
EECS 373 Winter 2004

Lab 6: Basic Interrupts

Requirements
Pre-lab: Prelabs due in your lab section the week of February 23, 2004. Your group 

must also have an initial software design completed and entered into SingleStep.

In Lab: This is a two week lab. In-labs are due by Friday at 5:30PM the week of 
March 1, 2004.

Post Lab: In your lab section the week of March 7, 2004.

Value: This lab is worth 7% of your total grade.

Objectives
The purpose of this lab is to:

1. Reinforce your understanding of interrupts.

2. Give you experience writing and debugging simple interrupt service routines.

3. Show you how interrupts allow a machine to accomplish several tasks at once.

Overview
Interrupts allow a device to request service from the CPU when needed without requiring 
the CPU to waste time polling the device. In this lab, you will use interrupts generated by 
the push buttons and the MPC823’s built-in real-time clock to update the seven-segment 
display while the CPU continues to run your calculator application from lab 5.

Specifically, you will combine your calculator program with a stopwatch controlled by the 
pushbuttons. Your program will maintain a timer, incremented every second, and continu-
ously display its value on the seven-segment display. The timer should start at 0 when the 
program begins execution. Pushbutton S1 will alternately stop and start the timer. Push-
button S2 will reload the timer value (and update the display) using the binary value on the 
DIP switches.

Because the CPU will be occupied running your lab 5 calculator application, you cannot 
poll the switches or real-time clock to determine how and when to update the display. 
Instead, you will configure the MPC823’s real-time clock to generate an interrupt every 
second, and you will build hardware to cause the pushbuttons to generate interrupts every 
time they are pressed. Your interrupt service routine (and, outside of initialization, only 
your interrupt service routine) will control the seven-segment display.

Design Specification

Hardware

Your hardware for this lab will combine your LED and switch registers from lab 3, your 
memory module from lab 4, and some new hardware that uses the pushbuttons to generate 
CPU interrupts.

You will be using level-sensitive interrupt request inputs, so you must build hardware that 
remembers when a pushbutton has been pressed and continues to assert the interrupt 
request line until the CPU handles the interrupt, even if the pushbutton is released. The 
core of the new hardware will be two flip-flops, one for each pushbutton. Each flip-flop 
should be set when the corresponding button is pressed, but should not clear when the but-
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ton is released. Pushbutton S1 should assert the IRQ1 interrupt request input, and pushbut-
ton S2 should assert the IRQ7 input.

Once the CPU handles a pushbutton interrupt request, it must reset the appropriate flip-
flop to deassert the interrupt request signal. The flip-flops should be cleared by writing to 
a 32-bit device register at address 0x03100008. The two least-significant bits (bits 30 and 
31) of that register should correspond to switches S1 and S2, respectively. Unlike a mem-
ory location, the value written to that address is not stored in the flip-flops. Instead, a 1 bit 
in the data value written indicates that the corresponding flip-flop should be cleared, while 
a 0 bit indicates that the corresponding flip-flop should be left unchanged. This protocol 
allows the CPU to clear individual bits without introducing any race conditions.

For debugging purposes, a read to the same address (0x03100008) should return the state 
of the two interrupt request flip-flops in bits 30 and 31.

Finally, you will use your 256-byte memory module from lab 4 (still located at 
0x3500000) to store your program stack. This module should be large enough for a rea-
sonable stack, but if your stack starts growing out of control (a common occurrence in 
buggy interrupt code) it is less likely to overwrite your program than if it were in the main 
memory module.

Software

Your program will have several separate components. They include the main external 
interrupt service routine, the individual device-specific interrupt handlers, and the main 
loop of your program.

The External Interrupt Service Routine

Because the PowerPC architecture provides a single external interrupt vector, all of your 
hardware interrupts will begin in the same ISR. The main part of the ISR is responsible for 
determining which device (the real-time clock, pushbutton S1, or pushbutton S2) caused 
the interrupt and calling the appropriate handler. These device-specific interrupt handler 
functions should be ABI compliant. The main part of the ISR is thus also responsible for 
saving and restoring any registers that may be overwritten by the device-specific handlers.

You should not use nested interrupts in this lab.

The Real-Time Clock (RTC) Handler

The RTC handler is the function that will be responsible for handling the once-per-second 
interrupts from the real-time clock. It should increment the timer value and update the 
seven-segment display.

The Pushbutton Handlers

These functions (one for each pushbutton) will be responsible for handling the interrupts 
generated by pressing either of the push buttons. See the program specification above for 
the appropriate actions. The handler must also acknowledge (clear) the interrupt by clear-
ing the flip-flop associated with the button that was processed.

The Main Program

The purpose of this portion of the lab is to show that interrupts allow the processor to effi-
ciently accomplish a number of functions simultaneously. The main portion of the pro-
gram should be your unmodified code from lab 5. All changes for this lab should be 
limited to the initialization phase; if your interrupt handlers are written properly, their 
operation should be completely transparent to the code you wrote for lab 5.
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Hardware Details
This section summarizes the key PowerPC and MPC823 registers you will need to use in 
this lab. Following the name and acronym for each register are the section or page num-
bers in the MPC823 User’s Manual that discuss that register.

Many of the device registers you will use in this lab require only a few specific bits to be 
set to particular values. If you don’t know exactly how other bits in the same register are 
supposed to be set, leave them unchanged. That is, you should read the register value, 
change only the bits you are concerned with, and then write the value back.

Machine Status Register (MSR) (p. 6-20)

In the MSR, you will need to manipulate the External Interrupt Enable (EE) bit and the 
Interrupt Prefix (IP) bit. Once all the appropriate device registers are set up and you are 
ready to begin handling interrupts, you should set the IP bit to 0 and the EE bit to 1. The 
MSR is accessed using the mfmsr and mtmsr instructions (see Appendix F of the green 
book).

Although the MPC823 User’s Manual provides the layout of the MSR on p. 6-20, the 
descriptions it gives are useless. The PowerPC Programming Environments book (the 
“green book”) provides much better descriptions of the MSR bits. See Table 6-5 in the 
online version on the course web page, which is Table 6-4 in the hard copies in the lab.

Internal Memory Map Register (IMMR) (p. 12-34)

Most of the MPC823’s internal device registers are memory mapped. The value in the 
IMMR determines the base address of the memory-mapped MPC823 registers. By writing 
to the IMMR, you can relocate the MPC823’s internal registers to a different portion of the 
system memory map. In this lab, you should not change the IMMR; it will be initialized by 
the MPC823FADS firmware and/or SingleStep. Instead, you should read the IMMR to 
determine the addresses of the memory-mapped registers. The IMMR itself is not memory 
mapped. It is a PowerPC special purpose register (SPR), number 638, and can be read into 
a general-purpose register using the mfspr instruction.

MPC823 System Interface Unit (SIU) Interrupt Controller (Section 12.3)

SIPEND – SIU Interrupt Pending Register (p. 12-7)

This register indicates the interrupts that are currently pending.

SIMASK – SIU Interrupt Mask Register (p. 12-8)

This register is used to enable the interrupts that you are interested in handling. In this lab, 
you are only interested in handling interrupts for the RTC (Level 0) and the pushbuttons 
(IRQ1 and IRQ7). You should set the bits corresponding to these interrupts, and clear the 
rest.

SIEL - SIU Interrupt Edge/Level Register (p. 12-9)

Set both to IRQ1 and IRQ7 to be level-sensitive. Since we do not use the MPC823’s low-
power mode in lab, the settings of the WMx bits do not matter.

SIVEC – SIU Interrupt Vector Register (p. 12-10)

This register indicates the highest priority unmasked pending interrupt (i.e., the highest 
priority interrupt whose SIPEND bit and SIMASK bit are both 1). You can use the value in 
the INTC field to vector into your own jump table, as illustrated in Figure 12-3, or you can 
load and test the SIVEC value directly to determine which device-specific handler to 
invoke. You can also ignore the SIVEC register entirely and read the SIPEND register 
directly to determine which handler to invoke. The jump-table approach is recommended 
for this lab.
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MPC823 Real-Time Clock (RTC) (Section 12.7)

System Clock and Reset Control Register (SCCR) (p. 5-3)

This register configures several options related to various MPC823 clock signals. The two 
fields related to the real-time counter are RTSEL and RTDIV. Set these fields so that the 
RTC uses the main clock oscillator divided by four.

RTCSC – Real-Time Clock Status and Control Register (p. 12-18)

Several fields in this register have to be set up properly to generate a Level 0 interrupt 
every second. The RTCIRQ field controls the interrupt request level as follows: set bit 0 to 
cause a Level 0 interrupt, bit 1 to cause a Level 1 interrupt, etc. The main clock oscillator 
on the 373 lab boards runs at 32 KHz. The SEC bit in this register indicates that a once-
per-second interrupt is being requested, much like your flip-flops indicate that a pushbut-
ton interrupt is being requested. It must be cleared at startup and each time you handle the 
interrupt.

System Integration Timer Keys (Section 5.4.2.2, p. 3-4 and p. 5-27)

To prevent buggy software from accidentally writing certain critical registers that could 
seriously mess up the system, the MPC823 protects these registers using “key” registers. If 
you write to a protected register without first writing a special “key value” to the corre-
sponding “key register”, then the write will fail. The protected device registers you will 
use in this lab are RTCSC and SCCR. The corresponding key registers are RTCSCK and 
SCCRK, respectively. The key value for all of the registers is the same, 0x55CCAA33.

Design Notes and Hints
• The notes above summarize the key MPC823 registers you will need to use, but they 

do not tell you everything you need to know. You will have to look up additional infor-
mation in the MPC823 User’s Manual to learn how the RTC, the SIU interrupt con-
troller, and other components work, and how to configure and control them using the 
registers listed above. A large part of this lab is learning how to read the data book.

• The linker is in charge of assigning specific addresses to your instructions and data. It 
does this on the basis of sections (a.k.a. segments), which are contiguous memory 
regions that you define in the assembler. The linker command file (e.g., lab2-lnk.txt) 
tells the linker where to put each section that you define. To set up your interrupt han-
dlers, put each handler in a new section using the “.section” directive. For example,

.section ext_int_vec, text

will put the following code in a section named “ext_int_vec” of type text. Then edit 
the linker command file, adding a line like:

ext_int_vec ADDRESS 0xnnnn:

which will place the section “ext_int_vec” at address 0xnnnn. Note that the “.data” 
and “.text” directives you’ve used already are just shorthand for “.section .data, data” 
and “.section .text, text”, respectively.

• Although the RTC maintains its own elapsed time in the RTC register (p. 12-19), you 
should maintain your own timer value in software. This will make it easier to start, 
stop, and reset your timer.

• There are several ways to “stop” your timer when S1 is pressed. You may either dis-
able the interrupt in the RTCSC, mask it in SIMASK, or continue to handle the inter-
rupt but use a software flag to keep from incrementing your timer value. The choice is 
yours.
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• Debugging interrupt software is fairly complex for a couple of reasons. First, the point 
in your main program where an interrupt occurs is typically not repeatable. Second, 
the debugger itself uses the PowerPC exception mechanism (as discussed in lecture), 
and will interact with your ISR if you’re not careful. The best place to start is to place 
a breakpoint inside the main part of the External Interrupt ISR to determine whether 
you are receiving interrupts at all. Remember that you must save and restore SRR0 
and SRR1 before you can use the debugger in your ISR code. Be sure not to place a 
breakpoint inside the code that manipulates the SRRs.

• All the device registers are observable in the register window. You can use this feature 
to determine if you have set up device registers properly and interrupt status. The reg-
isters are grouped according to device category and are located just below the general 
purpose registers. Device registers are processor specific, so the MPC823 must be 
selected when downloading the ELF file, under the ‘processor’ tab in the download 
window.

Pre-lab Assignment
1. Draw a block diagram (like Figure 12-2 in the white book) showing the hardware 

components (both internal and external to the MPC823) and interrupt signal paths 
used in this lab. This block diagram should include the processor, the devices and the 
interrupt controllers that you are working with.

2. Write assembly code that reads the IMMR value and uses it as the base address to 
access the SIPEND register.

3. Determine the values will you need to write to the following registers to initialize 
interrupts correctly: SIMASK, SCCR, RTCSC, SCCRK, RTCSCK

4. Why is it important that the MSR[EE] bit is cleared automatically by the processor 
when an interrupt is handled?

5. Why does your software need to set the MSR[EE] only once at initialization, even 
though the MSR[EE] bit is cleared by the processor each time an interrupt occurs?

6. What is the minimum set of registers that needs to be saved in an interrupt handler 
when:

a. The interrupt handler doesn’t call any functions, but uses r0, r3, r4, r30, and r31

b. The interrupt handler calls ABI-compliant functions, but doesn’t use any regis-
ters itself

7. If you initialize the MSR[IP] bit to 0, at what memory location does the processor 
begin executing the external interrupt ISR?

8. How many instructions can you put at this address? What would happen if you put 
too many instructions there?

9. Consider what would happen if you simplified your pushbutton interrupt hardware 
by always clearing both flip-flops on a write to your device register (ignoring the 
data bus value). Describe a scenario where a button press could be completely 
missed by your program.

In-Lab Procedure
This procedure is designed to help you work your way through what can be a difficult 
design/debug process. It intentionally adds the smallest number of unknowns at each step, 
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and forces you to debug a single interrupt source at a time. Make sure that you have com-
pleted the current step before moving on to the next!

1. Add your new pushbutton interrupt hardware to your lab 4 schematic, but do not 
connect it to the IRQ1_BAR or IRQ7_BAR signals on the PROC macro. Verify in 
the simulator that the individual flip-flops can be read by the CPU without interfer-
ing with your other hardware, are set by pressing the pushbutton, and remain set 
until they are cleared by writing a ‘1’ bit in the appropriate location. Be certain that 
if both bits are set but the CPU only writes a single ‘1’ then only the appropriate bit 
is cleared.

2. Download your circuit and test and see if basic operations such as reads and writes 
still work.

3. Simulate your interrupt initialization code and ISR. You can test basic code function-
ality with SingleStep software, however, you can not simulate interrupts. Do not add 
in your lab 5 code; instead, the main part of your program should be a simple infinite 
loop. 

4. SingleStep is configured by default to handle all exceptions that happen on the CPU. 
Before you run any of your interrupt code on the actual hardware, you need to tell 
SingleStep to ignore external interrupts and let the board handle them. To do this, 
enter the following command in the SDS command window: @ der = 0xFDE7400F. 
Note the space between @ and der.

5. Download this simplified interrupt code and place a breakpoint in your main ISR 
after the instructions that save SRR0 and SRR1. Verify that you are getting RTC 
interrupts. You will not be getting pushbutton interrupts since you have not con-
nected your pushbuttons to the interrupt request inputs. What values do you see in 
SRR0 and SRR1? Do these values make sense?

6. Set a breakpoint on the very first instruction of your ISR, before you save SRR0 and 
SRR1. Run the program until you hit the breakpoint, then single-step through the 
part that saves SRR0/1. What values do SRR0 and SRR1 have now? What will hap-
pen if you continue executing your program at this point?

7. Debug your RTC interrupts completely before moving on.

8. Add the connection from S2 to IRQ7_BAR to your circuit and download it.

9. Modify your program to disable RTC interrupts and download it. You can now 
debug your pushbutton S2 interrupt without the RTC interrupts getting in your way. 
Debug the pushbutton interrupt as completely as possible before moving on.

10. Disconnect IRQ7_BAR from your hardware (tying it high) and connect S1 to 
IRQ1_BAR. Repeat steps 7 and 8. You may want to use one of the bar-graph LED 
segments to indicate whether the RTC is “on” or “off”.

11. Reconnect IRQ7_BAR, but don’t enable RTC interrupts. Debug your hardware and 
software with just the two button interrupts.

12. Re-enable RTC interrupts and test your program with all three interrupts together. At 
this point, your system should handle the seven-segment display completely as spec-
ified above. Note that your main program is still an infinite loop.

13. Replace the infinite loop with your code from lab 5. Download and debug.

Demonstration 1.1: Demonstrate your thoroughly tested system to the lab instructor.
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Post-lab
1. Summarize the operation of your circuit and describe how you arrived at your 

design. Include a printout of your final schematic.

2. Include a well-commented listing of your program. Comments should include regis-
ter usage, descriptions of all symbols, and explanations of all derived expressions.

3. Discuss any difficulties you may have had in getting your circuit to work correctly: 
what parts of the program were hard to write initially, what types of bugs did you 
have to fix, etc. Be sure to discuss any problems or potential problems in debugging 
caused by using interrupts.

4. One way to avoid adding flip-flops to the pushbuttons is to use an edge-triggered 
(rather than level-sensitive) interrupt request input. The IRQn lines on the MPC823 
can be individually configured as level- or edge-sensitive via the edge/level register 
(SIEL; see section 12.3.3.3). Read the description of the SIEL carefully, then read 
the discussion of the pending register (section 12.3.3.1).

a. How would your system change if you configured IRQ1 as an edge-triggered 
interrupt? Specifically consider the possible race conditions where one button is 
pushed, then the other is pushed before or while the ISR for the first is being 
executed.

b. Focusing on section 12.3.3.1, how do you think the logic inside the MPC823 
that implements edge-triggered interrupts compares to the logic you built to 
drive the level-sensitive interrupt request line?

5. Another approach to this lab would be to connect both pushbuttons to a single inter-
rupt request line (e.g., IRQ1). How would this change affect both your hardware and 
your software? Be detailed enough to convince us (and yourself) that you could 
make it work. Discuss the advantages and disadvantages of this approach compared 
to having the pushbuttons connected to separate interrupts.
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Lab 6 Demonstration Sheet 
Print this page and present it to your lab instructor when demonstrating the various lab 
sections. Turn this sheet in with your post lab or when your in lab demonstration is due. 
You are required to turn in only one demonstration sheet per group.

D1.1 Demonstrate operational system.

Lab instructors initials:

List Partners Names
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