
Mixing C/C++ and Assembly Using SingleStep

 The SingleStep software is able to compile C and C++ code for use with PowerPC
processors. However, it is sometimes beneficial to use both C and ASM in the same program.
This document will explain how to write, compile, and link programs that use a combination of
C and ASM.

 Since the C/C++ compiler and the assembler are two separate programs, you will have to
create separate files for your C code and your assembly. You can then write functions in C that
are called by assembly, and functions in assembly that are called by C.

Writing and compiling the assembly modules

 No changes need to be made to the body of an assembly module in order to call C
functions. Call your C function like you would any assembly function using the branch and link
instruction, bl. For example, if your C/C++ function is declared as int myFunc(...), use:

bl myFunc

 To call ASM functions from C, make the label of the ASM function global and word-
align it:

.align 2 #word-align next value

.globl myFunc #make myFunc global
myFunc: #function starts here

 To assemble your ASM files, you may want to create a batch file makeasm.bat with the
following command:

 asppc -c -g -l %1.s > %1.lst

Assemble the file myFile.s by using:

makeasm myFile

Writing and compiling the C/C++ modules

 Your C/C++ modules will essentially be a set of functions that are called by the main
assembly body. For C programs, functions can be declared as normal. For C++ functions, you
must prefix function declarations with extern “C” or the compiler will mangle the name and
you will be unable to access the function from your assembly code.

C function: int myFunc(...)
C++ function: extern “C” int myFunc(...)

 To call ASM functions from your C++ code, use the ASM function’s label as the
function name and call it like any other C/C++ function:

/* function myFunc is an assembly function
that returns an integer value */

 int b;

 b = myFunc(...);

 To compile your C/C++ programs, you may want to create a batch file makec.bat with
the following command:

 hcppc -c -g %1.c

Assemble the file myFile.c by using:

makec myFile

The compiler is available in the lab under c:\SDS75\hcppc\bin. The C compiler will not work on
CAEN machines. The compiler is also available in the demo version of the SingleStep software
on the course web page. Once installed, it is under c:SDS74\hcppc\bin.

ABI Conventions

 C/C++ functions compiled using the hcppc compiler will follow the PowerPC ABI
conventions. For details on the PowerPC ABI, refer to the EABI document in the References /
Handouts section of the course website. Specifically, the following conventions must be
observed:

• Parameters passed to C/C++ functions from assembly must be placed in r3-r10 in the
order that the parameters appear in the function declaration. Similarly, parameters
passed to assembly functions from C will appear in r3-r10 in the order that they were
passed.

• Return values must be placed in r3-r4 when returning to C, and will appear in r3-r4
when returning to assembly.

• The stack pointer must be in r1.

Linking files

 Object files (.o) will be generated when you compile your C and ASM code. To link the
.o files into an executable .elf file, create and use the following batch file, link.bat:

ldppcl -dn -A %1-lnk.txt -o %1.elf %~2

Link the files by using:

 link myproj “asmfile1.o asmfile2.o cfile1.o cfile2.o”

where “myproj” is the name used in your link file, i.e. myproj-lnk.txt, and the list of object files
you want to link is enclosed in quotes.

Debugging mixed C/ASM in SingleStep

SingleStep allows you to view your code in mixed C/ASM mode. Your C code will be

displayed as assembler comments, and the assembly generated for each line will follow. To view
your code in mixed mode, click on the ‘M’ button in the lower left corner of the debug window.
You can set breakpoints and step through the compiler-generated assembly just like you would
with your own assembly code.

Other things to note

• A sample program using mixed C/ASM has been provided on the website. Compile
and link the modules, then simulate with SingleStep to see an example.

• Your main program must be in assembly. If you use C with a main() function,

SingleStep will not be able to handle the final executable. Later updates may explain
how to resolve this issue.

