Data Structures and Algorithms |
Graph Representations |
When space is a problem, bit maps can be used for the adjacency matrix. In this case, an ADT for the adjacency matrix improves the clarity of your code immensely by hiding the bit twiddling that this space saving requires! In undirected graphs, only one half of the matrix needs to be stored, but you will need to calculate the element addresses explicitly yourself. Again an ADT can hide this complexity from a user! If the graph is dense, ie most of the nodes are connected by edges, then the O(|V|2) cost of initialising an adjacency matrix is matched by the cost of inputting and setting the edges. However, if the graph is sparse, ie |E| is closer to |V|, then an adjacency list representation may be more efficient.
Using the adjacency matrix structure:
struct t_graph {
int n_nodes;
graph_node *nodes;
int *visited;
adj_matrix am;
}
static int search_index = 0;
void search( graph g ) {
int k;
for(k=0;k<g->n_nodes;k++) g->visited[k] = FALSE;
search_index = 0;
for(k=0;k<g->n_nodes;k++) {
if ( !g->visited[k] ) visit( g, k );
}
}
The visit function is called recursively:
void visit( graph g, int k ) {
int j;
g->visited[k] = ++search_index;
for(j=0;j<g->n_nodes;j++) {
if ( adjacent( g->am, k, j ) ) {
if ( !g->visited[j] ) visit( g, j );
}
This procedure checks each of the |V|2 entries
of the adjacency matrix, so is clearly
O(|V|2).
Using an adjacency list representation,
the visit function changes slightly:
struct t_graph {
int n_nodes;
graph_node *nodes;
AdjListNode *adj_list;
int *visited;
adj_matrix am;
}
void search( graph g ) {
... /* As adjacency matrix version */
}
void visit( graph g, int k ) {
AdjListNode al_node;
g->visited[k] = ++search_index;
al_node = ListHead( g->adj_list[k] );
while( n != NULL ) {
j = ANodeIndex( ListItem( al_node ) );
if ( !g->visited[j] ) visit( g, j );
al_node = ListNext( al_node );
}
}
Note that I've assumed the existence of a
List ADT
with methods,
The complexity of this traversal can be readily seen to be O(|V|+|E|), because it sets visited for each node and then visits each edge twice (each edge appears in two adjacency lists).
static queue q; void search( graph g ) { q = ConsQueue( g->n_nodes ); for(k=0;k<g->n_nodes;k++) g->visited[k] = 0; search_index = 0; for(k=0;k<g->n_nodes;k++) { if ( !g->visited[k] ) visit( g, k ); } void visit( graph g, int k ) { al_node al_node; int j; AddIntToQueue( q, k ); while( !Empty( q ) ) { k = QueueHead( q ); g->visited[k] = ++search_index; al_node = ListHead( g->adj_list[k] ); while( al_node != NULL ) { j = ANodeIndex(al_node); if ( !g->visited[j] ) { AddIntToQueue( g, j ); g->visited[j] = -1; /* C hack, 0 = false! */ al_node = ListNext( al_node ); } } } }
Key terms |
Continue on to Dijkstra's Algorithm | Back to the Table of Contents |