
1

A walk through interrupts on
the PPC 823

Review – software viewpoint

• Interrupt occurs
– Processor saves limited state

• SRR0 – Next instruction to be executed when return from
interrupt.

• SRR1 – Copy of MSR
• MSR is modified. Most important is EE bit=0

– Processor jumps to the Interrupt Service Routine.
– ISR executes.

• Needs to save state so that it can put it all back before return
from interrupt.

• May enable nested interrupts
• Does its thing

�
This is a big step…

• Restores state (disables nested interrupts if needed!)
• Return from interrupt (rfi instruction)

Details of software viewpoint

• How does the ISR know where to branch to?
– Table 7.1 indicates the low 5-hex digits of the

address.
– The IP bit of the MSR (page 6-21) determines the

high order bits.

• But even then, we need to do
different things for different
interrupt lines.
– SIVEC…

So how do we run the right code?

• SIVEC holds an 8 bit code which indicates which
interrupt was the highest level external interrupt.
– Page 12-6.
– This can be used to figure out which “line” is the

highest priority interrupt.

• While a switch statement would work, it is fairly
ugly.
– Rather we use an indirect branch.
– Sample code is on page 12-11

2

Ok, so we’ve got the software
mostly down…

• Some issues
– Changing the MSR could be important.
– We need to be sure we save everything we

change.
• Don’t forget the condition register.

– Not sure what to do to stop the interrupt
• We need to clear something somewhere…

• So onto hardware.

MPC 823 -- hardware

• So how about from the hardware side?
– We’ve already seen one special-purpose register

(SIVEC)
– It turns out there are a few more

• SIPEND is a vector of pending interrupts
• SIMASK is a vector that allows one to mask out certain

interrupts.
• SIEL toggles the IRQ interrupts from edge to level

– We also have to understand what the different souces
of interrupts might do.

• Let’s start there.

“External” Interrupts

• There are two basic types of external
interrupts
– Those generated off-chip and those

generated on-chip.
• Hardware devices you generate on the FPGA will

all be off-chip. These use the IRQ interrupts
• Timers and other on-chip devices use the LVL

interrupts.

– Each has somewhat different functionality.

Clearing interrupts

• Every interrupt does/should have a single
point of reset.
– Think of it this way. Somewhere out there is

something that is saying “this interrupt is
occurring—the device is asking for service”

– The ISR needs some way to clear this and
indicate that the device is being dealt with.

– Doing so remove the interrupt from SIPEND.

Clearing LVL interrupts.

• Always level-sensitive.
– Probably why named the way they are.

• Interrupt source is either CIPR (16-497) or
an event bit associated with the interrupt.

• You do NOT clear them by writing to
SIPEND!

Clearing IRQ interrupts

• If the IRQ is edge-triggered the SIPEND
register stores the fact that an interrupt
has occurred.
– The interrupt is cleared at SIPEND in this

case
• If the IRQ is level-sensitive the interrupt is

cleared by direct communication to the I/O
device.
– When designing I/O devices that generate

interrupts keep these things in mind.

3

Interrupt related registers

• We’ve seen SIVEC but there are more…

SIEL

• System Interrupt Edge/Level
– Determines if IRQ interrupts are level or edge

sensitive.
– Also controls if IRQ can wake the processor

from low-power mode.

SIPEND

• Keeps track of the external interrupts that are
PENDing.
– Used to clear edge-triggered IRQ interrupts.
– Can be used rather than SIVEC to figure out what

interrupt to service if you really really want to.

SIMASK

• Allows certain interrupts to be ignored or
masked out.
– Is ANDed with SIPEND to determine which

interrupts are allowed to interrupt the core and
set their value in SIVEC

PPC: Graphical view

Core

IRQ#[0:7]

LVL[0:7]

Flip-
Flops mux

SIEL

SIPEND

SIMASK

SIVEC

16
16 16

8

8

88

IRQ
(core)

4

