EECS483 D13: SSA Example

Chun-Hung Hsiao
April 12, 2013

Announcements

- Homework 5 on CTools
-Due on 4/22

Static Single Assignment Form

- Each variable is given a unique name when it is assigned to a new value
- All of the uses of this assignment are renamed accordingly
- Phi nodes: a special multiplexer that choose a value from its arguments

SSA Conversion (1/2)

SSA Conversion (2/2)

- Dominator analysis
-Find the dominator frontier set DF(BB) for each basic block BB
- Phi node insertion
-If variable x is defined in $B B$, then a Phi node of x is needed in each basic block in DF(BB)
- Variable renaming
-Rename variables in each assignment (including Phi node) and all their uses

Dominator Analysis (1/2)

- X dominates Y if every path from entry to Y contains X
-X dominates X itself
- Z is a dominance frontier of X if X dominates a predecessor Y of Z but not Z
-The first BB that is not dominated by X
- If variable a is defined in X
-Uses of a in Y refer to the definition in X
-Uses of a in Z don't necessary refer to the definition in X

- Need a Phi node for a!

Dominator Analysis (2/2)

- $\operatorname{Dom}(X)=$ Intersection(Dom(predecessors of $X)$)
- Compute dominators
- Initialization
- Dom(Entry) = \{Entry $\}$
- $\operatorname{Dom}(X)=\{$ all nodes $\}$ for all other X
-While(change):
- Update Dom(X) for each X
- Compute dominance frontiers
-for each Z
- for each predecessor Y of Z
- for each X in $\operatorname{Dom}(Y)$ - $\operatorname{Dom}(Z)$
» Put Z into $D F(X)$

Dominator Analysis: Example

BB	Dom	DF
0		
1		
2		
3		
4		
5		
6		
7		

This example comes from Prof. Mahlke's EECS583 slides.

Dominator Analysis: Example

BB	Dom	DF
0	0	
1	0,1	
2	$0,1,2$	
3	$0,1,3$	
4	$0,1,3,4$	
5	$0,1,3,5$	
6	$0,1,3,6$	
7	$0,1,7$	

Dominator Analysis: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

Phi Node Insertion

- Liveness analysis
$-\operatorname{IN}(\mathrm{BB})$: variables used in BB but defined elsewhere
$-K I L L(B B)$: variables defined in $B B$
- Algorithm
-for each variable v in $\operatorname{IN}(B B)$ for some $B B$
- $\operatorname{Def}(v)=\{B B: v \in \operatorname{KILL}(B B)\}$
- for each BB \in in $\operatorname{Def}(v)$
- Insert a Phi node for a in DF(BB)
- Add BB into Def(v)

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	
b	
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3$
b	
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	$0,2,6$
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	$0,2,6,7$
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	$0,2,6,7,1$
c	
d	
i	

Phi Node Insertion: Example

BB	Dom	DF
0	0	-
1	0,1	-
2	$0,1,2$	7
3	$0,1,3$	7
4	$0,1,3,4$	6
5	$0,1,3,5$	6
6	$0,1,3,6$	7
7	$0,1,7$	1

variable	Def
a	$0,1,3,7$
b	$0,2,6,7,1$
c	$0,1,2,5$
d	
i	

Phi Node Insertion: Example

Variable Renaming (1/3)

- Constructing the dominator tree
-The parent of a basic block is its immediate dominator
- For each variable, maintain the following data structures
-A counter for creating new names
-A stack to keep track of currently available names for this variable
- The top of the stack is the name defined in its nearest dominators

Variable Renaming (2/3)

- Process each basic block in preorder of the dominator tree
-Rewrite each instruction (including the Phi nodes) in forward order
- For each use, replace the name with the latest name at the top of the stack
- For each def, generate a new name
- New name = original name + counter
- Increment the counter by 1
- Push the new name into the stack
-Propagate the new names to the Phi nodes of its successors
-Recursively process its children
-Pop names generated in this basic block from the stack

Variable Renaming (2/3)

- Why preorder traversal
-If a variable has two definitions in different paths
- A Phi node would be inserted
- The two names for the definitions

-If a variable is defined only in the dominators
- The top of the stack is the name of the latest definition

Variable Renaming: Example


```
var: a 
stk: a0 b0 c0 d0 i0
```


Variable Renaming: Example


```
var: a 
stk: a0 b0 c0 d0 i0
```


Variable Renaming: Example


```
var: a b c d i
ctr: 3 2 3 2 2
stk: a0 b0 c0 d0 i0
    a1 b1 c1 d1 il
    a2 c2
```


Variable Renaming: Example


```
var: a b c d i
ctr: 3 3 4 4 3 2
stk: a0 b0 c0 d0 i0
    a1 b1 c1 d1 il
    a2 b2 c2 d2
        c3
```


Variable Renaming: Example


```
var: a bllll
stk: a0 b0 c0 d0 i0
    a1 b1 c1 d1 il
    a2 c2
```

Pop names after BB2

Variable Renaming: Example


```
var: a 
stk: a0 b0 c0 d0 i0
    a1 b1 c1 d1 il
    a2 c2 d3
    a3
```


Variable Renaming: Example

var: a b c d i ctr: 4 3 4 5 2 stk: a0 b0 c0 d0 a1 i0 a2 c1 d1 i1 a3 d3 a d4			

Variable Renaming: Example

var: a	b	c	d	i
ctr: 4	3	5	5	2
stk:	a0	b0	c0	d0
a1	b1	c1	d1	i1
a2		$c 2$	d3	
a3		$c 4$		

Variable Renaming: Example


```
var: a b c d i
ctr:4 4 6 6
stk: a0 b0 c0 d0 i0
    a1 b1 c1 d1 il
    a2 b3 c2 d3
    a3 c5 d5
```


Variable Renaming: Example


```
var: a b c d i
ctr: 5 5 7 7 7 3
stk: a0 b0 c0 d0 i0
a1 b1 c1 d1 il
a2 b4 c2 d6 i2
    a4 c6
```


Thanks \& all the best!

