
Synthesis and APR Flow for EECS 427

This tutorial outlines a synthesis and auto-place and route (APR) design flow which will be used to design
your program counter (PC), the controller modules, and a number of extra features / IO devices for your
project. The flow will be partitioned into two main sections: (i) Synthesis and (ii) APR. This document
describes the standard cell synthesis and automatic place and route (APR) design flow for use in the design
of your controller and peripheral blocks.

Synthesis: Design Compiler is used to compile a synthesizable Verilog design into a gate-level structural
verilog netlist containing instantiations of standard-cells obtained from a library. The user will provide a
target clock frequency and input output constraints (timing and load capacitance) for each block in the
design. Based in the timing properties of gates available in the standard-cell library (.lib format), Design
Compiler produces a gate-level netlist that implements the desired functionality.

APR: Auto place and route is the process whereby a gate-level netlist (usually obtained from the synthesis
tool) is physically implemented in layout by placing standard-cell layout and auto-routing the cells based
on the connections inferred from the netlist. The routed design is then exported from the APR tool in a DEF
(Design Exchange Format, more later) and subsequently imported by the Virtuoso Custom Layout tool.

Standard Cells: In this course, we will be using the 0.25micron, NCSU compatible VTVT (Virginia Tech
VLSI for Telecommunications) standard cell library. The standard cell library contains schematic, symbol
and layout views for various CMOS logic gates with a variety of drive strengths.

Setup
1. Find a nice place to do the tutorial (like your personal eecs427 directory)
2. Untar the tutorial file using:

 tar –xvf $CDK_DIR/../synth_tut.tar
3. A directory synth_tut will be created that will contain subdirectories synthesis and apr.

Synthesis
1. Change to the synthesis subdirectory of the tutorial
2. Open the synthesizable verilog design file dw_adder.v. We will be building a 16 bit adder using the

DesignWare library.
3. Notice the parameter declaration in the verilog file and how it is used to determine the width of the

desired adder when instantiating the DesignWare component. Other components that may be obtained
from DesignWare are listed in the DesignWare manual. On your command prompt enter “sold”
(Synopsys OnLine Documentation) and select DesignWare for more details.

4. Close the verilog and open the design compiler script dw_adder.tcl.
5. Note that the first thing in dw_adder.tcl is a command that sources dc_setup.tcl (in the class directory).

dc_setup.tcl contains default design preferences as well as technology specific information (eg. Bus
naming conventions, location of the timing library for the standard cell library used). The rest of the
dw_adder.tcl file contains information that is specific to the adder design. It contains information that
is specific to the design being implemented.

6. In this example the dw_adder that we have instantiated does not contain pipeline registers and
therefore no real clock drives any nodes in the design. However, we still define a virtual clock clk, in
order to provide a timing reference for the input and output delays. The input delay indicates how long
after the rising clock signal (real or virtual) data is expected to arrive at the module inputs. The output
delay indicates how long before the positive edge of the clock the outputs of the block are expected to
arrive. Please see comments in the file that elaborate on different ways to specify input and output
delays. This will be necessary when you design your modules.

7. Now that you have browsed through the files, you are ready to perform synthesis. There are two tools
you can use to do this. Both use tcl command files. dc_shell-t is command line only whereas

design_vision has a gui that allows you to see schematics of the synthesized designs. Enter “dc_shell-
t” or design_vision to start the respective tools. Simply enter the commands you see in the
dw_adder.tcl file into the prompt (of the terminal window in both cases) or cut and paste the
commands. (Later on of course, you can simply enter “source dw_adder.tcl” or add –f dw_adder.tcl on
the command line when you invoke the tool to run your script. In this tutorial, for the benefit of
familiarization, you should probably enter the commands one at a time.

8. In addition to the direct text outputs from the commands (which is where errors will appear) there are a
few files that are created as results. Look through these to get used to what they are. (they are
described below)

rep_file
Contains information about your design dw_adder, including area, power, as well as a timing report of the
critical paths in the design. Make sure you understand how to read the delay path. It will prove very useful
in producing good synthesized netlists.

netlist
syn_dw_adder.v, contains the gate-level netlist of your 16-bit adder. This netlist is used to provide
connectivity information for the APR design flow.

SDF
syn_sw_adder.sdf, is a Standard Delay Format (SDF) file that contains simplified delays in your verilog
netlist. Each gate in the verilog netlist specified by syn_dw_adder.v, is indicated in this file along with the
associated gate delays from each input to each output. This sdf can be used in digital simulation by adding
the following line to syn_dw_adder.v inside the module definition, after all the input/output declarations,
but before any instance names:
initial $sdf_annotate("syn_sw_adder.sdf");
It is always a good idea to be sure that the synthesized design still works the way you expect it to.
However, the timing information in this sdf is not very accurate because it does not account for layout.
Thus, any final simulations you do with all timing should use the sdf we will get from APR.

APR
1. Change to the apr directory and take a look at the files there. The apr subdirectory should contain 4

files:
a. dw_adder.tcl: This is another .tcl file which contains the script used to run encounter

efficiently. Since the design of a block typically involves invoking encounter, verifying
timing, fixing timing, resynthesis, re-invocation of encounter, etc it helps to have scripts ready
to avoid long delays in redesign.

b. dw_adder.conf: This file contains all the default information for your design along with the
location of the verilog, lef, and tlf files. Be sure to verify that $my_toplevel is set to dw_adder
for this tutorial (and your top level block in future designs). Also, you may be interested in
the lef file. The lef file contains a “layout-like” description of the standard cells that will
enable the APR tool to understand how to place the blocks without overlapping with other
cells as well as route wires to the appropriate pins in the design

c. dw_adder.save.io: This file contains pin placements for the adder. Of course, this file will not
be available for your designs. This file is an edited and cleaned up version of what is created
with edit->Pin Editor. It is not difficult to generate your own IO pin mapping file using the
editor and we will demonstrate how to do so for you.

d. dw_adder.sdc: This file contains basic timing information for your design. It will help the
router understand false paths and driving cells. In this case it is very simple

2. type “encounter”. This opens up the encounter gui window. Enter the commands in the dw_adder.tcl
file into the command prompt step by step. Note the explanatory comments made in the file that
elaborate on the function of each line. Again, here you can simply type “source dw_adder.tcl” in your
encounter prompt. The fact that these tools from multiple vendors have standardized on tcl should
make it much easier to get used to the tools.

3. The final design is output as a def file. Once the def has been exported you can import into icfb.

4. The tar file should have the cds.lib and .cdsinit for you in the base synth_tut directory. Open icfb in
this directory.

5. Create a new library test_apr. In general always create the design library you want your design to be
found in BEFORE you import DEF.

6. In the CIW click File->Import->DEF
7. An Import DEF form will pop up. Fill the form up as follows:

Library Name: test_apr
Cell Name :dw_adder
View Name : layout
DEF File name : apr/dw_adder.def

8. Open the layout view. Because DEF is supposed to provide an abstract view the editor that comes up
is not the layout editor. We will need to fix some things up to prevent this. First click Tools->Layout
to get into the layout editor.

9. Now click Edit->Search and a search form will show up.
10. Click Replace->viewName and enter layout. Then click Apply. Then Click Select All, finally Replace

all before closing the search window. If you get a warning about a via that is ok.
11. Now click Design->properties and a properties form will show up.
12. Click Property within this if it is not already selected.
13. Click on the viewSubType label, then click on delete and finally ok.
14. Now save the layout with design->save
15. You will find that the layout view contains layout of cell and you now have a layout ready for LVS and

DRC.
16. You will also have to import the verilog you generated from your apr flow. To do that , in your CIW,

enter File->Import->Verilog and fill up the form
Only 3 fields need to be filled
Reference Libraries : vtvtlib25
Target Libraray : test_apr
Verilog files to import : dw_adder.apr.v

17. This will import a schematic view from the verilog file you have created from encounter (encounter
sometimes modifies your schematic to add clock buffers) and allows you to run LVS.

