
EECS 373 Winter 2004

Lab 4: Bus Interfacing for Byte-Addressable Memory

Requirements
Pre-lab: Individual answers to pre-lab questions are due at the beginning of your lab 

section during the week of February 2, 2004. Your group must also have initial 
hardware and software designs completed and entered into Xilinx and 
SingleStep, respectively.

In-lab: In lab due Friday by 5:30PM, February 6, 2004.

Post-lab: Answers to post-lab questions are due at the beginning of your lab section 
during the week of February 9, 2004.

Value: This lab is worth 5% of your total grade.

Objectives
The purpose of this lab is to:

1. Introduce you to the mechanisms required for handling multiple data transfer sizes, 
including transfers smaller than the bus width.

2. Help you to understand the overheads involved in handling unaligned accesses.

3. Introduce you to how a simple memory structure interfaces to a bus.

Overview
This lab expands on Lab 3, adding a small memory module to your hardware design. For 
simplicity, in Lab 3 you assumed that any access to your I/O registers was a 32-bit access. 
Unlike an I/O register, a general-purpose memory module must handle any access size the 
CPU may generate—byte, half-word, or word, in the case of the MPC823. Also unlike 
your I/O registers, your memory module will occupy a range of bus locations. As a result, 
your design will use different portions of the address supplied by the MPC823 for differ-
ent purposes. Some of the address bits will determine whether or not your memory module 
is being accessed; some will determine which word within the module is being accessed; 
and, if the access size is less than a word, some of the address bits will determine which 
byte or bytes within the word are being accessed.

To exercise your memory module, you will write a small program to read and write the 
memory using the DIP switches and LED displays. You will reuse the I/O registers from 
your Lab 3 design to interface with the switches and LEDs.

Design Specifications

Hardware

Implement a 256-byte memory module on the Xilinx device (using 32x8 memory parts 
from the Xilinx library) and interface it to the MPC823 bus. This memory should occupy 
256 consecutive byte addresses starting at address 0x3500000. The module should cor-
rectly handle aligned byte, halfword, and word reads and writes. (Recall that the MPC823 
will only generate aligned accesses on the bus.) Your memory module should be inte-
grated with your hardware design from Lab 3, so that your Lab 3 I/O registers can be used 
in conjunction with the memory.
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Software

Write an assembly-language program that lets you use the switches and LED displays on 
the expansion board to direct the processor to read and write your memory one byte at a 
time. The resulting operation is reminiscent of the front panel of several old computer 
models (like the DEC PDP-11 series), where a bank of toggle switches and LEDs could be 
used to read and write memory locations. On these old machines, the front panel switches 
controlled hardware that directly performed read and write transactions: the purpose of the 
front panel was to let users access memory even when the CPU couldn’t. For example, the 
front panel could be used to manually enter an instruction sequence (in binary!) to boot the 
machine, or to examine memory locations to debug the system when it had crashed so 
hard that the CPU was not responding.

Your program will be emulating this front panel operation in software by reading the 
switches, performing any appropriate memory accesses, and displaying the results on the 
LEDs. Note that, unlike the old-time front panels, the switches and LEDs will not talk 
directly to the memory module; although they share the same data bus, all interaction 
between the switches, LEDs, and memory is performed in software by the CPU.

Your program must operate as follows:

• Your program must maintain a “current memory location”, which is a byte address in 
the range 0-255 indicating one of the 256 bytes in your memory module. (0 is 
0x3500000, 255 is 0x35000FF) The current memory location should be set to 0 ini-
tially.

• At all times, the bar-graph display indicates the address of the current memory loca-
tion in binary, and the seven-segment display indicates the byte value stored at the cur-
rent memory location.

• When pushbutton S1 is pressed, the binary value entered on the DIP switches should 
be written to the current memory location.

• When pushbutton S2 is pressed, the current memory location address should be 
changed. The new current memory location is determined by the position of S3 and 
S4, as specified in Table 1.

Design Notes and Hints

• Review your lecture notes on bus transfer sizing. Read Section 13.4.5 of the PowerPC 
MPC823 User’s Manual. (You may ignore the discussion of “16-bit ports” and “8-bit 
ports”.) Pay particular attention to Figure 13-18, Table 13-2, and Table 13-4 on page 
13-33.

• As in Lab 3, you should check only the upper six external address lines (A[6:11]) to 
determine whether your memory module is being accessed. Of course, you will also 
have to examine some low-order address lines to determine which location in your 
memory module is being accessed.

Table 1: Effect of S3 & S4 on current memory location.

S3 position  S4 position  New current location

(any) up value on DIP switches

down down (current location – 1) mod 256

up down (current location + 1) mod 256
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• Use the RAM32x8S part from the Xilinx library. Each part is equivalent to 256 D flip-
flops in an array of 32 rows and 8 columns. The five address inputs select one of the 
32 rows. The eight Q outputs reflect the values stored in the eight flipflops of the 
selected row.

• You should construct a 128-byte (32-word) memory module using four of the 
RAM32x8S parts. This module should use four independent byte-enable inputs to 
control access size, as discussed in lecture. Define this module as a Xilinx macro.

• Construct your 256-byte module by combining two of your 128-byte modules. You 
may want to sketch this top-level design first to help you figure out exactly which 
inputs and outputs you need to provide on the 128-byte module design.

• You will need to generate the byte enable signals yourself from the MPC823’s TSIZ 
control signals and low-order address bits. You could put this logic in a separate macro 
outside the two 128-byte memory modules.

• Because you will now have multiple devices that can respond to a read request on 
your Xilinx chip (the memory module and the switches), you will need separate tri-
state buffers for each device to prevent bus contention. If you did not use a separate 
tri-state buffer with the switches in Lab 3, you will have to add one. To reduce the 
complexity of your schematic, consider making another macro containing the 
switches and the tristate buffer. Add an enable line as an input.

• In general, don’t be afraid to create new Xilinx macros to encapsulate portions of your 
design. Macros improve reliability by allowing yout ot reuse known functionality and 
improving the organization and readability of your schematic.

Pre-lab Assignment
1. For each of the following data types, write the instruction or instruction sequence 

that reads a value of that type from memory and places it in a register. Assume that 
the memory address is in r5 and load the value into r9. (6 points)

a. Signed 32-bit integer

b. Unsigned 32-bit integer

c. Signed 16-bit integer 

d. Unsigned 16-bit integer

e. Signed 8-bit integer

f. Unsigned 8-bit integer

2. Consider the following program fragment. 
.data
.align 2

data: .byte 0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22
.text
.align 2
.global _start

_start: lis r3, data@h
ori r3, r3, data@l
lbz r4, 0(r3) 
lbz r5, 5(r3)
stb r5, 1(r3) 
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lhz r6, 0(r3) 
lhz r7, 1(r3) 
lhz r8, 3(r3) 
lwz r9, 0(r3) 
lwz r10, 1(r3) 
stw r10, 3(r3)
lwz r11, 2(r3)

a. List the values of registers r4 through r11 after executing the fragment. 
(8 points)

b. Which (if any) of these instructions cause unaligned accesses? (3 points)

c. For the unaligned accesses, list the sequence of aligned accesses required to 
fetch the data. (6 points) 

d. What values are placed on the data bus for each of the accesses generated by the 
instruction “stw r10, 3(r3)”? See Table 13-3 on page 13-27 of the white book. 
(3 points)

3. How many “shadow locations” exist for your memory module? (That is, how many 
additional address ranges other than 0x3500000 to 0x35000FF will access your 
memory module?) What are they? (Assume that A0-A5 are 0.) (2 points)

4. When designing the memory module, is it necessary to generate individual byte 
enable signals for read accesses? Why or why not? (2 points)

In-Lab Procedure

Part I: Debugging the Memory Module

1. Thoroughly test your 128-byte memory module design (not the full 256-byte mod-
ule) using the simulator. Be sure that you only drive the data and control signals 
when the appropriate addresses appear on the bus in conjunction with the TS* sig-
nal. If you drive the bus at any other time, the entire system may not work.

2. Interface your memory module to the processor and implement your design.

3. As in lab 1 initialize the target board with SingleStep by checking “Debug without a 
file” and OK. You only have to initialize the target board once. 

4. Download your design to the Xilinx board. Use the ‘read’ and ‘write’ commands in 
the SDS command window to verify byte, half word and word accesses. The ‘-b’, ‘-
w’, and ‘-l’ switches will force read and write to perform byte, half-word, and word 
accesses respectively. Debug using aligned accesses.

5. If there is a problem at this point, go back to the simulator; if you can’t find an error 
there, use the test points in conjunction with the logic analyzer to debug your error. 
Since the logic analyzer is configured to trigger on the falling edge of TS*, you 
should be able to capture the whole transaction on the screen.

Demonstration 1.1: Using the Logic Analyzer, show your lab instructor that the appropri-
ate data paths are selected in the 128 byte macro for an aligned byte, half word and word 
write. All byte enable control lines should be mapped to test points. Similarly, demonstrate 
a read access on the logic analyzer including the appropriate read enable lines or line.

6. Add the second 128-byte module and any additional logic required to interface to the 
bus. Repeat steps 1-5.
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7. You have now several components internal to the Xilinx chip sharing the bus. Make 
sure that no more than one device drives the internal buses at any one time, and that 
the external bus is driven (i.e., PD_OUT_EN is asserted) if and only if one of the 
internal components is driving the internal bus.

Demonstration 1.2: Using the Logic Analyzer, show your lab instructor a read access of 
the memory with the memory tristate enable, the switches tristate enable and the 
PD_OUT_EN mapped to test points.

Part II: Debugging the Software

1. Thoroughly test your program using the simulator. As in Lab 3, you can emulate the 
effects of changing the switches by changing the contents of location 0x03100000 in 
the memory window. You can then check the value written to 0x03100000 to see if 
your program is behaving as you expect.

2. Once your program appears to work on the simulator, download it to the processor 
and trace through it using the debugger.

3. Once you are satisfied that your program works, click the green “go” icon and let 
your program run. Adjust the switches on the target board to test your system. After 
you modify several locations using the DIP switches, stop your program and read the 
locations as words from the command window to verify them.

Demonstration 1.3: Demonstrate the software working with your hardware to the lab ins-
structor.

Part III: Observing Aligned and Unaligned Bus Transactions

1. Type the program from pre-lab question 2. Call the file “lab4b.s”. Copy a linker 
command file from a previous lab to lab4b-lnk.txt, edit it to change the address of 
the data segment to 0x3500000. This will locate the data segment in your memory 
module. Assemble and link your program. 

2. Load the Lab 4 Logic Analyzer configuration file. This configuration file is setup to 
trigger on TS* and address pattern. Make sure the address pattern is set to the mem-
ory base address 0x3500000. So that the analyzer will trigger on any address in the 
memory, set the last two digits in the address pattern to don’t cares or XX.

3. Download lab4b.elf to the target system. Verify that your memory module was ini-
tialized properly by the download. Observe all the bus transactions that occur as you 
single-step through the program. Record the number of transactions for each access. 
Record the address, size, and full 32-bit values shown on the bus for each transac-
tion. These values will be used to answer questions in the post lab.

4. Single-step through the program. Did the final results match your answers in the pre-
lab question 2a?

Demonstration 1.4: Using the Logic Analyzer, show the bus transactions for the instruc-
tion: stw r10, 3(r3). How many accesses are required? What are the 32 bit values 
on the data bus for each access? Do these values correspond to the specifications described 
in Table 13-3 on page 13-27 of the white book?

Post-lab
1. Summarize the operation of your circuit and describe how you arrived at the design. 

Include a printout of your final schematic. You may lose points if your schematic is 
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disorganized or unclear. (6 points)

2. Include a well-commented listing of your program. Comments should include regis-
ter usage (which values are kept in which registers), descriptions of all symbols, and 
explanations of all derived expressions. (6 points)

3. As you add more devices and memory modules to your system, it is important to 
keep track of where everything is and which addresses are available for additional 
devices. A memory map is a diagram that depicts the system address space and indi-
cates the devices or memory modules occupying each address range. Table 2 is a 
memory map for the existing memory and devices on the target board. All address 
decoding for these components is done on the MPC823, so all 32 address bits are 
significant.
Redraw this memory map, including two new regions: one for your LED and switch 
registers and another for your memory module. These regions should cover all of the 
addresses for these components (i.e., including the shadow locations), assuming that 
A0-A5 are 0. (6 points)

4. Report your observations from the HP16601A. What data values are shown on the 
bus for the stores? Describe how these values relate to the value that is being stored. 
Does the number of bus transactions that you observed for each access agree with 
your answers for pre-lab question 2c? (4 points)

5. The MPC823 reduces every unaligned memory access to a sequence of aligned bus 
transactions. If we remove the restriction that bus transactions must be aligned, some 
unaligned memory accesses could be completed in fewer transactions (without mod-
ifying your memory module to read multiple words in one transaction). (8 points)

a. Which (if any) unaligned half-word accesses could be performed in fewer trans-
actions?

b. Which (if any) unaligned word accesses could be performed in fewer transac-
tions? What changes would be required to the MPC823 bus to make this feasi-
ble?

Table 2: MPC823FADS Address Map

Address Range Contents

FFE00000 – FFFFFFFF Boot memory (Flash)

FF004000 – FFDFFFFF (not used) 

FF000000 – FF003FFF MPC823 (on-chip) memory and device registers

F0008000 – FEFFFFFF (not used)

F0000000 – F0007FFF Board device registers

00400000 – EFFFFFFF (not used) 

00000000 – 003FFFFF Main memory (DRAM)
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Lab 4 Demonstration Sheet 
Print this page and present it to your lab instructor when demonstrating the various lab 
sections. Turn this sheet in with your post lab or when your in lab demonstration is due. 
You are required to turn in only one demonstration sheet per group.

Part I: Debugging the Memory Module

D1.1 Demonstrate appropriate data paths are selected for byte, half word and word writes.

Lab instructors initials:

D1.2 Verify that there is not bus conflict between the switches and the memory module by 
observing the tristate enables for memory module, switches and PD_OUT_EN on logic 
analyzer. 

Lab instructors initials:

Part II: Debugging the Software

D1.3 Demonstrate your software and hardware working together.

Lab instructors initials:

Part III: Observing Aligned and Unaligned Bus Transactions

D1.4 Show the unaligned word access on logic analyzer identifying size, data bus values 
and address bus values for each access.

List Partners Names
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