
EECS 373 Final
Winter 2016

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so. Nor did I
discuss this exam with anyone after it was given to the rest of the class.

NOTES:
1. Closed book/notes.
2. There are 15 pages including this one. The last page is a reference sheet. You may

wish to rip it out.
3. Calculators are allowed, but no PDAs, Portables, Cell phones, etc. Nothing capable of

wireless communication!
4. Don’t spend too much time on any one problem. If you get stuck, move on!!!
5. You have about 120 minutes for the exam.
6. Be sure to show work and explain what you’ve done when asked to do so.

 Getting partial credit without showing work will be rare.
7. If you use the back of a page or write your answer on a page other than where the

answer is, be sure that is clearly noted on the page where the answer belongs.

Page 1 of 15

1. Multiple choice/fill-in-the-blank [8 points, -2 per wrong or blank answer, minimum 0]

a. Of Zigbee, Bluetooth, and Wi-fi, __________________ has the longest range.

b. Of Zigbee, Bluetooth, and Wi-fi, __________________ has the highest data rate.

c. Say you find that the Wii remote doesn’t work particularly well outside. Why might
that be?

 The magnetometer in the Wii remote would need metal objects near by
 The IR camera in the Wii remote wouldn’t work well in sunlight
 The ultrasonic distance sensor in the Wii remote would struggle with wind
 The gyroscope in the Wii remote won’t work without large, flat objects (like

walls) nearby.

d. What is the primary advantage of a stepper motor over a DC brushed motor?
 You have a lot more control over absolute position of a stepper motor
 Stepper motors are generally cheaper
 The max speed of a stepper motor is generally higher than that of a DC

motor.
 Steppers are easier to control than a DC motor.

e. “Indoor localization” is trickier than “outdoor localization” because:
 IR distance sensors work better outdoors than indoors.
 Wi-fi travels much farther outside.
 GPS doesn’t work well (if at all) indoors.
 It’s easier to harvest energy outside than inside (mostly due to sun vs. natural

lights).

Page 2 of 15

2. Higher-level questions [10 points]
a. USB was developed to replace the old parallel and serial ports on PCs. Among other

things, it provided a higher data rate than serial (UART) or parallel ports. But
unfortunately, USB is quite tricky to work with (complex protocol and non-standard
signaling). In embedded systems, the typical way to deal with this complexity is to
use a USB-to-UART converter. But clearly that just gets us back to UART speeds.
Give two reasons why we don’t just user UART rather than going to USB and then
converting to UART. [4]

b. Explain why energy harvesting is important to the future of the “Internet of Things”.
Your answer must be 40 words or less. [4]

c. Explain why embedded security can be more important than “traditional” computer
security (on a PC or server). [3]

Page 3 of 15

3. You’ve been put in charge of designing an altitude-measuring device. You have an air-pressure
sensor that can be used to compute altitude. It outputs 3 volts at sea-level and 1 volt if 4,000m above
sea level. Its response is linear within that range (so 2 volts at 2,000m above sea level) and you can
assume it has infinite resolution. Your company wants your device to output the current altitude and
shouldn’t be off by more than 10 meters from the actual value at any given time. It need only be
correct from sea-level to 4,000 feet above sea level. It is solely for use by hikers to judge altitude.

In addition, for cost reasons, you are restricted to supplying 5V for power and 0V for ground (you
can’t use voltage dividers or something else and thus the Vref must be 5V and ground must be 0V).

The following A2D devices are on the market:

 The Bob. This converter features an 8-bit output, no more than ± 1/8 LSB INL and can do
5000 conversions per second. It costs $0.25 per unit

 The Tom. This converter features a 14-bit output, no more than ± 1/3 LSB DNL, and the
ability to do 50,000 conversions per second. It costs $0.40 per unit

 The Mary. This converter features a 12-bit output, no more than ± 1/2 LSB INL and can do
500 conversions per second. It costs $0.45 per unit.

 The Linda. This converter features a 16-bit output, no more than ± 1/8 LSB INL and can do
2000 conversions per second. It costs $1.00 per unit.

 The Bob version 2. This converter features a 16-bit output, no more than ± 1/8 LSB INL and
can do 10,000 conversions per second. It costs $1.20 per unit.

Assuming that there are no other relevant differences between the converters, which, if any, of these
would meet the requirements? Which would you recommend and why? Explain your reasoning. You
may not use/assume oversampling techniques. Be clear about your reasoning—a correct answer with no
explanation will get little if any points. [12 points]

Page 4 of 15

4. Consider the following C function.
int add(int *w, int *y, int z)
{

*y=doit(z);
return(*y+w);

}

Rewrite the above code in ARM assembly for our SmartFusion while following the ABI.
You are to assume the “doit()” function is ABI-compliant and has a prototype of
int doit(int). [12 points]

Page 5 of 15

5. For the following program, assume you start with all memory locations in question equal to
zero. Indicate the values found in these memory locations when the programs end. Write
all answers in hex. Each memory location shown is a single byte. [5 points, -1 per wrong
box min 0]

mov r2, #100
movw r1, #0x123
movt r1, #31
str r1, [r2], #3
str r1, [r2, #-1]!
strh r2,[r2, #3]

Addres
s

Value
(in hex)

100
101
102
103
104
105
106
107

6. Consider the circuit found below. Complete the supplied truth table. Write “HiZ” if the
value is high impedance, and ‘?’ if the value is unknown. Otherwise write a 1 or a 0 as
normal. [5, -2 per wrong or blank answer, min 0]

A B C Out .
1 1 1
0 1 1
0 1 0
0 0 1

Page 6 of 15

A

B

C

Out

7. Consider the following code. Assume the first mov instruction is at location 0x220 and that
all instructions are 32-bits. [8 points]

data:
 .byte 0x20, -6, 10, 0x0f, 16, -1, 7, 1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #3
 bne top
done: b done

 What is the value of the label “data” (in hex)? [1] _________________

 What is the value of the label “top” (in hex)? [1] _________________

 What is the final value of r0 (in decimal)? [1] _________________

 What is the final value of r1 (in decimal)? [2] _________________

 What is the final value of r4 (in decimal)? [3] _________________

Page 7 of 15

Design Problem: Nintendo 8 Interface
Your task is to design a system that will read the N8 game controller, translate the value to an ASCII
value and write it to a UART. You should read the entire problem thoroughly before starting.

The game controller is essentially a shift register that loads the state of the 8 buttons on the rising edge
of the “latch” signal and shifts the value out serially with subsequent “pulses” as shown below. The data
is easily read by the game processor with another shift register. The data is persistent at each transition
so each button value can be latched and shifted into a shift register on each rising edge of pulse. For
example, the A button can be read on the first rising edge of Pulse, the B button can be read on the
rising edge of the 2nd pulse….with the Right button being able to be read on the last rising edge of pulse.

The process is applied 60 times a second as shown in the following waveform. The controller will be
read at 60Hz (so a new set of pulse/latch signals would start every 60th of a second.

Hint/comment: In class you’ve repeatedly been told you generally shouldn’t use anything other than the
clock as a clock unless you really need to. In this case, you are dealing with a problem where you are
more-or-less forced to do so. In parts of this design question you will likely need to use latch and/or
pulse as a clock input.

Page 8 of 15

Part 1: Nintendo 8 Module [14 points]
Your task is to design a memory-mapped IO interface to the N8 that will capture the button values and
generate a FABINT after 6 complete reads (every 10th second). The ISR is to get the buttons’ values by
performing a read from memory location 0x40050000. The logic which generates the Latch and Pulse
signals will be given to you (you don’t have to design it!). You can assume Latch and Pulse are free of
glitches and are synchronized to PCLK though a PLL (basically the rising edge of Latch and Pulse happen
on a rising edge of PCLK). When Latch and Pulse go high they are high for at least 1 µs.

You are to design this module in schematic form. The following components are available. You may use
as many of each device as you need unless otherwise indicated.

1. One serial shift register with a serial data input, an enable, and a clock
input. It has an 8-bit parallel output that reflects the values in the shift
register. The register shifts data to the right on every rising edge in
which EN is 1.

2. One N-bit counter with synchronous reset. (You should specify the N)
3. AND, OR, XOR and NOT gates.
4. Tri-State drivers.
5. DFFs with CE (clock enable).

You may represent buses as a single wire, but indicate which signals it carries. For example, PADDR[3:0].
Further, you may show signal connections with a signal label instead of a wire. For example, you can
write PCLK wherever a PCLK is needed.

Use the space on the following page to draw your schematic. The APB3 timing is provided at the end of
this document. All inputs are shown on the left and all outputs on the right.

Page 9 of 15

 Serial data in
 EN
 Clk Q[7:0]

8-bit shift right register

Page 10 of 15

PWDATA[31:0]

N8 Data

N8 Pulse

N8 Latch

PCLK

PWRITE

PENABLE

PSEL

PADDR[7:0]

PRDATA[31:0]

FABINT

PREADY

Part 2: UART Module [14 points]
Your task is to develop a memory-mapped-IO interface in Verilog to a UART module provided for you.
The port definition of the UART module is as follows.

module uart(
input baud_clk,
input [7:0]rcv_data,
input serial_data_in
output[7:0] xmt_data,
output rcv_data_rdy,
output xmt_data_rdy,
output serial_data_out);

 The baud clk port is used to provide a clock at 1 Mhz to generate the baud rate.
 The rcv_data port is an 8-bit value representing the received value. It is available when

rcv_data_rdy is logical 1.
 The serial_data_in port is the UART’s serial data input line.
 The xmt_data port is an 8-bit value used to send data. It is available when xmt_data_rdy is

logical 1.
 The rcv_data_rdy and xmt_data_rdy are as described above.
 The serial_data_out port is connected the the UARTs serial output line.

Although our application only requires sending data over the UART, we want the module to work for
both sending and receiving data. Instantiate the UART module and provide a MMIO interface that will
read and write data and status at the following memory locations to be used in the interrupt service
routine.

Value Memory Location data bits Read or Write
rcv_data 0x40050100 [7:0] Read
rcv_data_rdy 0x40050104 [0] Read
xmt_data_rdy 0x40050108 [0] Read
xmt_data 0x4005010C [7:0] Write

You may assume PCLK is 100 Mhz. As hinted at by the addresses, this module is has a different PSELECT
signal than the module in Part 1.

Use the following page to write your Verilog. The module header is provided for you.

Page 11 of 15

Extra space is provided on the following page.

module uart_interface(
input PCLK,
input PRESERN,
input PSEL,
input PENABLE,
input PWRITE,
input [7:0]PADDR,
output wire PREADY,
output wire PSLVERR,
input [31:0] PWDATA,
output [31:0] PRDATA,
serial data_out,
serial data_in);

Page 12 of 15

Extra Space for Verilog

Page 13 of 15

Part 3: Interrupt Handler [12 points]
Write an interrupt handler that reads the N8 controller, converts the bit positon into an ASCII (text)
string that represents the button and sends the button name over UART. For example if Select should be
“Select”, A should be “A”, etc. Assume that only one button is pushed at a time. You may find it helpful
to use the functions log2 (computes the log base 2 of the input) and strlen (computes the number of
characters in the input string). The prototypes for those functions are: double log2(double x);
and uint32_t strlen(char * str);.

#include <string.h> //needed for strlen()
#include <math.h> //needed for log2()

__attribute__ ((interrupt)) void Fabric_IRQHandler(void) {

Page 14 of 15

APB Bus Read Write Timing Reference

Page 15 of 15

	Design Problem: Nintendo 8 Interface
	Part 1: Nintendo 8 Module [14 points]
	Part 2: UART Module [14 points]
	Part 3: Interrupt Handler [12 points]

