
EECS 373 Midterm 1

Winter 2022

10 February 2022

No calculators or reference material.

Name

UM Uniqname

Sign below to acknowledge the Engineering Honor Code: “I have neither given nor received aid on this examination,
nor have I concealed a violation of the Honor Code.”

Signature

1



1 ABI (7 pts.)

void foo(int i, int adjustment, char z)

foo:

push {r3, r4, r6, LR}

mov r6, r1

add r4, r0, #5

mov r5, r2

loop:

cmp r0, r4

beq end

push {r0}

sub r2, r5, r6

mov r0, r2

bl print

pop {r0}

add r0, #1

b loop

end:

pop {r3, r4, r6, PC}

You are conducting a code review of a function, “foo”, from Team Apple, one of two development teams you manage. It
calls an ABI compliant “print” from Team B. The function “foo” has arguments, two integers and a character, and has no
outputs. It prints the character, adjusted by the second integer argument, a total of 5 times. The function “print” takes a
single character as an input and has no outputs. The “print” function has already been validated, and while Team Apple
assures you that their function is functionally correct, they have a history of introducing defects into shipped products. Your
job is to determine whether the “foo” function is a valid ABI-compliant function and to justify your answer.

Is it a valid, ABI-compliant function?

© Yes. © No.

Justify in one terse sentence.

2 Assembly and memory layout (10 pts.)

The Table 1 represent two sections of memory in a Cortex-M processor. For convenience the memory values in the address
0x08000XXX block have been decoded into instructions. Label locations are indicated in italics. Assume that the Program
Counter (PC) is 0x08000104 and the Stack Pointer is 0x20000000. Determine the value of R0, R1, R2, and the values of the
memory addresses in the right table (i.e., 0x20000000 to 0x1FFFFFD0) when the PC = 0x08000114. Leave any unknown
memory values blank.

Page 2



Table 1: Memory and Register Contents

Address Instruction Address / Value
Register

0x08000104 MOV R0, #3 0x20000000

0x08000108 MOV R1, #7 0x1FFFFFFC

0x0800010C MOV R2, #3 0x1FFFFFF8

0x08000110 BL funA 0x1FFFFFF4

0x08000114 done: B done 0x1FFFFFF0

0x08000118 funA: PUSH {R0,R1,R2,LR} 0x1FFFFFEC

0x0800011C loop: CMP R0, #0 0x1FFFFFE8

0x08000120 BEQ next 0x1FFFFFE4

0x08000124 POP {R0} 0x1FFFFFE0

0x08000128 BL funB 0x1FFFFFDC

0x0800012C PUSH {R0} 0x1FFFFFD8

0x08000130 B loop 0x1FFFFFD4

0x08000134 next: MOV R0, #6 0x1FFFFFD0

0x08000138 loop2: CMP R0, #0

0x0800013C BEQ endA R0

0x08000140 POP {R1} R1

0x08000144 SUB R0, #1 R2

0x08000148 B loop2

0x0800014C endA: POP {R0,R1,R2,PC}
0x08000150 funB: POP {R1,R2}
0x08000154 PUSH {R1}
0x08000158 PUSH {R2}
0x0800015C PUSH {R0}
0x08000160 SUB R0, R1, #1

0x08000164 BX LR

3 Interrupts (10 pts.)

1. Use at most two sentences to describe the main purpose of the Nested Vector Interrupt Controller (NVIC).

Page 3



2. Use at most two sentences to explain why it is good practice for interrupt handlers to terminate quickly.

3. On a Cortex M4 processor there are two IRQ handling routines, named IRQ A and IRQ B. IRQ A is set to trigger
when signal X transitions from low to high, and has an execution time of 1 clock cycle. IRQ B is set to trigger when
signal Y transitions from low to high, and has an execution time of 2 clock cycles. Each of these interrupt handlers
sets GPIO A and B, respectively, to HIGH at the start of execution and LOW and the end of execution. Given the
following waveforms for X and Y, draw the waveforms for GPIO A and GPIO B given the following preemption priority
assignments, where a lower number indicates a higher priority. Assume the processor uses tail chaining. Appended are
some excerpts from the ARMv7 Architecture Reference Manual that may be useful. Provide your answers in Figures 1
and 2.

Page 4



0 1 2 3 4 5 6 7 8 9

X

Y

A

B

Figure 1: Timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 0 and GPIO B has a preempt
priority of 0 and a subpriority of 1.

0 1 2 3 4 5 6 7 8 9 10 1

X

Y

A

B

Figure 2: Timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 1 and GPIO B has a preempt
priority of 1 and a subpriority of 0.

Page 5



4 Build process (8 pts.)

Add directed edges between nodes in Figure 3 to illustrate the flow of information, i.e., data or metadata such as file
modification times, in the standard embedded system build process. Don’t include edges for command executions, e.g.,
“Make” should not have an arc to “Linker”. We have added a few correct edges to help you get started.

Figure 3: Incompletely specified embedded development board build process.

5 Debugging (4 pts.)

You have implemented an ISR to handle a button press interrupt. The ISR uses a persistent (static) variable in memory to
track the state of an LED; it inverts (!=) that variable and writes the new value to an LED interface on the APB, turning
on or off the LED. However, on boot the LED is off and pressing the button never turns the LED on, or off. What is the
first thing you would do with a debugger to determine whether the ISR is executing? Use at most one sentence.

Page 6



6 Open-collector style buses and voltage division (5 pts.)

You have implemented an open-collector style bus. In your system, VDD is 3 V. By convention, voltages below 1 V signify
activity and voltages above 2 V signify inactivity. Several components are connected to a bus line, each controlling a transistor
that electrically connects the line to ground when activated. However, by using a multimeter, you find that when a single
component’s transistor is turned on, the line voltage decreases to 1.5 V and never drops below 1 V. Your component interface
drivers have output resistances of 1 kΩ.

1. What is the pull-up resistance on the bus line?

2. What pull-up resistance would enable an active device to reduce the voltage to 0.5 V.

Page 7



7 MMIO and logic (4 pts.)

You are designing an APB interface for an ultra-low-power device that supports reads from the following MMIO addresses:
0x0, 0x5, 0x6, 0x7, and 0xd. For each address, indicate the minimal number of bits that must be used as inputs to an AND
gate used for detecting an access to that address. Do not consider sharing AND gate logic: each address gets its own AND
gate. Do not assume that only the lowest-order bits are used: you may skip bits. You needn’t consider aliasing with other
devices because PSEL can handle that. Consider aliasing among the device’s own addresses. You must show your work to
receive credit.

1. 0x0

© 0 © 1 © 2 © 3 © 4 © 5 © 8

2. 0x5

© 0 © 1 © 2 © 3 © 4 © 5 © 8

3. 0x6

© 0 © 1 © 2 © 3 © 4 © 5 © 8

4. 0x7

© 0 © 1 © 2 © 3 © 4 © 5 © 8

5. 0xd

© 0 © 1 © 2 © 3 © 4 © 5 © 8

Page 8



8 Cat (1 pt.)

Indicate the concept Figure 4 represents.

© Non-volatile memory.

© The customer’s view of me.

© The customer’s view of my early-stage product idea.

© My lab partner.

© The APB.

Figure 4: An illustration of. . .

Page 9



Overflow space. We won’t look at this space unless you tell us to after the relevant question.

Page 10



References

Page 11



Page 12


	ABI (7 pts.)
	Assembly and memory layout (10 pts.)
	Interrupts (10 pts.)
	Build process (8 pts.)
	Debugging (4 pts.)
	Open-collector style buses and voltage division (5 pts.)
	MMIO and logic (4 pts.)
	Cat (1 pt.)

