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EECS 427
Lecture 10: Power/Energy in 

CMOS  Reading: 5.5, 6.3
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Outline

• Last time:
– Adders: Carry select, square-root, log-

adders
• Today: 

– Power Dissipation in CMOS
• Sample Logical Effort Questions posted
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Overview

• Power and energy in CMOS
– Why is power/energy reduction important
– What constitutes total power dissipation
– Arriving at the equations for dissipation
– Popular approaches to power reduction

• Dynamic logic
– Alternative to static CMOS
– Used in industry for very high-speed 

circuits
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Why is Power Reduction Important
• Maintaining chip temperature requires more expensive

– Packaging: Ceramic vs Plastic for example
– Heat Sinks

• Power Costs 
– Kilowatt hour costs are increasingly important due to improving 

performance/server and fairly stable performance/watt. 
– Electricity cost cand easily be 40% of total cost. Current trends indicate 

a further increase in this percentage.
• Power delivery

– Itanium consumes 130W at 1.3V
– IR and Ldi/dt drops reduce supply at devices

• Battery Life
– Low energy extremely critical for mobile/hand-held applications
– Li-ion batteries: 100-150Whr/kg. Size/Battery life trade-off.

• Niche applications
– Many automotive circuits are hermetically sealed. Severe constraints 

on heat exchange result in desire of inherently lower power circuits.
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Power Density in VLSI

Source: Intel
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Where Does the Power Go?
• Dynamic Power

– Switching Power
• Charging and discharging of capacitors

– Short-circuit Power (Crowbar)
• During switching transients, current flows between Vdd and 

GND
• Not dominant – typically assumed to be ~10% of dynamic 

power

• Static Power
– Power consumed when there is no switching
– Leakage: due to non-ideal switches

• Gradually becoming the dominant component
• Important during standby
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A look at energy dissipation: RC 
series circuit
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• Energy stored equals energy 
dissipated in this case.

• But charge is delivered by non-
linear devices in CMOS circuits.

• How does that change the result?
• Is there a device independent way 

of figuring out the dissipaton??
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Switching Power

Vin Vout

CL

Vdd

• Output 0-1 transition

Energy drawn from supply =
Energy stored in CL = 
Energy dissipated in pulldown device = 
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Switching Power 

Energy drawn from supply =
Energy stored in CL = 
Energy dissipated in pulldown device = 

• Output 0-1 transition
Vin Vout

CL

Vdd
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Switching Power
• Over an entire charge-discharge sequence then …

– Energy drawn from the supply = 
– Energy dissipated in the inverter = 

• Energy provided by the supply is a straightforward way 
of  tracking energy dissipation.

• But what if all load capacitance is not coupled to 
ground?

Vin Vout

CL

Vdd

Vin Vout

CL

Vdd
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Switching Power

Energy 
(supply)

Energy
(PMOS)

Energy
(NMOS)

Input 1→0
Input 0→1

Total



EECS 427 W07 Lecture 10 12

Short Circuit Power (Crowbar)

• Rise and fall times are not ideal
– Both nMOS and pMOS conducting between Vtn and (Vdd –

|Vtp|)
Vdd

Vin

Isc

Energy dissipated = 

Short circuit power = 
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Static Power Consumption

Wasted energy …
Should be avoided as much as possible
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Total power dissipation

• Total power dissipation is the combination of 
all three main sources of power dissipation.
– Dynamic switching power
– Dynamic short-circuit current (crowbar)
– Static leakage (sub-threshold, junction)
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Common methods for power 
minimization

ftIsVfsCVee
L
WkVP scscdddd

V
V

V
VVVnV

dd
T

ds

T

thsbdsgs

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−•≈

−−−

2
0 1

' γζ

• Power minimization
– Switching power usually dominates dynamic 

dissipation (Crowbar power accounts for about        
10-15% of total dynamic dissipation)

– Static leakage can dominate systems with low 
switching activity.  

• Typical value of s in datapaths is 10-20%
• Important in systems with significant stand-by time

Static Dissipation Dynamic Dissipation
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Common methods for power 
minimization
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• Power minimization techniques usually involve 
controlling one of s, C, Vdd, f, Vth as per equation

• Such changes often involve tradeoffs (eg. area, 
power, complexity)

Leakage Power
Dissipation

Switching power
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Altering switching capacitance for 
low power dissipation
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• Extremely important term in switching power.
• Clock gating (s = 2 for clock nets)
• Gate sizing: Size down gates in non-critical paths (delay 

“wall”)
• Glitch avoidance
• Bus encoding / Data encoding
• Avoiding pre-charging/dynamic mechanisms or use 

conditional discharge (eg. in flip-flops)

Leakage Power Dissipation Switching power
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Altering Vdd for low power 
dissipation
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• Supply Voltage provides quadratic reduction in 
switching energy.

• Voltage scaling results in increased delay.
• Voltage-scaling (through sizing or pipelining)
• Dynamic voltage-scaling (at runtime)
• Low-swing logic/signaling (harms noise margins)
• CVS (Clustered Voltage Scaling)

Leakage Power Dissipation Switching power
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Lower Vdd Increases Delay

 CL * Vdd
I

=Td

Td(Vdd=5)

Td(Vdd=2)
= 

(2) * (5 - 0.7)2

(5) * (2 - 0.7)2

≈ 4

I ~ (Vdd - Vt)
2

Relatively independent of logic function and style.
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The exponent will change 
next time we see this…



EECS 427 W07 Lecture 10 20

Altering f for low power 
dissipation
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• Scaling the frequency reduces switching power
• Switching energy remains unchanged.
• However, leakage energy dissipation is increased
• Scaling only frequency does not achieve energy reduction

– For the same application, energy dissipation actually 
increases

• A possible option for high performance cores which cannot 
transfer heat away from the chip fast enough.

Leakage Power Dissipation Switching power
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Reducing Vth to offset delay 
penalty
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Leakage as a Function of VT

• Reducing the VT
increases the sub-
threshold leakage 
current (exponentially)

– ~90mV reduction in VT
increases leakage by 10X

• But, reducing VT
decreases gate delay 
(increases performance) 0 0.2 0.4 0.6 0.8 1
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Thanks to Irwin/Narayanan



EECS 427 W07 Lecture 10 23

Altering Vth for low power 
dissipation
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• Dual Vth design
– Determine the critical paths during the design phase, use low VT devices 

on those paths for speed (requires dual-Vt, variation issues)
– Use a high VT in rest of logic to control leakage
– Can provide total leakage reduction of up to 80%

• Body biasing
– Change the substrate potential to reduce leakage current

• MTCMOS
– Use the “stack effect” and high Vth devices to achieve leakage reduction
– Performance degradation (frequency, start-up time)

Leakage Power Dissipation Switching power
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Summary

• Power reduction is as important as 
increasing speed in IC design today.

• Three major components of power in 
CMOS
– Dynamic: charging capacitors dominant
– Short-circuit: small, typically ignore
– Static: subthreshold leakage, growing fast 

already dominant in certain structures (eg. 
memories)
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