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CAD4                            The ALU                Winter 2007 
Assignment 

To design a 16-bit ALU which will be used in the datapath of the microprocessor. This ALU must 
support two’s complement arithmetic and the instructions in the baseline architecture. 
 

Description 
The Arithmetic and Logic Unit (ALU) is the heart of your processor. The minimum set of instructions 
your AU needs to support consists of 
  (i) ADD, (ii) SUB, (iii)CMP, (iv) AND, (v) OR, and (vi) XOR. 
Your ALU must support both register-based operands and immediate operands. 
You can implement all the above instructions with the adder as the basic building block. A two’s 
complement subtracter and a comparator can be derived from the adder structure. Two’s 
complement subtraction (A - B) is implemented by adding A, B_bar, and 1 (Carry_in = 1). Compare 
functions (GE, LE), which are used to set processor flags for conditional branches, can be 
implemented with a subtracter and the information from the most significant bit (sign bit). 
Implementing “Less Than” is a little more complicated because of overflow problems. To detect a 
zero output, you may need a NOR tree to verify that no result bit is a 1.  Note that some fast adder 
designs may give you the zero detection “for free” or at least provide some of it.  When subtracting 
Carry_in = 1 so the only way to get a 0 out is if all of the bits are propagating. 
There are two general approaches in designing the ALU. The first one is conceptually simpler but 
the second one may result in a more efficient implementation. 
 
1. Separate Logic Blocks 
Your ALU must perform six different functions; this could be accomplished as shown below, with 
the adder unit performing three of these, and simple logic blocks performing the other three. Then a 
four-to-one multiplexer (or tristate buffers) could be used to select the correct function. 

 
2. Modified Ripple Carry Adder 
An alternative is to share as much of the logic as possible and even embed some logic into the 
mux.  For example, if P is xor and G is and you may compute those to use in the adder.  Then xor = 
P, and=G, or=P or G, and add = P xor Carry_in.  Since Carry_in will be the latest to arrive you 
could mux between P, G, P or G (think about how a 2-1 nand mux could mux between these three 
things with appropriate control signals) and xor with C_in anded with the add control signal.  There 
are many approachs in fact once you allow the logic to mix around.  Another one which is a terrible 
idea but has always been presented with cad4 is on the next page and might also help you in 
thinking about what is possible: 
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Sum: S = ABC + AB'C' + A'B'C + A'BC' 
Carry: Cout = AB + BC + AC 

If we define 
Half sum: H = AB' + A'B 

then we could write the adder equations as 
Sum: S = HC' + H'C 
Carry: Cout = AB + HC 

From the equations it is clear that when C is held at logical 0, the sum output is an XOR of A and B. 
S = AB' + A'B (XOR operation) 

Also, when C is held at logical 0, then, 
Cout = AB (AND operation) 

When C is logic 1, then 
Cout = AB + A + B = A + B (OR operation) 

This shows that appropriate switching of the carry line between adder elements will give the ALU 
logical functions. An example block diagram is shown below. 
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3. Adder Designs 
Any of a variety of 16-bit adder designs could be used in your processors. Whichever design you 
choose to implement, you would first build a 1-bit cell. Note that any number of such elements may 
be cascaded to form an adder of desired width. 
The truth table of a 1-bit adder is as follows: 

 
Hence, we may write the standard adder equation in the form 

Sum S = ABC + AB'C' + A'B'C + A'BC' 
Carry Cout = AB + BC + AC = AB + C(A+B) 
 

We now discuss two different kinds of full adders: 
1. Transmission Gate Adder 
Fig. 3 is the schematic of a transmission gate adder. The XOR function is implemented on the left. 
Its outputs are then used to implement the sum and the carry. It has 4 transmission gates, 4 
inverters and an XOR gate. Its advantages include equal SUM and CARRY delay times, and non-
inverted SUM and CARRY output signals. 
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2. Combinational Adder 
One example of a combinational adder is shown in Fig. 4. Of course, there are many ways to 
implement the adder equations, depending upon which gates one chooses to use. In this example, 
the CARRY signal is used in the generation of SUM (so SUM will be delayed with respect to 
CARRY). It has 24 transistors, the same as the transmission gate adder. 

 

Procedure 
Your ALU must be pitch/bitslice width matched to your register file. In this assignment, you are not 
required to implement the logic to set processor flags (zero, overflow, carry, etc.), but you should 
have in mind the requirements so that you do not have to rework your design later (e.g., how will 
you detect an overflow?).  In particular, you must provide a few outputs capable of setting all of the 
flags for the controller.  sending the entire output to the controller to detect a 0 is not acceptable. 
  
1. Schematic Design 
The ALU is the key block of your datapath and can be the majority of delay in the execute cycle.  (If 
you have a very fast adder the memory is likely to be the bottleneck) This handout assumes a 
ripple-carry adder based ALU with a few different choices for the full-adder design. You may also 
choose to implement any of the carry lookahead schemes discussed in lecture (Carry-bypass, basic 
CLA, carry-select, log lookahead/Brent-Kung, Kogge-stone). These will be less regular and will 
require significantly more layout and timing effort. Once you choose a particular adder, optimize it 
for speed. Turning in a design with all minimum-sized devices amounts to a simple logic switch 
design and will result in significant deductions. 
You can implement a normal ripple-carry adder with complex gates, as shown in Fig. 5. Since the 
critical  path is on the carry stage, it may be advantageous to size the transistors in that stage 
accordingly. However, transistors in the sum stage can be minimum size. Arrange the transistors 
switched by the carry-in signal to be closest to the output. This will reduce the body effect on carry-
stage transistors. 

 

 4



EECS427  Winter 2007 

Remember that ADD, SUB and CMP (imm. versions too) affect PSR bits. Your ALU should provide 
easy access to signals necessary for setting these flags. The actual PSR may be in the control unit. 
Note that zero-detect logic should be included in the ALU so as to avoid routing all 16 sum bits to 
the control unit. For other flags, just route a few of the higher order sum and carry bits out for later 
use in the control unit (see appendix for more info). You will also need a sign-extend module to 
convert immediate data to 16-bit data for the ALU. 
 
2. Logic Verification 
Use NCVerilog to verify each of the six functions (i.e. reg-reg and reg-imm versions). Test your 
zero-detect logic as well. 
 
3. Layout 
As you design your ALU, think about the overall microprocessor organization. Distribute buses and 
control lines the same way you did in the register file. Leave space for any signals that will be 
needed to interface to logic for checking overflow and setting processor status bits. Since your ALU 
performs only six functions, three control lines would be enough; however, you will find it easier to 
design a cell which has more control lines. 
Be sure to run the buses over your cells. Bitslice width matching with other datapath modules is 
very important. Save vertical routing resources for datapath integration. In the layout of a fast 
adder, you may find this particularly difficult to do. If you find it necessary to use a lot of vertical 
routing resources within the leaf cell, you could opt to place the ALU on the top or bottom of the 
datapath such that fewer signals must run over the ALU. 
Though you don’t need to implement the datapath right now, think about the various sources of 
inputs to your ALU. They could be from the register file or the program counter (if displacement 
calculations are done in the ALU) or from the instruction register (immediates). A little thought about 
floorplanning of your datapath organization in advance will help a lot in getting a good final layout. 
 
4. Design Verification 
Do DRC and LVS to verify the layout. Save the LVS report in your CAD4 directory. 
 
5. Analog Simulation 
Extract the parasitic capacitances. Use HSpice to get the worst case delays for the 1-bit cell and for 
the full 16-bit ALU. Note that you should simulate the full 16-bit ALU if you choose to implement any 
of the fast adders (Brent-Kung, Carry Select) and that with the fast adders the critical path may not 
be obvious. 
 

Comments 
• You can implement the ALU any way you wish. Remember that it is a datapath element. You can 
choose any select-line set-up that you wish (i.e. you are not restricted to any type of encoding). 
NCVerilog traces should show that the 16-bit ALU works for all six (more if you implement more) 
functions with a few tests per function (Make separate .ps files for each function so that bus values 
are readable in the printout). It’s fine to implement carry-lookahead schemes but note that they will 
be less regular and will require more layout work. 
• You are allowed to add instructions to the basic instruction set, but do not remove any. 
• Keep in mind that you are going to need to implement some Processor Status Register (PSR) bits. 
You implement the PSR later in the semester. However, some of the groups might wish to place the 
PSR on the datapath. If this is the case, you might want to implement the PSR in this CAD 
assignment since you are familiar with the ALU and time will be tight later in the semester. See the 
PSR Description provided at the end of this assignment for more information. 

 
Requirements 

All files should be placed in your group directory in the directory cad4. 
• 16-bit ALU (alu16) schematic and layout plots.  And any sub-circuits you use. 
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• NCVerilog .ps files for the 16-bit ALU. These should demonstrate all ALU functions (multiple files). 
• HSpice .png files showing the longest rise and fall delays for each output of the 1-bit ALU 
or full 16-bit ALU. 1-bit ALU is fine for ripple carry implementations but you must do 16-bit for 
anything else. Explain the delays; i.e., which path was critical in determining the delays.  For ripple 
carry implementations calculate the worst case 16-bit delay from the 1-bit delays. 
• DRC should run clean. 
• LVS report. 
• A README explaining the choice of the adder style and floor planning, along with the 
names/descriptions of the various files you’re submitting. Feel free to include any other pertinent 
comments (e.g., placement of PSR in the control or the datapath). 

 
Deadline 

You need to turn in CAD 4 by Friday, February 16, 2007, 7pm. 
 
 
 
 
 
 
 

Appendix: PSR Description 
The Processor Status Register is a 16 bit scannable register that holds information pertaining to the 
current state of the microprocessor. The assignments of bits in the PSR is shown below. 

 
Bits 12 to 15 are “Reserved” which means that these bits should not be written or read. Bits 3, 4 
and 8 may be hardwired to zero. The bits Negative, Low, Zero, Carry and OverFlow are set by the 
various arithmetic instructions. Unless you are implementing maskable interrupts, you can set the E 
and I bits to zero. Similarly, the Trace and P bits can be set to zero unless you implement tracing. 
See the notes at the end of the handout on the instruction set for more information about these 
flags. 
Adding or subtracting two n-bit numbers can require an n+1 bit number to fully express the result. 
When the result requires more bits than are available, we have an overflow or carry condition. 
Overflow occurs for two’s complement numbers under the conditions indicated in Table 1. An easy 
way to determine overflow 

 
is to exclusive-OR the carry-in of the high-order bit with the carry-out of the high-order bit. It is left 
as an exercise for the student to verify that this detects overflow. 
Carry occurs when the result of adding unsigned n-bit numbers exceeds 2n-1, or the result of 
subtracting assigned numbers is negative. 
Because zero detection only occurs when doing a subtraction there are actually two ways to go 
about it.  The obvious way to determine Zero is to check that all of the bits are zero with an OR or 
OR-like function  This can be done with a pseudo-nmos style gate, a tree, or a ripple. The other 
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way is to and all of the P bits assuming that P is implemented as xor.  In the log lookahead designs 
this is nicely done for you.  In other fast adder designs the base of the tree is already done and you 
just have to connect the blocks.  The Negative bit can be set from the high-order bit. The L bit is set 
assuming unsigned numbers, i.e., that all 16 bits of the operand indicate values, rather than sign, 
or, that all numbers are positive. The compare instruction does a subtraction of the value in src1 
register from that in the src2 register. It is not possible to get an overflow when numbers of the 
same sign are subtracted. In the compare instruction, operands are treated as both signed and 
unsigned integers at the same time; the processor does not know which they are. The programmer 
does know what type of data the operands represent, so can choose the correct condition on which 
to conditionally branch or jump. 
Be sure to clear the flags when they should be cleared (as well as setting them at the appropriate 
times). Do not change flags when they should not be changed. This can be implemented by 
clocking the flip-flop for a particular flag bit whenever an instruction which is to set or clear the bit 
has been executed. You could include instructions for loading and storing the processor status 
register (LPR and SPR). These instructions would move data from one of the general-purpose 
registers into the status register, or read the status register into a general-purpose register. These 
instructions are not included in the baseline machine; the baseline machine requires the PSR to be 
modified only by arithmetic instructions and reset. If you are not implementing the LPR and SPR 
instructions, you can save area by just implementing the flag flip-flops which you need (5 for the 
baseline processor). 
 
Implementation of Flags 
The flags for addition are straightforward. Let Cn be the carry out of the most significant bit and Cn-
1 be the carry into the most significant position. Then C = Cn, and F = Cn XOR Cn-1. The most 
common way of doing subtraction when two’s complement numbers are used is to add the one’s 
complement of the number to be subtracted and make the carry in to the least significant bit equal 
to one. In this case the carry flag is given by C = !Cn, and F is the same as for addition. In the 
compare operation (CMP, CMPI) L = !Cn, and N can be derived in several ways: 

 
where n-1 refers to the most significant bits in computing A-B, and Sn-1 is the sum bit. 
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