
EECS 373 F98 Sample Exam 2 Questions

1. What purpose(s) does an ABI serve?

2. What is a device driver? What purpose does it serve?

3. What is the minimum set of registers that must be saved and restored by an ISR that does not
call any functions and does not allow nested interrupts? What additional registers must be
saved and restored if the ISR calls other functions? What additional registers must be saved
and restored if the ISR allows nested interrupts?

4. Assume you are using the MPC823 SIU interrupt controller to implement prioritized nested
interrupts. The SIU interrupt controller gives you only a few basic capabilities: the ability to
mask any interrupt (by setting its bit in the SIMASK register) and a register (the SIVEC
register) that provides a code that identifies the highest-priority unmasked interrupt. List the
exact steps that you must follow (what bits must be set/cleared in which registers and in which
order) in each ISR to allow prioritized nesting, i.e., only higher-priority interrupts can
interrupt an executing ISR.

(Hint: the CIPC does a lot of this for you in hardware; for the SIU interrupt controller, you
have to do the same things only in software. Read Section 16.15.2.3 of the data book
carefully, and think about what the CISR does for you. (Hint:2 it’s the same thing as the
68000/SPARC IPL discussed in lecture.) Note that the CIPC modifies the CISR
automatically when you write the IACK bit in the CIVR, and that normally there is no need to
modify the CIPC mask register (CIMR). Since the SIU controller has no equivalent to the
CISR, you have to fake it by modifying SIMASK.)

5. Given four 4Kx8 SRAM memory chips (each having twelve address lines and eight data
lines), build a 16 Kbyte memory module starting at address 0xCD000000. Each SRAM chip
has a chip select input (CS) that tells the chip it’s being addressed, an output enable input (OE)
that drives the contents of the addressed byte onto the data pins (if CS is also asserted), and a
write enable (WE) input that takes the value on the data pins and latches it into the addressed
byte (again, if CS is also asserted). Assume the processor you’re using has a 32-bit bus with
byte enable signals and a RD/WR signal. Assume whatever bus timing is convenient. Show
how your design handles aligned word, halfword, and byte reads and writes.

6. The MPC823 handles unaligned memory accesses in hardware by converting them to multiple
aligned bus transactions. (This is why they’re slower than aligned accesses.) For each
combination of low-order address bits and access size that results in an unaligned access,
describe the set of aligned bus transactions that the MPC823 must perform.

7. You have a sensor on your bike that generates a digital pulse for every revolution of the front
wheel. Describe how you would use this signal plus an MPC823 to calculate the speed of
your bike in miles per hour. (Focus on the configuration of the 823 timer/counter(s) and a
general description of the software. Hint: all your code should be in ISRs.)

