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Last Time

• Low power ALUs
– Glitch power
– Clock gating
– Bus recoding

• The low power design space
– Dynamic vs static
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Lecture Overview

• Low Vdd design
– Pipelining
– Parallel

• Multiple Vdd design
– Concept
– Level converter topologies
– Dual-Vdd buffer design for global wires
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Architecture Tradeoff for Fixed-rate Processing
Reference Datapath
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Parallel Datapath
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Pipelined Datapath
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A Simple Datapath: Summary
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How Low a Voltage can be Used?
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Power and Energy Design 
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Supply Voltage Scaling
• How to maintain throughput under reduced supply?
• Introducing more parallelism/pipelining

– Area increase – cost increases
– Cost/power tradeoff

• Multiple voltage domains
– Separate supply voltages for different blocks
– Lower VDD for slower blocks
– Cost of DC-DC converters or additional off-chip supplies, 

distributing multiple power supplies on-chip

• Dynamic voltage scaling – with variable throughput
• Reduce Vth to improve speed

– Exponentially increased leakage eventually dominates
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Delay as a Function of VDD

• Decreasing VDD reduces dynamic energy consumption quadratically
• But increases gate delay (decreases performance)
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• Determine critical path(s) at design time & use high VDD for 
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CMOS Circuits Track Over VDD
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Changing Vdd and Vth Together

Contours of constant delay show that reductions in Vth
must accompany smaller Vdd’s to maintain speed

Vdd=1.3V
Vth = 0.39V

Vdd=0.62V
Vth = 0.11V
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Multiple VDD Considerations
• How many VDD? – 2 is becoming more popular

– Many chips already have 2 supplies (1 for core and 1 for I/O)
• When combining multiple supplies, level converters are required when 

a module at lower supply drives gate at higher supply (step-up)
– If a gate supplied with VDDL drives a gate at VDDH, PMOS never turns off

• Cross-coupled PMOS transistors
perform the level conversion

• NMOS transistors operate at                                     
reduced supply

– Level converters are not needed                                                      
for step-down changes in voltage

– Overhead of level converters can be reduced by converting at register 
boundaries & embedding level conversion inside the flop 
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Multiple Vdd Design

Lower VDD portion is shaded

CVS StructureConventional Design
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“Clustered voltage scaling”
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Level converting flip flops

• Needed to restore the input to the next pipeline to VH

Takahashi et. al JSSC 1998
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Effect of CVS on path distribution

• “Shift” the histogram towards the right

Takahashi et. al JSSC 1998
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Delay Penalty

• Significant delay penalty 
– Swing voltage unchanged (Linear effect)
– Drive voltage shrinks (Quadratic effect)

Takahashi et. al JSSC 1998
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Power dissipation dependence 
on VL

• Setting VL too low results in less paths with low Vdd
assignments

Takahashi et. al JSSC 1998
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ECVS 
• No longer constrained to a monotonic voltage profile from input to 

output. 
• Requires a level-converter to restore a higher voltage

– Level converting buffers
– Level converting gates
– Level conversion is therefore not restricted to latches

Usami et. al JSSC 1998
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ECVS allows more paths to be 
assigned to VL

• Allows delay balancing through voltage assignment
• Must pay delay and power penalty in performing every level 

conversion (Small clusters may not be worthwhile)
• Algorithms used for concurrent sizing-voltage assignment 
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Optimal choice for VL

• The choice for VL depends on the delay histogram 
with single VDD. 

• Choosing too large a VL nullifies the effects of lower 
power dissipation.

• Choosing too low a VL results in too few paths being 
assigned to VL.

Usami et. al JSSC 1998
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Existing Level Converters

• DCVS
• Pass gate (PG)

• DCVS – Higher power dissipation due to greater 
contention and higher transistor count

• PG – Simpler design, faster, lower power than DCVS, 
critical path is falling input (and output)
– Key: Purpose of M1

* = low-Vth
candidate
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Alternate LC 1 : STR1
• STR1

• Known high-performance design technique, with much 
improved results in this application space

• Keeper M4 from PG split into M4 and M5
• Reduced loading on node N and reduced contention
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Alternate LCs : STR2, 3 and 4

• STR2 STR3 STR4

• INV and M6 added to turn off feedback path faster and 
speed up critical path of the circuit
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Alternate LC 5 : STR5
• STR5

• Raised gate voltage on pass transistor boosts performance
• Leakage current I_reverse creates tradeoff between power 

and speed
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Simulation Results
• Low VDDL/High VTH

– STR1,..,4 consume about 40-
50% less energy

– STR1 about 3-4% faster than 
DCVS and PG 

– STR2, 3 also slightly faster
• Low VDDL/Low VTH

– STR1 consumes 37% and 
15% lower energy than DCVS 
and PG respectively

• High VDDL 
– STR1 consumes 40% and 

15% less energy than DCVS 
and PG respectively

– STR1 and 4 faster than 
DCVS and PG
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Summary

• Use of 2 Vdd’s on a chip is growing
– Brings up level conversion, layout, power 

distribution issues
• Fast, energy efficient level converter 

topologies are critical to maximize dual-
Vdd benefit

• What else can you do with 2 supplies 
available?
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