Memories

The third key component of a microprocessor-based system (besides the CPU and I/O devices).

- Classification
- Physical and external configuration
- Timing
- Types

Basic Categories

• Read-Only Memory (ROM):

Can only be read; cannot be modified (written).
 Contents of ROM chip are set before chip is placed into the system.

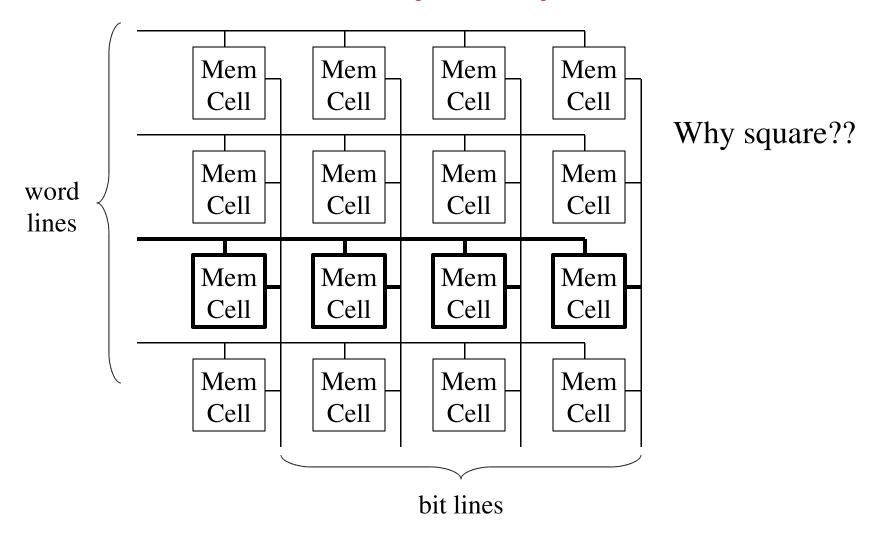
• Random-Access Memory (RAM):

 Read/write memory. Although technically inaccurate, term is used for historical reasons. (ROMs are also random access.)

Volatile memories

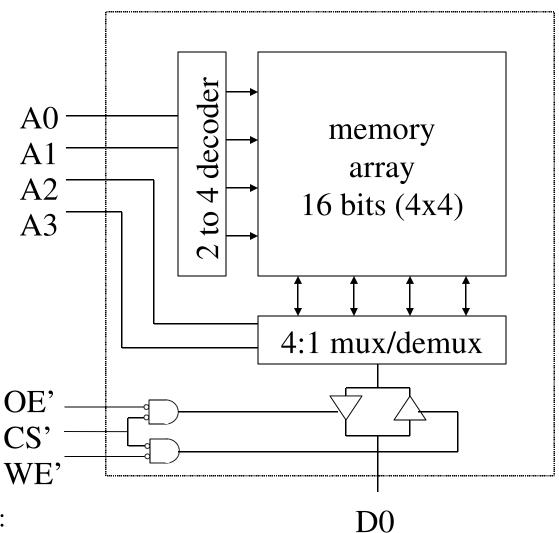
Lose their contents when power is turned off.
 Typically used to store program while system is running.

• Non-volatile memories do not.


- Required by every system to store instructions that get executed when system powers up (boot code).

Classification

	ROM	RAM
Volatile		Static RAM (SRAM) Dynamic RAM (DRAM)
Non-volatile	Mask ROM PROM EPROM	EEPROM Flash memory BBSRAM


Note that we can write some of these "ROMS"

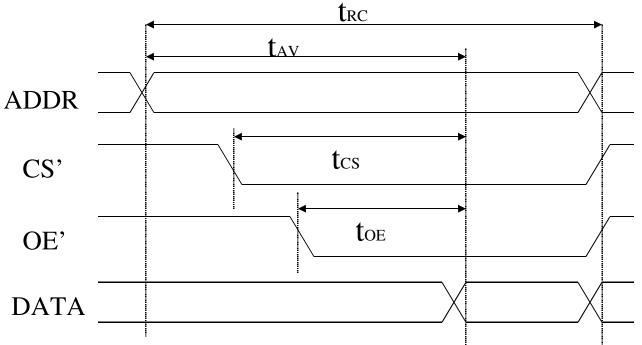
Memory Array

Different memory types are distinguished by technology for storing bit in memory cell.

Support Circuitry

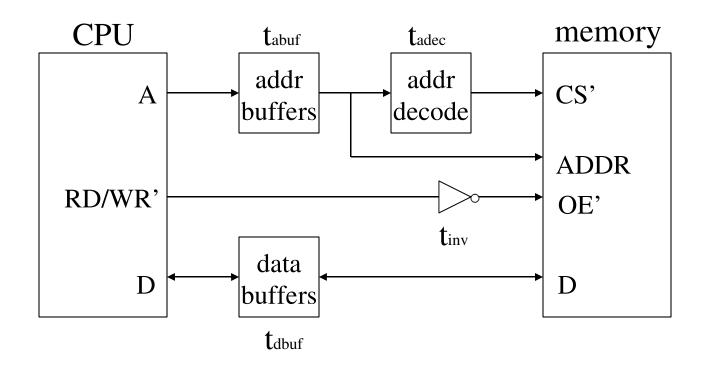
Control signals:

- Control read/write of array
- Map internal physical array to external configuration $(4x4 \rightarrow 16x1)$

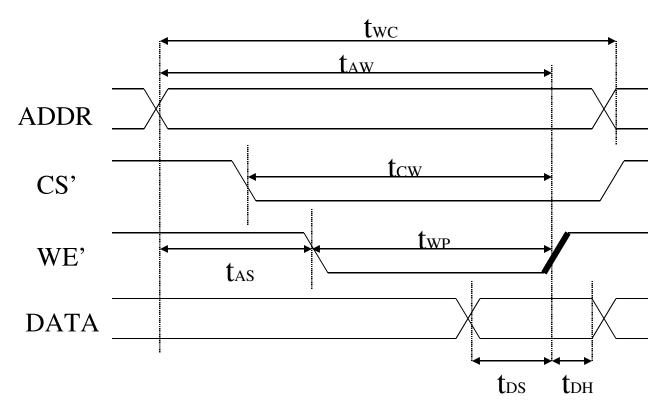

Interface (1/2)

- Physical configurations are typically square.
 - Minimize length word + bit line → minimize access delays.
- External configurations are "tall and narrow". The narrower the configuration, the higher the pin efficiency. (Adding one address pin cuts data pins in half.)
 - Several external configurations available for a given capacity.
 - 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,...

Interface (2/2)


- Chip Select (CS'): Enables device. If not asserted, device ignores all other inputs (sometimes entering low-power mode).
- Write Enable (WE'): Store D0 at specified address.
- Output Enable (OE'): Drive value at specified address onto D0.

Memory Timing: Reads


- Access time: Time required from start of a read access to valid data output.
 - Access time specified for each of the three conditions required for valid data output (valid address, chip select, output enable)
- Time to valid data out depends on which of these is on critical path.
- tRC: Minimum time required from start of one access to start of next.
 - For most memories equal to access time.
 - For DRAMs could exceed 2x. Why?

System-Level Read Timing

If the CPU starts driving the address and RD/WR' at the same time, what is the access time?

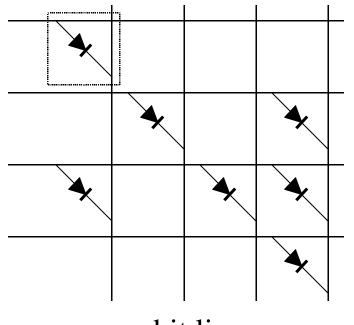
Memory Timing: Writes

- Write happens on **rising** edge of WE'.
- Separate access times taw, tcw, two specified for address valid, CS', WE'.
- Typically, $t_{AS} = 0$, meaning that WE' may **not** be asserted **before** address is valid.
- Setup and hold times required for data.
- Write cycle time two is typically in the order of tAW.

Mask ROM

- By far the simplest technique.
- Presence/absence of diode at each cell denotes binary value.
- Pattern of diodes defined by mask used in fabrication process.
- Contents fixed when the chip is made; cannot be changed.
- Large setup cost (design mask), small marginal cost.

• Good for high-volume applications where upgrading contents


word

lines

is not an issue.

• What value is stored by presence of diode?

• Why diode rather than simply wire?

bit lines

Programmable ROM (PROM)

- Replace the diode in each cell of a Mask ROM by diode + fuse (fusible-link PROM).
- Initial contents are all 1s.
- Users program memory by blowing fuses to create 0s.
- Plug chip into PROM programmer ("burner") device and download data file.
- One-time programmable

UV Erasable PROM (EPROM)

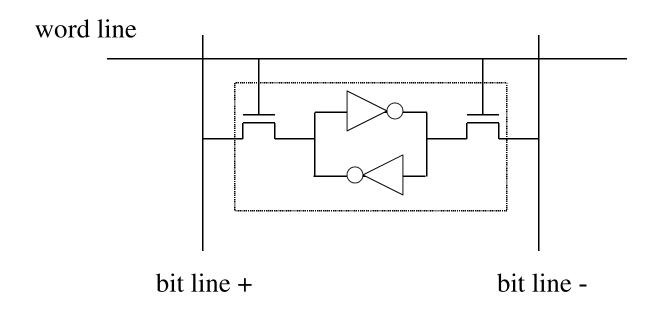
- Replace PROM fuse with pass transistor controlled by "floating" (i.e. electrically insulated) gate.
- Program by charging gate to switch pass transistor. (Use special "burner" to apply high voltage that overcomes insulation.)
- Erase by discharging all gates using ultraviolet light. (UV photons carry electrons across insulation.)
- Insulation eventually breaks down → limited number of erase/reprogram cycles (100s to 1000s).
- Costly: Requires special package with window.
- Largely displaced by flash memory.

Electrically Erasable PROM (EEPROM)

- Similar to UV EPROM, but with on-chip circuitry to electrically charge/discharge floating gates (no UV).
- Writable by CPU → really a RAM despite name.
- Reads/wites much like generic RAM: Internal circuitry erases affected byte/word, then reprograms to new value.
- Write cycle in the order of a millisecond.
- High voltage input (e.g. 12V) required for writing.
- Limited number of write cycles (1000s).
- Selective erasing requires extra circuitry in each memory cell → Lower density and higher cost than EPROM.

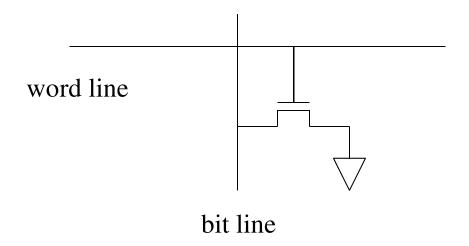
Flash Memory

- Electrically erasable like EEPROM, but only in large 8—128K blocks (not a byte at a time).
- Erase circuitry moves out of cells to periphery → substantially better density than EEPROM.
- Reads much like generic RAM
- Writes for locations in erased blocks:
 - write cycle in a few microseconds
 - slower than volatile RAM but faster than EEPROM
- To rewrite locations, must explicitly erase entire block:
 - erase can take several seconds
 - erased blocks can be rewritten a byte at a time
- Floating gate technology → Erase/reprogram cycle limit (10-100K cycles per block)


Flash Applications

- Flash technology has made rapid advances in recent years.
 - cell density rivals DRAM; better than EPROM; much better than EEPROM.
 - multiple gate voltages can encode 2 bits per cell.
 - 1Gb devices available
- ROMs and EPROMs rapidly becoming obsolete.
- Replacing hard disks in some applications.
 - smaller, lighter, faster
 - more reliable (no moving parts)
 - cost effective
- PDAs, cell phones, laptops,...

Battery-Backed Static RAM (BBSRAM)


- Standard volatile SRAM device with battery backup.
- Key advantage: writes take as much time as reads.
- Circuitry required to switch battery on/off.

Static RAM

- Volatile memory
- Each cell is basically a flip-flop
- 4—6 transistors per cell → relatively poor density
- Very fast (access times under 10ns commonplace)
- Reads/writes at same speed

Dynamic RAM

- One transistor per cell → outstanding density
- Very small charges involved → relatively slow
 - Bit lines must be precharged to detect bit values.
 - Reads are destructive; internal writebacks required.
 - Values must be periodically refreshed or charge will leak away.