
1

Procedures

Procedures are very important for writing
reusable and maintainable code in assembly
and high-level languages. How are they
implemented?

• Application Binary Interfaces
• Calling Conventions
• Recursive Calls
• Examples

Reference: PowerPC Embedded ABI

General Concepts

• Caller: The calling procedure
Callee: The procedure called by the caller

… int mult(x, y)
prod = mult (a, b) …
… return (x * y)

• Caller and callee must agree on:
• How to pass parameters
• How to return the return value(s), if any
• How to maintain relevant information across calls

• PowerPC architecture does not define “agreement”. Instead,
common policies are defined by convention.

PowerPC Features

The PowerPC ISA provides the following features to support
procedure/function calls:

• link register (p. 2-11)

• bl: branch and link (p. 4-41)

• blr: branch to link register (Table F-4)

A Very Simple Calling Convention

• Passing arguments
• Use GPRs r3 to r10 in order
• Use stack in main memory if more than 8 arguments

• Passing return value
• Leave result in r3

Example

int func(int a, int b)
{

return (a + b);
}

main
{

…
func(5,6);
…

}

Another Example

int func2(int a, int b)
{

return func(a , b);
}

main
{

…
func2(5,6);
…

}

2

The Stack
• Information for each function invocation (e.g. link register) is saved
on the call stack or simply stack.

• Each function invocation has its own stack frame (a.k.a. activation
record).

func2

func

stack frame

stack frame
stack

pointer

high address

low address

Using the Stack

main …
…
bl func2
…

func2 …
…
bl func
…
??
…

func …
…
??

Describe the stack and LR contents
• right before the first bl
• right after the first bl
• right after the second bl
• after each procedure returns

What Goes into Stack Frame?

• link register
• passing parameters (optional)
• return value (optional)
• what else?

stack
pointer

Application Binary Interface (ABI)

• Application Binary Interface (ABI): Defines everything needed
for a binary object file to run on a system (CPU and operating
system), so that it can

• call system library routines
• call (and be called by) code generated by other people and
other compilers

• The ABI specifies:
• file format
• rules for linker operation
• procedure calling conventions
• register usage conventions

• PowerPC has different but very similar ABIs for MacOS, AIX,
embedded systems (EABI), Unix, Windows.

PowerPC Conventions
• Stack pointer is r1

• Stack pointer is double-word aligned (8 bytes)

• Stack “grows” down, toward address 0

• r1 points to lowest stack address (bottom of current stack frame)

• First item in stack frame (offset 0 from r1) is address of previous
stack frame (a.k.a. frame pointer)

• Second item (offset 4) is saved link register

• Minimum stack frame is 8 bytes

• Stack frame optional for leaf functions

• Always use update addressing mode to allocate stack frame
automatically

Register Usage Convention

Rules about who gets to use/save which registers

• Caller-save: r0, r3-r12, LR, CTR, CR0, CR1, CR5-7

• Callee-save: r14-r31, CR2-4 (non-volatile registers whose
values must be preserved across calls and must thus be restored
by callee before returning to caller)

Dedicated: r1, r2, r13

3

EABI Stack Frame

FPRs (optional, var size)

GPRs (optional, var size)

CR (optional, 1 word)

local variables (optional, var size)

function param’s (optional, var size)

Padding (make size mult of 8 bytes)

Link Register
Back Chain

frame
header

highest
address

lowest
address

