A walk through interrupts on
the PPC 823

Review — software viewpoint

* Interrupt occurs

— Processor saves limited state

+ SRRO — Next instruction to be executed when return from
interrupt.

* SRR1 - Copy of MSR

* MSR is modified. Most important is EE bit=0
— Processor jumps to the Interrupt Service Routine.
— ISR executes.

» Needs to save state so that it can put it all back before return
from interrupt.

* May enable nested interrupts

» Does its thing € This is a big step...

+ Restores state (disables nested interrupts if needed!)
+ Return from interrupt (rfi instruction)

Details of software viewpoint

» How does the ISR know where to branch to?

— Table 7.1 indicates the low 5-hex digits of the
address.

— The IP bit of the MSR (page 6-21) determines the
high order bits.

» But even then, we need to do

different things for different rae 1. onsetof Fist instruction by Interrupt Type

Table 7-1. Offset of First Instruction by Interrupt Type

intel’l’upt lines. OFFSET (HEX) INTERRUPT TYPE
00000 252"

— SIVEC... P
00200
000 DataSteage
00400 retan Storege

00500 Evemal

So how do we run the right code?

» SIVEC holds an 8 bit code which indicates which
interrupt was the highest level external interrupt.
— Page 12-6.
— This can be used to figure out which “line” is the

highest priority interrupt.

+ While a switch statement would work, it is fairly
ugly.
— Rather we use an indirect branch.
— Sample code is on page 12-11

OFFSET (HEX) INTERRUPT TYPE
00000 Reserved
00100 System Resst
00200 Machine Check
00300 Data Storage
00400 Instruction Storage
00500 External
AORNN Alianmant
INTR: + »« INTR:# 2+
Save state Save state
R3<-@ SIVEC R3<- @ SIVEC
R4 < Base of branch table R4 <--Base of branch table
Ibz RXR3 (?_‘) #load as byte lhz RXR3 {\Q #load as byte
add RX RX R4 add RX RX R4
mtspr CTR, RX mtspr CTR, RX
betr betr
BASE b Routinel BASE 1st Instruction of Routine1

BASE+4 b Routine2 BASE +400| 1stInstruction of Routine2
BASE+8 b Routine3 BASE +800| 1stInstruction of Routine3
BASE+C b Routined BASE +C00| 1stInstruction of Routined

BASE +10 & BASE +1000|

I

BASE+n L BASE +n

Figure 12-3. Interrupt Table Handling Example

Ok, so we've got the software
mostly down...

+ Some issues
— Changing the MSR could be important.

—We need to be sure we save everything we
change.
+ Don't forget the condition register.
— Not sure what to do to stop the interrupt
» We need to clear something somewhere...

« So onto hardware.

MPC 823 -- hardware

» So how about from the hardware side?

— We've already seen one special-purpose register
(SIVEC)
— It turns out there are a few more
» SIPEND is a vector of pending interrupts

» SIMASK is a vector that allows one to mask out certain
interrupts.

» SIEL toggles the /RQ interrupts from edge to level
— We also have to understand what the different souces
of interrupts might do.
* Let’s start there.

“External” Interrupts

» There are two basic types of external
interrupts
— Those generated off-chip and those
generated on-chip.

» Hardware devices you generate on the FPGA will
all be off-chip. These use the IRQ interrupts

« Timers and other on-chip devices use the LVL
interrupts.

— Each has somewhat different functionality.

Clearing interrupts

» Every interrupt does/should have a single
point of reset.
—Think of it this way. Somewhere out there is

something that is saying “this interrupt is
occurring—the device is asking for service”

—The ISR needs some way to clear this and
indicate that the device is being dealt with.

— Doing so remove the interrupt from SIPEND.

Clearing LVL interrupts.

+ Always level-sensitive.
— Probably why named the way they are.

* Interrupt source is either CIPR (16-497) or
an event bit associated with the interrupt.

* You do NOT clear them by writing to
SIPEND!

Clearing IRQ interrupts

« If the IRQ is edge-triggered the SIPEND

register stores the fact that an interrupt
has occurred.

—The interrupt is cleared at SIPEND in this
case

« If the IRQ is level-sensitive the interrupt is

cleared by direct communication to the I/0
device.

— When designing I/O devices that generate
interrupts keep these things in mind.

Interrupt related registers

» We've seen SIVEC but there are more...

SIEL

» System Interrupt Edge/Level

— Determines if IRQ interrupts are level or edge
sensitive.

— Also controls if IRQ can wake the processor
from low-power mode.

SIEL

BIT 0 1 2 3 4 5 [} 7 8 9 10 [1| 12|13 | 14|15

FIELD)2 | W2
RESET 0

RW RW
ADDR

SIPEND

+ Keeps track of the external interrupts that are
PENDing.
— Used to clear edge-triggered IRQ interrupts.

— Can be used rather than SIVEC to figure out what
interrupt to service if you really really want to.

SIPEND

BIT 0 1 2 3 4 5 6 7 8 9 10 11| 12| 13| 14|15

SIMASK

+ Allows certain interrupts to be ignored or
masked out.
—Is ANDed with SIPEND to determine which

interrupts are allowed to interrupt the core and
set their value in SIVEC

SIMASK

BIT 0 1 2 3 4 5 [} 7 8 9 0 | 1 12 [13 | 14 | 15

FIELD | IRMO | LVMO | IRMT | LV | IRM2 | LVMZ | IRM3 | LVM3 | IRM4 | LVRA4 | IRM5 | LVMS | IRME IRMT | LVmT

FIELD |IRC

RESET

RW [RW [RW W AW | RW RIW | RW | RW | RV
ADDR (IMMIR & 0xFFFF000

RESET o 0 0 0 0 0 0 0 0 0 0 0 0

RW | Rw | RW | RW w | Rw | R | Rw

RIW

ADDR (IMMR & 0xFFFFO000) + 0x0

PPC: Graphical view
giol:s mux SIPEND SIVEC

8 m 8

IRQ#[0:7] 'u i 16
16 16

Core
LVL[0:7] IRQ
8 (core)
SIMASK

SIEL

Table 12-1. Priority of System Interface Unit Interrupt Sources

NUMBER PRIORITY INTERRUPT SOURCE INTERRUPT CODE
LEVEL DESCRIPTION
0 Highest TRQ0 00000000
1 Level 0 00000100
2 RaT 00001000
3 Level 1 00001100
4 RazZ 00010000
5 Level 2 00010100
6 RO3 00011000
7 Level 3 00011100
8 ROT 00100000
9 Level 4 00100100
10 RE 00101000
11 Level 5 00101100
12 TRGE 00110000
13 Level 6 00110100
14 a7 00111000
15 Lowest Level 7 00111100
16-31 Reserved —

Table 7-1. Offset of First Instruction by Interrupt Type
OFFSET (HEX) INTERRUPT TYPE
00000 Reserved
SIPEND 00100 System Reset
et o1]2 [s3]afs[e|7]s|[ofo|[n|[u][nun|[u]s 20200 Machine Chack
FIELD IR0 | LvLo [IRat | it [1Ra2 | vi2 | 1Ra3 | Lvia [IRa4 | via [1Ras | LS [1Ras | Lvis [1RT | L7 00300 Data Storage.
REsET | o | o | oo lolololololololololololo 00400 Instruction Storage
RW | Rw | RW R R | Rw | Row | R | Rew | Rw | Rw 00 Exomal
- 00600 Alignment
ADDR (IMVIR & 0:FFFFO0000) + 0:010 6506 Frogram
SIMASK; 00800 Floating Point Unavailable
ERE 3|a|s|e|7|s]o]n|[n|[n|u|fu]|s 00900 Decrementer
FIELD | IR0 | LN LM | IRZ | LVM2 | IRM3 | L2 | IRM4 | L4 | IRMS | LY | IRWMG | L6 | IRMI7 | Luba7 00400 Reserved
RESET [o | o [oo fofofoflofofofofo]o]afo]o 0800 Reecrved
00000 System Call
RW RIW | RW | RW | RW RIW | R RW RW
00000 Trace
ADDR (IMVR & 0<FFFFO000) + 0x014 20E00 Fioatng Poirt ARt
SIEL 01000 Implementation-Dependent Software Emulation
or [o |1 |23 [afs |67 [s]|o[n|n|[n][n|u][n 01100 Implemantation-Dependsnt Instruction TLE Miss
FIELD | EDO | WMO | ED1 | W1 | ED2 | WM2 | ED3 | WM3 | ED4 | WIM4 | EDS | WMS | EDG | WMG | ED7 | Whi7 01200 Implementation-Dependent Data TLB Miss
N o o 0 oo 7 ETE 01300 Implementation-Dependent Instruction TLB Error
01400 Implementation Dependznt Data TLB Emor
RW | RW Rw | R | Rw | R R | R | R | RW | R RW
01500 - 01BFF Reserved
ADDR (IMMR & OXFFFFO000) + 01000 Implementation-Dependent Data Breakpoint
01000 Implementation Depandent Instruction Braakpoint
01E00 Implementation-Dependent Peripheral Breakpoint
01F00 Implementation-Dependent Nonmaskable Development Port

