EECS 373 Midterm 1
Winter 2022

10 February 2022

No calculators or reference material.

Name

UM Unigname

Sign below to acknowledge the Engineering Honor Code: “I have neither given nor received aid on this examination,
nor have I concealed a violation of the Honor Code.”

Signature




1 ABI (7 pts.)

void foo(int i, int adjustment, char z)

foo:
push {r3, r4, r6, LR}
mov r6, ril
add r4, r0, #5
mov r5, r2
loop:
cmp r0, r4
beq end
push {ro0}
sub r2, r5, r6
mov r0, r2
bl print
pop {rO}
add r0, #1
b loop
end:
pop {r3, r4, r6, PC}

You are conducting a code review of a function, “foo”, from Team Apple, one of two development teams you manage. It
calls an ABI compliant “print” from Team B. The function “foo” has arguments, two integers and a character, and has no
outputs. It prints the character, adjusted by the second integer argument, a total of 5 times. The function “print” takes a
single character as an input and has no outputs. The “print” function has already been validated, and while Team Apple
assures you that their function is functionally correct, they have a history of introducing defects into shipped products. Your
job is to determine whether the “foo” function is a valid ABI-compliant function and to justify your answer.

Is it a valid, ABI-compliant function?

O Yes. (O No.

Justify in one terse sentence.

2 Assembly and memory layout (10 pts.)

The represent two sections of memory in a Cortex-M processor. For convenience the memory values in the address
0x08000XXX block have been decoded into instructions. Label locations are indicated in italics. Assume that the Program
Counter (PC) is 0x08000104 and the Stack Pointer is 0x20000000. Determine the value of RO, R1, R2, and the values of the
memory addresses in the right table (i.e., 0x20000000 to Ox1FFFFFDO) when the PC = 0x08000114. Leave any unknown
memory values blank.

Page 2



Table 1: Memory and Register Contents

Address Instruction Address / Value
Register

0x08000104 | MOV RO, #3 0x20000000

0x08000108 | MOV R1, #7 Ox1FFFFFFC

0x0800010C | MOV R2, #3 Ox1FFFFFFS

0x08000110 | BL funA Ox1FFFFFF4

0x08000114 | done: B done Ox1FFEFFFFO

0x08000118 | funA: PUSH {R0O,R1,R2,LR} || Ox1FFFFFEC

0x0800011C | loop: CMP RO, #0 0x1FFFFFES

0x08000120 | BEQ next 0x1FFFFFE4

0x08000124 | POP {RO} 0x1FFFFFEQ

0x08000128 | BL funB 0x1FFFFFDC

0x0800012C | PUSH {R0} Ox1FFFFFDS

0x08000130 | B loop 0x1FFFFFD4

0x08000134 | next: MOV RO, #6 0x1FFFFFDO

0x08000138 | loop2: CMP RO, #0

0x0800013C | BEQ endA RO

0x08000140 | POP {R1} R1

0x08000144 | SUB RO, #1 R2

0x08000148 | B loop2

0x0800014C | endA: POP {R0,R1,R2,PC}

0x08000150 | funB: POP {R1,R2}

0x08000154 | PUSH {R1}

0x08000158 | PUSH {R2}

0x0800015C | PUSH {R0}

0x08000160 | SUB RO, R1, #1

0x08000164 | BX LR

3 Interrupts (10 pts.)

1. Use at most two sentences to describe the main purpose of the Nested Vector Interrupt Controller (NVIC).

Page 3



2. Use at most two sentences to explain why it is good practice for interrupt handlers to terminate quickly.

3. On a Cortex M4 processor there are two IRQ handling routines, named IRQ A and TRQ B. IRQ A is set to trigger
when signal X transitions from low to high, and has an execution time of 1 clock cycle. IRQ B is set to trigger when
signal Y transitions from low to high, and has an execution time of 2 clock cycles. Each of these interrupt handlers
sets GPIO A and B, respectively, to HIGH at the start of execution and LOW and the end of execution. Given the
following waveforms for X and Y, draw the waveforms for GPIO A and GPIO B given the following preemption priority
assignments, where a lower number indicates a higher priority. Assume the processor uses tail chaining. Appended are
some excerpts from the ARMv7 Architecture Reference Manual that may be useful. Provide your answers in Figures
and 21

Page 4



—/
R

m > < X

Figure 1: Timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 0 and GPIO B has a preempt
priority of 0 and a subpriority of 1.

/)

m > < X

Figure 2: Timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 1 and GPIO B has a preempt
priority of 1 and a subpriority of 0.

Page 5



4 Build process (8 pts.)

Add directed edges between nodes in to illustrate the flow of information, i.e., data or metadata such as file
modification times, in the standard embedded system build process. Don’t include edges for command executions, e.g.,
“Make” should not have an arc to “Linker”. We have added a few correct edges to help you get started.

Executable C files
formatted for
copy to dev Assembler
board
Objcopy
Make C compiler
Linker
Assembly
files Object
files
Makefile Executable —»{ Debugger

Figure 3: Incompletely specified embedded development board build process.

5 Debugging (4 pts.)

You have implemented an ISR to handle a button press interrupt. The ISR uses a persistent (static) variable in memory to
track the state of an LED; it inverts (!=) that variable and writes the new value to an LED interface on the APB, turning
on or off the LED. However, on boot the LED is off and pressing the button never turns the LED on, or off. What is the
first thing you would do with a debugger to determine whether the ISR is executing? Use at most one sentence.

Page 6



6 Open-collector style buses and voltage division (5 pts.)

You have implemented an open-collector style bus. In your system, Vpp is 3V. By convention, voltages below 1V signify
activity and voltages above 2V signify inactivity. Several components are connected to a bus line, each controlling a transistor
that electrically connects the line to ground when activated. However, by using a multimeter, you find that when a single
component’s transistor is turned on, the line voltage decreases to 1.5V and never drops below 1 V. Your component interface
drivers have output resistances of 1k¢).

1. What is the pull-up resistance on the bus line?

2. What pull-up resistance would enable an active device to reduce the voltage to 0.5V.

Page 7



7 MMIO and logic (4 pts.)

You are designing an APB interface for an ultra-low-power device that supports reads from the following MMIO addresses:
0x0, 0x5, 0x6, 0x7, and Oxd. For each address, indicate the minimal number of bits that must be used as inputs to an AND
gate used for detecting an access to that address. Do not consider sharing AND gate logic: each address gets its own AND
gate. Do not assume that only the lowest-order bits are used: you may skip bits. You needn’t consider aliasing with other
devices because PSEL can handle that. Consider aliasing among the device’s own addresses. You must show your work to
receive credit.

1. 0x0
o0 O1 02 O3 O4 O5 O3
2. 0xb5
0 O1 02 O3 04 O5 O8
3. 0x6
o0 O1 02 O3 O4 O5 O3
4. 0x7
OO0 O1 02 O3 O4 Ob O8
5. Oxd
o0 O1 02 O3 O4 O5 O3

Page 8



8 Cat (1 pt.)

Indicate the concept represents.

(O Non-volatile memory.

(O The customer’s view of me.

(O The customer’s view of my early-stage product idea.
(O My lab partner.

O The APB.

Figure 4: An illustration of...

Page 9



Overflow space. We won’t look at this space unless you tell us to after the relevant question.

Page 10



References

NVIC operation

Armv7-M supports level-sensitive and pulse-sensitive interrupt behavior. This means that both level-sensitive and
pulse-sensitive interrupts can be handled. Pulse interrupt sources must be held long enough to be sampled reliably
by the processor clock to ensure they are latched and become pending. A subsequent pulse can add the pending state
to an active interrupt, making the status of the interrupt active and pending. However, multiple pulses that occur
during the active period only register as a single event for interrupt scheduling.

B1.3.2 Exceptions

Each exception has:

An exception number.
A priority level.

A vector in memory that defines the entry point for execution on taking the exception. The value held in a
vector is the address of the entry point of the exception handler, or /nterrupt Service Routine (ISR), for the
corresponding exception.

An exception, other than reset, has the following possible states:

Inactive An exception that is not pending or active.

Pending An exception that has been generated, but that the processor has not yet started processing. An

exception is generated when the corresponding exception event occurs.

Active An exception for which the processor has started executing a corresponding exception handler, but

has not returned from that handler. The handler for an active exception is either running or
preempted by the handler for a higher priority exception.

Active and pending

One instance of the exception is active, and a second instance of the exception is pending.

Only asynchronous exceptions can be active and pending. Any synchronous exception is either
inactive, pending, or active.

Exception return

The processor executes the exception handler in Handler mode, and returns from the handler. On exception return:

If the exception state is active and pending:

—  If the exception has sufficient priority, it becomes active and the processor reenters the exception
handler.

—  Otherwise, it becomes pending.
If the exception state is active it becomes inactive.
The processor restores the information that it stacked on exception entry.

If the code that was preempted by the exception handler was running in Thread mode the processor changes
to Thread mode.

The processor resumes execution of the code that was preempted by the exception handler.

The Exception Return Link, a value stored in the link register on exception entry, determines the target of the
exception return.

Page 11



T0 T1

PCLK !

T2 T3 T4

PADDR éXX

Addr 1

PWRITE 7

PSEL [
PENABLE :

0
7u

PWDATA XX

Data‘l X X

PREADY

I\

Figure 3-1 Write transfer with no wait states

Page 12



	ABI (7 pts.)
	Assembly and memory layout (10 pts.)
	Interrupts (10 pts.)
	Build process (8 pts.)
	Debugging (4 pts.)
	Open-collector style buses and voltage division (5 pts.)
	MMIO and logic (4 pts.)
	Cat (1 pt.)

