???? ??

A1

D1

A2

D2

read @ A1 read @ A2

MPC823 Write

• Same start as for a read, except for polarity of RD/WR#.

• Master drives data by 2nd cycle.

• Slaves look at address and RD/#WR when #TS is asserted.
One of them will read data and assert #TA.

• As with reads, minimum transaction length is two cycles.
Slaves can take longer, however, by not asserting #TA. Master
keeps driving address, RD/#WR, and data until it sees #TA
asserted.

3

MPC823 Write

CLK

A[6:31]

D[0:31]

RD/#WR

#TS

#TA

?? ?? ??

?? ?? ??

???? ??

A1

D1

A2

D2

write @ A1 write @ A2

• TSI[0:1] – Specifies the size of the data to be transferred.
• DP[0:3] – Data parity
• #Burst – Indicates a burst transaction
• #BDIP – Burst Data In Progress (more burst stuff)
• #BI – Burst Inhibit. Indicates that the slave doesn’t

support burst transactions
• Many More…

Of course, things aren’t that simple

Example of complexity:
The Burst Mechanism (13.4.4)

• Burst transfers are used to move 16 bytes at a time
• #BURST must be asserted by master
• #BI must not be asserted by slave
• Must be a 16-byte aligned access
• Supports critical word first.

Arbitration (page 13-28)

Requesting device Arbiter

Request the bus
•Assert #BR

ACK bus mastership
•Wait for #BB to be deasserted
•Assert #BB
•Negate #BR

Perform data transfer

Release bus mastership
•Negate #BB

Grant bus arbitration
Assert #BG

Terminate Arbitration
Negate #BG

Transfer Alignment

0x1000
0 317 8 15 16 23 24

MPC823 external bus supports natural address alignment
• Byte access: Any address alignment
• Half-word access: Address bit 31 equal to 0
• Word access: Address bits 31 and 30 equal to 0

4

Dealing with Smaller Accesses: Reads

0x1000
0 317 8 15 16 23 24

Assume that the word value 0x12345678 is stored at 0x1000 and
that r4 contains 0x1000. What happens on the following transfers?

D[0:7] D[8:15] D[16:23] D[24:31]

• lbz r3 , 0 (r4)
• lbz r3 , 1 (r4)
• lbz r3 , 2 (r4)
• lbz r3 , 3 (r4)
• lhz r3 , 0 (r4)
• lhz r3 , 2 (r4)

Dealing with Smaller Accesses: Writes

How about the following transfers?

D[0:7] D[8:15] D[16:23] D[24:31]

• stb r2 , 0 (r4)

• stb r2 , 1 (r4)

• stb r2 , 2 (r4)

• stb r2 , 3 (r4)

• sth r2 , 0 (r4)

• sth r2 , 1 (r4)

0x1000
0 317 8 15 16 23 24

• On a write access, which two factors determine which bits
in a 32-bit word are updated?

• On most wide buses, the master drives byte enable lines
instead of less significant address bits

• Moto 68000 (16 bits): LDS’, UDS’ (no address LSB)

• 32-bit buses: Replace low 2 address bits with 4 byte
enables

• MPC823 does not:

• Full byte address provided

• Size (byte, halfword, word) encoded on two control
lines TSIZ[0-1]

Dealing with Smaller Accesses

5

Unaligned Accesses

0x1000
0 317 8 15 16 23 24

0x100_

Consider two adjacent 32-bit memory locations and assume that
r4 = 0x1000. What happens when the CPU executes the
following instructions?

• lwz r3 , 2 (r4)

• lwz r3 , 1 (r4)

Problems with Unaligned Accesses

What are some problems with unaligned accesses?

Basic bus issues
• What are the basic wires for specifying the transaction and

moving the data
– What are the types of transactions? How are they specified?
– How is length of data transfer specified?

• Who can delay (insert wait states?)
• How is arbitration done?
• Out-of-order transfers allowed?

– Any restrictions?

• Error reporting?
• Weirdness?

– Alignment for example.

Transaction types

• Usually read/write with a length
– But in a given domain, other info might be

important.
• Data vs. Code access.
• I/O vs. memory access
• Hints to target device

– Length might be arbitrary.

Delaying

• Who can delay and how
– Usually a target (slave) can delay
– Sometimes initiator (master) can delay
– Sometimes initiator can drop the transaction
– Sometimes the target has options on how to

delay.

Arbitration

• Fairness
– Even sharing, priority sharing, weighted sharing

• Mechanism
– Centralized arbiter
– Distributed arbiter
– Combination

• Duration
– Until done
– Until someone else requests
– Until certain time passes.
– Combination

6

Out-of-order

• Does the bus allow transactions to complete
out-of-order?
– If so, can increase bandwidth (why?)
– If so, might have to worry about ordering issues

• Memory consistency models not a topic for this
class (take EECS 570!) but basics are pretty easy to
grasp

Out-of-order: Ordering problem

Processor 1
write I=1

write J=1

• Processor 2
Write J=2

Write I=2

If both programs are executed in order, is there any
setting of J and I which is impossible?

