
EECS 373 - Homework #1 Solutions
Name: _______________________________ unique name: _________________
Due 19 January via Gradescope. Please use the answer boxes provided. Submit a PDF of your
completed assignment to Gradescope. Typed answers and neat handwritten answers are both
acceptable.

Question 1
Short answer questions: [10 points, 2 each]

A) What type of memory is executable code typically stored in, when it must survive power loss?

Non- volatile flash memory

B) What is the memory range for the peripheral devices, based on Slide 22 of Lecture 2?

0x40000000 to 0x5fffffff

C) Is the ARM ISA and hardware capable of supporting Big Endian addressing?

Yes

D) Using at most one sentence, indicate the main difference between the ARM sub and subs
instructions.

SUBS instruction updates the APSR while SUB does not.

E) Is an ABI part of an ISA?

No, but the ABI builds upon and depends on the ISA.

Question 2
Part A:
Using the ARMv7-M Architecture Reference Manual describe in a straightforward manner what
the ROR (immediate) instruction does. [3 points]

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant
value. The bits that are rotated off the right end are inserted into the vacated bit positions on the
left. It can optionally update the condition flags based on the result.

Part B:
Write the hexadecimal for the machine code you would expect to get for the following
instructions. [9 points, 3 each]

1) LSL R1, R4, #4

0x0121

2) LSR R1, R2, #24

0xE11

3) ASR R12, R3, #1

EA4F0C63

Question 3
For each of the following program segments, assume you start with all memory locations equal
to zero. Indicate the values found in these memory locations when the programs end. Write all
answers in hex. [16 points, 8 for each part]

Part A)

BASE_EMC = 0x74000000;
uint32_t *a = (uint32_t*)BASE_EMC;
*a = 0x01234567;
*(a-1) = 0xfedcba98;
(uint32_t)((uint32_t)a+2)=0x01234567;

Either solution is acceptable

Address Value Address Value

0x73FFFFFD 0xBA 0x73FFFFFD 0xBA

0x73FFFFFE 0xDC 0x73FFFFFE 0xDC

0x73FFFFFF 0xFE 0x73FFFFFF 0xFE

0x74000000 0x67 0x74000000 0x67

0x74000001 0x45 0x74000001 0x45

0x74000002 0x23 0x74000002 0x67

0x74000003 0x01 0x74000003 0x45

0x74000004 0x00 0x74000004 0x23

Part B)

mov r2, #100
movw r1, #85
movt r1, #85
strh r1, [r2, #3]
str r1, [r2], #2
strb r1,[r2, #2]!
strb r2,[r2, #-3]

Address Value

100 0x55

101 0x68

102 0x55

103 0x00

104 0x55

105 0x00

106 0x00

Hint: Page A6-15 of the ARMv7-M Architecture Reference Manual may be useful here.

Question 4
Write an ABI compliant assembly function that checks if an unsigned integer has a square root
that is an unsigned integer and return the square root. For example if the function is given 25, it
should return 5 (since 25=5^2). If no such unsigned integer exists, the function should return -1.
[20 points]

.global _start
_start:

main:
mov R0, #65
bl intRoot
done: B done

intRoot:
mov R1, #1
cmp R1, R0 // Special case 1*1=1, there are other ways to do
 // this but this is easiest modification to existing
beq isSquare
mov R3, R0

doOver:
 add R1, R1, #1
 mul R2, R1, R1
 cmp R2, R3
 beq isSquare
 bgt itsnot
 blt doOver

isSquare:
mov R0, R1

 BX lr

itsnot:
 mov R0, #0
 sub R0, R0, #1
 BX lr

_end:

NOTE: Probably no penalty for not including a sample main. Question
only asks for the abi function.

Question 5
Given the C code below, write an equivalent program in assembly. You can assume that “print”
is an ABI compliant function which takes an integer argument. Have the function return to the
program that called it. [17 points]

void main(void)
{

int i,a=401;
for(i=0;i<8;i++)
{

a=a-i;
print(a);

}
}

main:
push {r4, r5, lr}
mov r4, #0
mov r5, #401

loop:

cmp r4, #8
bge exit
sub r5, r4
mov r0, r5
bl print
add r4, #1
b loop

exit:
pop {r4, r5, pc}

Note: There are a lot of ways to do #3. One could use registers above r3, rather than the stack, to
keep “a” and “I” safe, though then you’d have to save (say) r4 and r5 to the stack and restore them
(though only once). Net effect: there are a lot of ways to do this.

Question 6
The following tables represent two sections of memory in a Cortex-M processor. For
convenience the memory values in the address 0x08000XXX block have been decoded into
instructions. Assume that the Program Counter (PC) is 0x08000104 and the Stack Pointer is
0x20000000. Determine the value of R0 and the values of the memory addresses in the right
table (i.e. 0x20000000 to 0x1FFFFFD0) when the PC = 0x0800010C. Leave any unknown
memory values blank. [25 points]

R0 = 120

Address Instruction Address Value

0x08000104 MOV R0, #5 0x20000000

0x08000108 BL func 0x1FFFFFFC 0x0800010C

0x0800010C done B done 0x1FFFFFF8 0x????????

0x08000110 func PUSH {R4, LR} 0x1FFFFFF4 0x08000130

0x08000114 MOV R4, R0 0x1FFFFFF0 0x00000005

0x08000118 CMP R4, #1 0x1FFFFFEC 0x08000130

0x0800011C BNE else 0x1FFFFFE8 0x00000004

0x08000120 MOV R0, #1 0x1FFFFFE4 0x08000130

0x08000124 loop POP {R4, PC} 0x1FFFFFE0 0x00000003

0x08000128 else SUB R0, R4, #1 0x1FFFFFDC 0x08000130

0x0800012C BL func 0x1FFFFFD8 0x00000002

0x08000130 MUL R0, R4, R0 0x1FFFFFD4

0x08000134 B loop 0x1FFFFFD0

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

