Bus Protocols and Interfacing

 Bus basics
e /O transactions

e MPCR823 bus

Reference:
Chapter 13 of “White Book™

Basic example

e Discuss a basic bus protocol
— Asynchronous (no clock)

— Initiator and Target
— REQ#, ACK#, Data[7:0], ADS[7:0], CMD
e CMD=0 1s read, CMD=1 1s write.

 REQ# low means 1nitiator 1s requesting something.

 ACK# low means target has done its job.

A read transaction

e Say 1nitiator wants to read location 0x24

— Initiator sets ADS=0x24, CMD=0.

— Initiator then sets REQ# to low. (why do we need a delay?
How much of a delay?)

— Target sees read request.

— Target drives data onto data bus.

— Target then sets ACK# to low.

— Initiator grabs the data from the data bus.

— Initiator sets REQ# to high, stops driving ADS and CMD

— Target stops driving data, sets ACK# to low terminating
the transaction

Read transaction

ADS[7:0] 27X Ox24 X2

CMD N
Data[7:0] 27) 0x55

REQ# /

ACK# -

AB C D

A write transcation
(write OxF4 to location 0x31)

— Initiator sets ADS=0x31, CMD=1, Data=0xF4
— Initiator then sets REQ# to low.
— Target sees write request.

— Target reads data from data bus. (Just has to store 1n a
register, need not write all the way to memory!)

— Target then sets ACK# to low.
— Initiator sets REQ# to high & stops driving other lines.
— Target sets ACK# to high terminating the transaction

ADSJ[0]
ADSJ[1]
ADS[2]
ADSJ[3]
ADS[4]
ADSI5]
ADSI[6]
ADS[7]

REQ#

The push-button

(1if ADS=0x04 write O or 1 depending on button)

P

Delay — ACK#

Data|O]

YrevYYYY

D.;lta[7]

Button (O or 1) |

What about
CMD?

The LED

(1 bit reg written by LSB of address 0x05)

ADSI[0]

ADSI[1]

ADS[2]

ADSI[3]

ADS[4]

ADS[5]

ADSI6]

ADS[7]

REQ#

DATA[O]
DATA[1]
DATA[2]
DATA[3]
DATA[4]
DATA[5S]
DATA[6]

-

DATA[7}

Delay

ACK#

Flip-flop
which
controls LED

MPC823 Bus

The basic function of the MPCS823 bus 1s similar, though slightly
more complicated. (Chapter 13 of “White Book™)

e Timing 1s controlled by a global clock; all signals are in reference
to the rising edge of this clock.
e 32-bit data bus D[0:31]
e 26-bit address bus A[6:31]
* A[0:5] not sent off chip
* On-chip peripherals still see 32 address bits
e Basic control lines:
* RD/#WR
* #TS (transfer start)—like #REQ but only asserted on first
clock cycle of transaction
* #TA (transfer acknowledge)—Ilike #ACK

MPC8&23 Read

e Master drives address, RD/#WR, and #T'S to initiate a read
transaction. Address and RD/#WR guaranteed valid at same
rising clock edge that TS’ 1s asserted. Master de-asserts #T'S

after one cycle, but keeps driving address and RD/#WR until
it sees #TA.

e Slaves look at address and RD/#WR when #TS asserted.
One of them will drive data and assert #TA. Master samples
data on same rising clock edge when #TA 1s asserted.

 Minimum transactions takes two clock cycles.

 Transactions can take longer; slow slaves add wait states by
not asserting #TA.

MPC823 Read

CLK . : : : J
D[0:31] ><D]>< 97 XDZX??
RD/#WR ﬂ \J m

read @ Al end @ AD

CLECLIT

ER

f | | |

| |
T | |
EG | HHE'..,EI-.'E qLIS ZRANT .'qIEI ELS EILIS'Tlr“Eu.ﬁ.TEEI
A
Lt

I
I
I

I le55ERT BE, DRIVE ADDREES AND ASSERTTE
EE | | I"-.g_;l | | |

; I I ' ' |

L A R S G
ROVITER I I I I I |
| I "II II I I II‘ | |
TSE[:A]ATE] | | | | | |
| | II i i III j i
BORET | WA R |
I — | — — |
L] I I I I I I
I I I I I
el | | I’MII | |
TE I I I I
| | | |

RS/
-

DATA 15 VALD

Figure 13-4, S5ingle Beat Read Cycle—Basic Timing-£ero Wait States

MPC823 Write

e Same start as for a read, except for polarity of RD/WR#.
e Master drives data by 2" cycle.

e Slaves look at address and RD/#WR when #TS i1s asserted.
One of them will read data and assert #TA.

e As with reads, minimum transaction length is two cycles.
Slaves can take longer, however, by not asserting #TA. Master
keeps driving address, RD/#WR, and data until it sees #TA

asserted.

MPC823 Write

CLK . piigh J
A[6:31] "‘7X X""X A2 X(,?
D[0:31] XDIX X ' m X"‘?
RD/#WRW ﬂ /;

write @ Al write @ A2

Of course, things aren’t that simple

TSI[0:1] — Specifies the size of the data to be transferred.
DP[0:3] — Data parity

#Burst — Indicates a burst transaction

#BDIP — Burst Data In Progress (more burst stuff)

#BI — Burst Inhibit. Indicates that the slave doesn’t
support burst transactions

Many More...

Example of complexity:
The Burst Mechanism (13.4.4)

Burst transfers are used to move 16 bytes at a time
#BURST must be asserted by master
#BI must not be asserted by slave

Must be a 16-byte aligned access
Supports critical word first.

A[E:2 1] AT[0:3]

RCSSVR
TSE[
BORET

T
B
e

ISVALID

TE
2]

15 WEALID

15vaLin

Figure 13-11. Burst-Read Cycle-32-Bit Port Size—Zero Wait State

Arbitration (page 13-28)

Requesting device Arbiter

Request the bus

eAssert #BR > Grant bus arbitration
«— | Assert #BG
ACK bus mastership
*Wait for #BB to be de-asserted
eAssert #BB
*Negate #BR | Terminate Arbitration

Negate #BG

Perform data transfer

\4

Release bus mastership
*Negate #BB

Transfer Alignment

0x1000

0 7 8 15 16 2324 31

MPC823 external bus supports natural address alignment
* Byte access: Any address alignment
* Half-word access: Address bit 31 equal to O
®* Word access: Address bits 31 and 30 equal to 0

Dealing with Smaller Accesses: Reads

0x1000

0

Assume that the word value 0x12345678 is stored at Ox1000 and

7 8

15 16 2324

31

that r4 contains 0x1000. What happens on the following transfers?

*lbz
*lbz
*lbz
*lbz
®lhz
®lhz

3, 0(rd4)
13, 1(r4)
13, 2(r4)
13, 3(4)
3, 0@4)
3, 2(rd4)

D[0:7] D[8:15] DJ[16:23]

D[24:31]

INTERFACE
- — — - R R ap? CP3 ~ = OUTPUT
REGISTER
DTy D 15] L 1623) Di24:21)
R 1 ap? OF3 +2-BIT PORT SIZE
R o1
16-BIT FORT SEE

QP2 i =

R

oM

2-BIT PORT 51ZE
a2
QPG

Figure 13-19. Interface To Different Port Size Devices

Table 13-2. Data Bus Requirements For Read Cycles

TRAMSFER | TSIZE | INTERMAL 32-BIT PORT SIZE |6-BIT PORT SIZE | &-BIT
SIZE [0:1] | ADDRESS PORT
SIZE
A | A3 | DO-DF | De-D1& | D1e-D23 | D24-D31 | De-D7 | De-D15 | Do-D7
Byte g |1 0 0 QP — — — QPa — cPa
1 0 1 — 2P — — — 2P =)
g |1 1 0 — — ap2 — QP2 — P2
i | A 1 1 - — — QpP3 — 2P3 PR3
Half-Ward 1 (@ 0 0 2P0 2P — - 2P0]z 2Pa
1| @ 1 0 — — ap2 opP3 Qp2 QP3 op2
Ward g (o] 0 0 cpo 2P ap2 cpP3 QR0 2P o =l

MOTE: — Dencles that a byle is not required during that resd oycle.

Table 13-3. Data Bus Contents for Write Cycles

TRAHNSFER TSIZE INTERMNAL EXTERNAL DATA EUS PATTERN
SIZE [0:1] ADDRESS
A | AT Do-07 Oe-015 D16-D023 D2d-D031

Eyle 0 1 0 0 QP — — —

) 1 0 1 M P — —

) 1 1 0 QP2 -— B = —

) 1 1 1 QP3 23 — QP3
Half-¥ard 1 0 0 0 QP] =) — —

1 0 1 0 Pz 2F3 B =¥, QPR3
Wiord 0 0 0 0 QP 2R B =,] =k

MOTE: — Denctes that a bwts is not required during that read cyde

Dealing with Smaller Accesses: Writes

0x1000

0 7 8 15 16 2324 31

How about the following transfers?
D[0:7] D[8:15] DI[16:23] DJ[24:31]
°*stb 12, 0(14)
°stb r2, 1({4)
°*stb r2, 2 (14)
°*stb 12, 3 (14)
*sth r2, 0(4)
°sth r2, 1(4)

Dealing with Smaller Accesses

e On a write access, which two factors determine which bits
in a 32-bit word are updated?

* On most wide buses, the master drives byte enable lines
instead of less significant address bits

* Moto 68000 (16 bits): LDS’, UDS’ (no address LSB)

* 32-bit buses: Replace low 2 address bits with 4 byte
enables

« MPC823 does not:
* Full byte address provided

* Size (byte, haltword, word) encoded on two control
lines TSIZ[0-1]

Unaligned Accesses

0x100_
0x1000

0 7 8 15 16 2324 31

Consider two adjacent 32-bit memory locations and assume that
r4 = 0x1000. What happens when the CPU executes the
following instructions?

*lwz 13,2 (14)

*lwz 13,1 (14)

Problems with Unaligned Accesses

What are some problems with unaligned accesses?

Basic bus 1ssues

What are the basic wires for specifying the transaction and
moving the data
— What are the types of transactions? How are they specitied?

— How is length of data transfer specified?
Who can delay (insert wait states?)
How 1s arbitration done?

Out-of-order transfers allowed?
— Any restrictions?

Error reporting?

Weirdness?

— Alignment for example.

Transaction types

e Usually read/write with a length

— But 1n a given domain, other info might be
important.
e Data vs. Code access.
e [/O vs. memory access

e Hints to target device

— Length might be arbitrary.

Delaying

 Who can delay and how
— Usually a target (slave) can delay
— Sometimes 1nitiator (master) can delay
— Sometimes 1nitiator can drop the transaction

— Sometimes the target has options on zow to
delay.

Arbitration

e Fairness
— Even sharing, priority sharing, weighted sharing

e Mechanism
— Centralized arbiter
— Distributed arbiter
— Combination

e Duration
— Until done
— Until someone else requests
— Until certain time passes.
— Combination

Out-of-order

* Does the bus allow transactions to complete
out-of-order?

— If so, can increase bandwidth (why?)

— If so, might have to worry about ordering 1ssues

e Memory consistency models not a topic for this
class (take EECS 570!) but basics are pretty easy to

grasp

Out-of-order: Ordering problem

Processor 1 * Processor 2
Write J=2
Write I=2

write I=1
write J=1

If both programs are executed in order, 1s there any
setting of J and I which 1s impossible?

