EECS483 D13: SSA Example

Chun-Hung Hsiao April 12, 2013

1

Announcements

- Homework 5 on CTools
 - -Due on 4/22

Static Single Assignment Form

- Each variable is given a unique name when it is assigned to a new value
- All of the uses of this assignment are renamed accordingly
- Phi nodes: a special multiplexer that choose a value from its arguments

SSA Conversion (1/2)

SSA Conversion (2/2)

- Dominator analysis
 - Find the dominator frontier set DF(BB) for each basic block BB
- Phi node insertion
 - If variable x is defined in BB, then a Phi node of x is needed in each basic block in DF(BB)
- Variable renaming
 - Rename variables in each assignment (including Phi node) and all their uses

Dominator Analysis (1/2)

 X dominates Y if every path from entry to Y contains X

-X dominates X itself

 Z is a dominance frontier of X if X dominates a predecessor Y of Z but not Z

-The first BB that is not dominated by X

- If variable a is defined in X
 - -Uses of a in Y refer to the definition in X
 - Uses of a in Z don't necessary refer to the definition in X
 - Need a Phi node for a!

Dominator Analysis (2/2)

- Dom(X) = Intersection(Dom(predecessors of X))
- Compute dominators
 - -Initialization
 - Dom(Entry) = {Entry}
 - Dom(X) = {all nodes} for all other X
 - -While(change):
 - Update Dom(X) for each X
- Compute dominance frontiers
 - -for each Z
 - for each predecessor Y of Z
 - -for each X in Dom(Y) Dom(Z)
 - » Put Z into DF(X)

Dominator Analysis: Example

This example comes from Prof. Mahlke's EECS583 slides.

Dominator Analysis: Example

BB	Dom	DF
0	0	
1	0, 1	
2	0, 1, 2	
3	0, 1, 3	
4	0, 1, 3, 4	
5	0, 1, 3, 5	
6	0, 1, 3, 6	
7	0, 1, 7	

Dominator Analysis: Example

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

Phi Node Insertion

- Liveness analysis
 - -IN(BB): variables used in BB but defined elsewhere
 - -KILL(BB): variables defined in BB
- Algorithm
 - -for each variable v in IN(BB) for some BB
 - $Def(v) = \{BB : v \in KILL(BB)\}$
 - for each $BB \in in \ Def(v)$
 - Insert a Phi node for a in DF(BB)
 - -Add BB into Def(v)

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	
b	
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3
b	
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7, 1
С	
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7, 1
С	0, 1, 2, 5
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7, 1
С	0, 1, 2, 5, 7, 6
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7, 1
С	0, 1, 2, 5, 7, 6
d	
i	

BB	Dom	DF
0	0	-
1	0, 1	-
2	0, 1, 2	7
3	0, 1, 3	7
4	0, 1, 3, 4	6
5	0, 1, 3, 5	6
6	0, 1, 3, 6	7
7	0, 1, 7	1

variable	Def
а	0, 1, 3, 7
b	0, 2, 6, 7, 1
С	0, 1, 2, 5, 7, 6
d	2, 3, 4
i	

Variable Renaming (1/3)

- Constructing the dominator tree
 - -The parent of a basic block is its immediate dominator
- For each variable, maintain the following data structures
 - -A counter for creating new names
 - A stack to keep track of currently available names for this variable
 - The top of the stack is the name defined in its nearest dominators

Variable Renaming (2/3)

- Process each basic block in preorder of the dominator tree
 - Rewrite each instruction (including the Phi nodes) in forward order
 - For each use, replace the name with the latest name at the top of the stack
 - For each def, generate a new name
 - New name = original name + counter
 - Increment the counter by 1
 - Push the new name into the stack
 - Propagate the new names to the Phi nodes of its successors
 - -Recursively process its children
 - Pop names generated in this basic block from the stack

Variable Renaming (2/3)

- Why preorder traversal
 - If a variable has two definitions in different paths
 - A Phi node would be inserted
 - The two names for the definitions would be propagated from its predecessors
 - If a variable is defined only in the dominators
 - The top of the stack is the name of the latest definition

var: a			d	i
ctr: 0			0	0
stk: a0	b 0	c 0	d 0	i0

var: a	b	c	d	i
ctr: 1	1	1	1	1
stk: a0	b 0	c 0	d 0	i0

var: a b c d i ctr: 3 2 3 2 2 stk: a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 a2 c2

1

2

d b var: a С 1 4 3 ctr: 4 4 2 stk: a0 b0 c0 d0 i0 bl cl dl il **a**1 c2 d3 a2 a3

Thanks & all the best!