
SKETCH: An Interface for Sketching 3D Scenes

Robert C. Zeleznik
Kenneth P. Herndon John F. Hughes

fbcz,kph,jfhg@cs.brown.edu

Brown University site of
the NSF Science and Technology Center

for Computer Graphics and Scientific Visualization
PO Box 1910, Providence, RI 02912

Abstract
Sketching communicates ideas rapidly through approximate visual
images with low overhead (pencil and paper), no need for precision
or specialized knowledge, and ease of low-level correction and
revision. In contrast, most 3D computer modeling systems are
good at generating arbitrary views of precise 3D models and support
high-level editing and revision. The SKETCH application described
in this paper attempts to combine the advantages of each in order
to create an environment forrapidly conceptualizing and editing
approximate3D scenes. To achieve this, SKETCH uses simple
non-photorealistic rendering and a purely gestural interface based
on simplified line drawings of primitives that allows all operations
to be specifiedwithin the 3D world.

Keywords: Interaction Techniques, 3D Modeling, Gestural Inter-
face, Direct Manipulation, Sketching, Nonphotorealistic Rendering

CR Categories: I.3.8. [Computer Graphics]: Applications; I.3.6.
[Computer Graphics]: Methodology and Techniques — Interaction
Techniques

1 Introduction
SKETCH targets the exploration and communication of 3D geo-
metric ideas. Traditionally, people have attacked conceptual design
with paper and pencil, not with computers, even though computer
models offer numerous advantages. The reasons for this include
the low overhead of a single-tool interface (pencil), the lack of spe-
cial knowledge needed to draw, the ease with which many kinds of
changes can be made, and the fact that precision is not required to
express an idea. Consider Ann sketching a table with an oval top
for Joe. Joe gets an immediate sense of the object, without Ann
having to indicate the precise locations of the legs, nor the exact
shape of the top. By scribbling over what she has sketched,Ann can
make the top round or square or freeform without affecting Joe’s
perception that the legs are attached to the top. (Imagine doing this
in a typical CAD or drawing program.) Nevertheless, pencil and
paper are still imperfect. After many changes, the paper can become
cluttered. Drastic alterations such as showing the model from dif-
ferent viewpoints require new drawings, and collections of drawn
objects cannot be transformed as a unit. While computer models do
not have these disadvantages, they are typically considerably more
difficult to create.

SKETCH is designed to bridge the gap between hand sketches
and computer-based modeling programs, combining some of the
features of pencil-and-paper sketching and some of the features
of CAD systems to provide a lightweight, gesture-based interface
to “approximate” 3D polyhedral modeling. Conceptually, our ap-
proach is very similar to Landay and Myers’ use of sketching to
support the early stages of conventional 2D interface design [16].
SKETCH uses a gestural mode of input in which all operations are
available directly in the 3D scenethrough a three-button mouse. The
user sketchesthe salient features of any of a variety of 3D primitives
and, following four simple placement rules, SKETCH instantiates
the corresponding 3D primitive in the 3D scene. SKETCH allows
both geometry and the camera to be gesturally manipulated, and
uses an automatic grouping mechanism, similar to that described
by Bukowski and Sequin [6], to make it easier to transform aggre-
gates of geometry. Since the set of geometric primitives is more
restricted than those in most CAD systems, the userapproximates
complex shapes with aggregates of simpler primitives. Since we
know these conceptual models are approximations (often to only
partially formed mental images) SKETCH renders them withnon-
photorealisticrendering techniques designed to help viewers see
what they want to see.

We also imagine that SKETCH might be used as part of a story-
boarding system, for generating a series of scenesand camera views
in planning a 3D animation.

The accompanying videotape1 shows the features of SKETCH
and indicates the utility of its simple approach in creating and editing
3D models.

2 Related work
A variety of efforts have been made to simplify the process of
generating 3D models, including the “idea sketching” described by
Akeo et al. [1]. Akeo allows users to scan real sketches into the
computer where they are “marked-up” with perspective vanishing
lines and 3D cross sections. The scanneddata is then projected onto
the 3D mark-up to complete the process.

Nearly all CAD applications employ some form of 2D sketching,
although sketching is rarely used in 3D views. A notable exception
is Artifice’s Design Workshop [2], which allows cubes, walls, and
constructive solid geometry (CSG) operations to be constructed
directly in the 3D view. However, the overall style of interaction is
still menu-oriented and the set of primitives is small.

The considerable work done in the area of drawing interpretation,
surveyed by Wang and Grinstein [28], focuses solely on interpreting
an entire line drawing at once. In contrast, we attempt to provide
a complete interface for progressively conceptualizing 3D scenes
using aspects of drawing interpretation to recognize primitives from

1The videotape can be obtained upon request from the authors.



a gesture stream. Viking [20] uses a constraint based approach to
derive 3D geometry from 2D sketches. In Viking, the user draws
line segments, and the system automatically generates a number of
constraints which then must be satisfied in order to re-create a 3D
shape. The difficulty with these approaches is that even though they
are generally restricted to polygonal objects, they are often slow and
difficult to implement. In addition, they are often intolerant of noisy
input and may either be unable to find a reasonable 3D solution, or
may find an unexpectedsolution. Branco et al. [5] combine drawing
interpretation with more traditional 3D modeling tools, like CSG
operators in order to simplify the interpretation process; however,
their system is limited by a menu-oriented interaction style and does
not consider constructing and editing full 3D scenes.

Deering [10], Sachs et al. [22], Galyean and Hughes [11], and
Butterworth et al. [7] take a very different approach to constructing
3D models that requires 3D input devicesas the primary input mech-
anism. A variety of systems have incorporated gesture recognition
into their user interfaces, including Rubine [21], who uses gesture
recognition in a 2D drawing program, but we know of no systems
that have extended the use of gesture recognition for 3D modeling.

We also use a variety of direct-manipulation interaction tech-
niques for transforming 3D objects that are related to the work of
Snibbe et al. [25], and Strauss and Cary [27]. In addition, we also ex-
ploit some very simple flexible constrained manipulation techniques
that are similar to those described by Bukowski and Sequin [6]. The
latter automatically generates motion constraints for an object di-
rectly from that object’s semantics. Therefore, for example, when
a picture frame is dragged around a room, the frame’s back always
remains flush with some wall in the room to avoid unnatural situa-
tions in which the picture frame might float in mid-air. Also, when
a table is manipulated, all of the objects that are on top of the table
are automatically moved as well.

In our system, since we have less semantic information than
Bukowski, we have less opportunity to automatically generate ap-
propriate constraints, and therefore we occasionally require the user
to explicitly sketch constraints in addition to geometry. Our con-
straint techniques are fast, flexible and almost trivial to implement,
but they are not as powerful as the constrained manipulation de-
scribed by Gleicher [12] or Sistare [24]. Although Gleicher exploits
the fact that constraints always start off satisfied, thereby reducing
constraint satisfaction to constraint maintenance, he still must solve
systems of equations during each manipulation which are often slow
and subject to numerical instability. Other approaches like Bier’s
snap-dragging [4] are also related to our constrained manipulation,
although we never present the user with a set of constraint choices
from which to select.

Lansdown and Schofield [17] and Salisbury et al. [23] provide
interesting techniques for non-photorealistic rendering, although
none of these systems specifically targets interactive rendering.

3 The interface
All interaction with SKETCH is via a three-button mouse2 with oc-
casionaluse of one modifier key on the keyboard, and a single ortho-
graphic window onto the 3D scene. The mouse is used to generate
gestures rather than to select operations from menus. Choosing an
operation like object creation, transformation or grouping is seam-
lessly integrated with the natural expression of intent. SKETCH
infers intended tools by recognizing gestures — sequences of two
types of gestural elements — in its input stream.

Strokes, the first type of gestural element, are pixel-tracks on the
film plane3, made with the first mouse button. There are five classes

2We think that a tablet/pen and an active LCD screen implemen-
tation might be even better. See Section 6.

3A plane perpendicular to the view direction and close enough
to the eyepoint not to interfere with the objects in the scene.

of strokes shown in Table 1.
Each axis-aligned stroke is aligned with the projection of one

the three principal axes of the world. We have also tried aligning
strokes with the three principal axes of the surface over which
the gesture is drawn. In general, this latter approach seems more
effective, although it also presents some difficulties, especially for
curved surfaces and for gestures which span over different surfaces.
Since we have not yet adequately handled these concerns in our
implementation, we will assume for the rest of the paper that all
lines are aligned with the world’s principal axes except those that
are drawn with the “tearing” or freehand strokes.

mouse action stroke
click and release dot
click and drag with-
out delaying

axis-aligned line: line follows axis
whose screen projection is most nearly
parallel to dragged-out segment

click and drag, then
“tearing” motion to
“rip” line from axis

non-axis-aligned line

click, pause, draw freehand curve
click with Shift key
pressed, draw

freehand curve drawn onsurfaceof ob-
jects in scene

Table 1: The five stroke classes.

Interactors, the second type of gestural element, are made with
the second mouse button. The two classes of interactors, a “click
and drag” and a “click,” have no visual representation.

In addition to gestural elements, SKETCH supports direct-
manipulation of camera parameters with the third mouse button, as
outlined in Table 2. Third-button manipulations are not discussed
further in this paper.

mouse action camera manipulation
click and drag pan: point on film plane beneath mouse

remains beneath mouse
click, pause, drag zoom/vertical pan: dragging horizon-

tally zoom in/out towards clicked-on
point, dragging vertically pan up/down

click near window
boundary, drag

rotate: performs continuous XY con-
troller rotation about center of screen [8]

click on object “focus” : camera moves so that object is
in center of view [18]

shift-click change rendering: cycles through avail-
able rendering styles (see Section 5)

Table 2: Gestures for camera manipulation.

4 The implementation
SKETCH processes sequences ofstrokesand interactorsto per-
form various modeling functions with a finite-state machine. The
mapping between gestural input and modeling functions is easy to
remember and gives the user a clear and direct correspondence.
However, one of the principal difficulties in developing agood
gesture-based interface is managing the delicate tradeoff among
gestures that are natural, gestures that are effective, and gestures that
are effective within a system that may already use similar gestures
for other functions. For superior gestures to evolve, this tradeoff
should continue to be explored especially with user studies.

4.1 Creating geometry
We believe gestures can be a natural interface for the fundamentally
visual task of creating 3D geometry. The difficulty is choosing
the “right” gesture for each geometric primitive. In SKETCH, we
define “primary” gestures for instantiating primitives as sequences



of strokes that correspond to important visual features — generally
edges — in partial drawings of the primitives. (see Figure 2 for
an overview of all such gestures.) For instance, a drawing of three
non-collinear line segments which meet at a point imply a corner,
based on our visual understanding of drawings [19]; consequently,
we interpret similar gestures composed of three line strokes as a
cuboid construction operation.

We also provide alternate construction gestures using non-edge
strokes. For example, an object of revolution is sketched via its
profile and axis, and cuboids can be created by sketching a single
edge and two “dimensioning segments” (perpendicular to the edge)
that meet at a vertex lying anywhere along this edge. These alter-
native gestures take their structure from the notions of generative
modeling [26].

SKETCH’s other primitives — cones, cylinders, spheres, objects
of revolution, prisms, extrusions, ducts and superquadrics — have
their own gestures. For most, SKETCH forces some aspect of the
shapes to be axis-aligned, so that the gestures are easier to both
draw and recognize. For example, to create a duct, the user strokes
a closed freehand curve for its cross section, and another freehand
curve for its path of extrusion. However, an arbitrary 3D curve is
not uniquely determined by a single 2D projection, so SKETCH’s
ducts must have extrusion paths that lie on an axis-aligned plane,
specified by a third gesture — an axis-aligned line stroke normal to
the plane on which the path of extrusion should be projected.

The small number of primitive objects sometimes requires the
user to build up geometry from simpler pieces, and precludes some
complex objects — freeform surfaces and true 3D ducts, for example
— from being made at all. But in exchange for this, we believe that
our small set of primitives minimizes cognitive load on the user and
makes gesture recognition and disambiguation easier. Future work,
including user studies, should explore this tradeoff.

4.2 Placing geometry
Object creation requiresplacementof the object in the scene. We
base object placement on four rules: first, geometry is placed so that
its salient features project onto their corresponding gesture strokes in
the film plane; second,new objects are instantiated in contact with an
existing object when possible; third, certain invariants of junctions
in line drawings [9] that indicate the placement or dimension of
geometry are exploited; and fourth, CSG subtraction is inferred
automatically from the direction of gesture strokes (Figure 2).

These easy-to-understand rules often generate good placement
choices; when they do not, users can edit the results. Furthermore,
the few users that the system has had so far have rapidly learned
to use the simple rules to their advantage, “tricking” the algorithm
into doing what they want. (This may be a consequence of their
programming background.)

Figure 1: A series of strokes is drawn in the film plane in red
(left). The salient vertex is projected into the scene thus defining
the placementof new geometry (green). Though this figure suggests
a perspective camera, we use a parallel projection in our application.

The first rule determines object placement except for translation
along the view direction. This ambiguity is generally resolved by
the second rule, implemented as follows: each gesture has a “most

salient” vertex (the trivalent vertex for a cuboid, for example, or the
first vertex of the two parallel strokes that indicate a cylinder); a
ray is traced through this vertex to hit a surface at some point in the
scene. The object is then instantiated so that the salient vertex is
placed at the intersected surface point (Figure 1).4

The third placement rule exploits invariants of vertex junctions
in line drawings, as described by Clowes [9]. However, our use of T
junctions is related to the treatment given by Lamb and Bandopad-
hay [15]. In particular, T-shaped junctions arise in line drawings
when a line indicating the edge of one surface,Estem, ends some-
where along a line segment indicating the edge of another surface,
Ebar. These junctions generally signify that the surface associated
with Estemis occluded by the surface associated withEbar, al-
though it does not necessarily indicate that the two surfaces meet.
In SKETCH, a similar notion exists when a straight line segment
(except for connected polyline segments) of a gesture ends along
an edge of an object already in the scene (Figure 3). To uphold the
intuition that such T junctions indicate the occlusion of one surface
by another, SKETCH first places the gesture line into the 3D scene
according to the previous two placement rules. Then, SKETCH
sends a ray out along the gesture line (toward the T junction). If this
ray intersects the object that defined the bar of the T junction and
the normal at the point of intersection is pointed in approximately
the opposite direction of the ray, then the gesture edge is extended
so that it will meet that surface.

If the ray does not intersect the surface, then the object defined by
the surface is translated along the viewing vector toward the viewer
until its edge exactly meets the end of the gesture edge. If the end
of the gesture edge is never met (because it was farther away from
the viewer), then neither the gesture, nor the existing objects are
modified. We never translate objects away from the viewer as a
result of T junctions; tests of this behavior on a variety of users
indicated that it was both unintuitive and undesirable.

The final rule determines whether the new geometry should be
CSG-subtracted from the scene when added to it. If one or more
of the gesture strokes are drawninto an existing surface (i.e., the
dot product of a stroke and the normal to the existing surface on
which it is drawn is negative), then the new piece of geometry is
placed in the scene and subtracted from the existing object (Figure
2). CSG subtraction is recomputed each time the new geometry is
manipulated. If the new geometry is moved out of the surface from
which it was subtracted, CSG subtraction is no longer recomputed.
This makes possible such constructions as the desk drawer in the
Editing-Grouping-Copying section of the videotape.

4.3 Editing
SKETCH supports multiple techniques for editing geometry. Some
exploit paper and pencil editing techniques by recognizing editing
gestures composed of strokes (e.g.,oversketching and drawing shad-
ows). Others use gestures that contain an interactor to transform
shapes as a whole by translation or rotation.

Resizing. A common way to “resize” a surface with pencil and
paper is to sketch back and forth over its bounding lines until they
are of the right size. SKETCH recognizes a similar “oversketching”
gesture to reshape objects. If two approximately coincident lines
are drawn in opposite directions nearly parallel to an existing edge,
SKETCH infers a resizing operation (Figure 2). This sketching
operation works for all primitives constructed of straight line seg-
ments, including cubes, cylinders and extrusions. Additionally, the
two endpoints of an extrusion path can be attached to two objects

4If the ray intersects no surface (possible because we use a finite
ground rectangle instead of an infinite ground plane), the object is
placed in the plane perpendicular to the view direction that passes
through the origin; this turns out in practice to be a reasonable
compromise.



in the scene; whenever either object moves, the extrusion will re-
size to maintain the span. However, general reshaping of objects
defined by freehand curves is more difficult and not yet fully imple-
mented. We are currently adapting Baudel’s mark-based interaction
paradigm [3] for use in reshaping 3D objects.

Sketching shadows.Shadows are an important cue for determin-
ing the depth of an object in a scene [29]. In SKETCH, we exploit
this relationship by allowing users to edit an object’s position by
drawing its shadow. The gesture for this is first to stroke a dot over
an object, and then to stroke its approximate shadow — a set of
impressionistic line strokes — on another surface using the Shift
modifier key.5 The dot indicates which object is being shadowed,
and the displacement of the shadow from the object determines the
new position for the object (as if there were a directional light source
directed opposite to the normal of the surface on which the shadow
is drawn). The resulting shadow is also “interactive” and can be
manipulated as described by Herndon et al. [13].

Transforming. Objects can be transformed as a unit by using
a “click-and-drag” interactor (with the second mouse button): the
click determines the object to manipulate, and the drag determines
the amount and direction of the manipulation. By default, objects
are constrained to translate, while following the cursor, along the
locally planar surface on which they were created. However, this
motion can be further constrained or can be converted to a rotational
motion.

It is important to keep in mind that our interaction constraints are
all very simple. In SKETCH, instead of using a constraint solver
capable of handling a wide variety of constraints, we associate
an interaction handler with each geometric object. This handler
contains constraint information including which plane or axis an
object is constrained to translate along, or which axis an object
is constrained to rotate about. Then when the user manipulates
an object, all of the mouse motion data is channeled through that
object’s handler which converts the 2D mouse data into constrained
3D transformations. To define which of our simple constraints is
active, we require that the user explicitly specify the constraint with
a gesture. Whenever a new constraint is specified for an object it
will persist until another constraint is specified for that object. Each
new constraint for an object overwrites any previous constraint on
the object.

The advantages of such a simple constraint system are that it is
robust, fast, and easy to understand. A more sophisticated constraint
engine would allow a greater variety of constrained manipulation,
but it would also require that the user be aware of which constraints
were active and how each constraint worked. It would also re-
quire additional gestures so that the user could specify these other
constraints.

Systems such as Kurlander and Feiner’s [14] attempt to infer con-
straints from multiple drawings, but this approach has the drawback
that multiple valid configurations of the system need to be made
in order to define a constraint. Such approaches may also infer
constraints that the user never intended, or may be too limited to be
able to infer constraints that a user wants.

Constrained transformation. The gestures for constraining
object transformations to single-axis translation or rotation, or to
plane-aligned translation are composed of a series of strokes that
define the constraint, followed by a “click-and-drag” interactor to
perform the actual manipulation (Figure 2). To constrain the motion
of an object to an axis-aligned axis, the user first strokes a con-
straint axis, then translates the object with an interactor by clicking
and dragging parallel to the constraint axis. The constraint axis is
stroked just as if a new piece of geometry were being constructed;

5Recall from Table 1 that Shift-modified strokes normally
produce lines drawn on the surface of objects without special
interpretation.

however, since this stroke is followed by an interactor, a translation
gesture is recognized and no geometry is created. Similarly, if the
user drags perpendicular to the constraint axis instead of parallel to
it, the gesture is interpreted as a single axis rotation. (This gesture
roughly corresponds to the motion one would use in the real world
to rotate an object about an axis.)

To translate in one of the three axis-aligned planes, two perpen-
dicular lines must be stroked on an object. The directions of these
two lines determine the plane in which the object is constrained to
translate. If the two perpendicular lines are drawn over a different
object from the one manipulated, they are interpreted as acontact
constraint (although non-intuitive, this gesture is effective in prac-
tice). This forces the manipulated object to move so that it is always
in contact withsomesurface in the scene (but not necessarily the
object over which the gesture was drawn) while tracking the cursor.
Finally, a dot stroke drawn on an object before using an interactor is
interpreted as the viewing vector; the object will be constrained to
translate along this vector. This constraint is particularly useful for
fine-tuning the placement of an object if SKETCH has placed it at
the “wrong” depth; however, since we use an orthographic view that
does not automatically generate shadows, feedback for this motion
is limited to seeing the object penetrate other objects in the scene.
We believe that a rendering mode in which shadows were automat-
ically generated for all objects would be beneficial, although we
have not implemented such a mode because of the expected com-
putational overhead. We did, however, mock up a rendering mode
in which just the manipulated object automatically cast its shadow
on the rest of the scene. People in our group generally found the
shadow helpful, but were slightly disturbed that none of the other
objects cast shadows.

In each case, the manipulation constraint, once established, is
maintained during subsequent interactions until a new constraint is
drawn for that object. The only exception is that single axis rotation
and single axis translation constraints can both be active at the same
time; depending on how the user gestures — either mostly parallel
to the translation axis or mostly perpendicular to the rotation axis
— a translation or rotation operation, respectively, is chosen.

Finally, objects are removed from the scene by clicking on them
with an interactor gesture. In early versions of SKETCH we used an
apparently more natural gesture to remove objects: the user “tossed”
them away by translating them with a quick throwing motion, as
one might brush crumbs from a table. We found, however, that this
gesture presented a complication: it was too easy to toss out the
wrong object, especially if its screen size were small.

4.4 Grouping and copying
By default, objects are automatically unidirectionally grouped with
the surface on which they were created, an idea borrowed from
Bukowskiand Sequin [6], generally resulting in hierarchical scenes.
Each geometric object in SKETCH contains a list of objects that
are grouped to it. Whenever an object is transformed, that object
will also apply the same transformation to all other objects that are
grouped to it; each grouped object will in turn transform all objects
grouped to itself. Cycles can occur and are handled by allowing
each object to move only once for each mouse motion event.

This kind of hierarchical scene is generally easier to manipulate
than a scene without groupings since the grouping behavior typi-
cally corresponds to both expected and useful relationships among
objects. For example, objects drawn on top of a table move when-
ever the table is manipulated, but when the objects are manipulated,
the table does not follow. Grouping also applies to non-vertical
relationships, so a picture frame drawn on a wall is grouped with
the wall.

In some cases, grouping is bidirectional. The choice of bi-
directional and uni-directional grouping is guided by what we be-



lieve is an inherent difference in the way people interpret relation-
ships between certain horizontal versus vertical drawing elements.
When an object is drawn that extends horizontally between two
surfaces, like a rung on a ladder, the two surfaces that are spanned
are grouped bidirectionally, so that if one rail of the ladder moves
so does the other. Although the rung moves whenever either rail is
manipulated, the rails do not move when the rung is manipulated.
The grouping relationship for objects that span vertically, however,
establishes only one-way relationships: the topmost object is uni-
directionally grouped to the bottommost object and the spanning
object is similarly grouped to the topmost object. Thus, a table
leg that spans between a floor and a table top causes the top to be
grouped to the floor and the leg to be grouped to the top, but the floor
is not grouped to the top. We only exploit the difference between
horizontal and vertical elements to distinguish these two grouping
relationships. However we believe it is important to study with user
tests how effective this automatic grouping approachactually is, and
perhaps to determine as well if there are other ways that we might
be able to exploit the differences between vertical and horizontal
elements.

Unlike Bukowski, object grouping is not automatically recom-
puted as objects are moved around the scene. Therefore, if an object
is moved away from a surface, it will still be grouped with the sur-
face. Grouping relationships are recomputed only when objects
are moved using the contact constraint mentioned in Section 4.3
— the moved object is grouped to the surface it now contacts and
ungrouped from any surface it no longer contacts. We have found
this approach to automatic grouping to be simple and effective, al-
though in some environments, Bukowski’s approach may be more
appropriate.

Lassoing groups. SKETCH also allows the user to explicitly
establish groups by stroking alassoaround them (Figure 2).6 De-
ciding which objects are consideredinsidethe lasso is based on the
heuristic that the geometric center and all of the visible corners of
the object must be inside the lasso; shapes like spheres must be com-
pletely contained in the lasso. SKETCH currently approximates this
heuristic by first projecting an object’s geometric center and all of
its crease vertices (where there is a discontinuity in the derivative of
the surface) and silhouette vertices into the film plane, then testing
whether all these projected points are contained within the lasso.
Currently, no test is made for whether objects are occluded or not;
future work should address the ambiguities that arise in using the
lasso operation.

All lassoed objects are copied if they are manipulated while the
Shift modifier is used. Lassoed objects can be scaled by dragging
the lasso itself.

Repeating gestures.A different form of copying is used when
a user wants to repeat the last geometry-creation operation. After
SKETCH recognizes gesture strokes corresponding to a geometric
construction, it creates and places the new geometry in the scene,
but does not erasethe gesture strokes. Thus, the user can click on
any of these strokes (using button 1) in order to “drag and drop”
(re-execute) them elsewhere. Gesture strokes are erased when a
new gesture is started or when any object is manipulated. These
techniques are shown in the videotape.

5 Rendering

SKETCH renders orthographic views of 3D scenes using a con-
ventionalz-buffer. Color Plates I-VI show some of the rendering
techniques that SKETCH supports.

6The lasso gesture is similar to the sphere gesture. We differen-
tiate between them by requiring that the sphere gesture be followed
by a dot stroke, whereas the lasso is simply a free-hand closed curve
stroke followed by a manipulation gesture.

“Sketchy” rendering styles are essential because they often enable
users to focus on the essence of a problem rather than unimportant
details. Non-photorealistic rendering draws a user’s attention away
from imperfections in theapproximatescenes she creates while
also increasing the scene’s apparent complexity and ambiguity. By
making scenes more ambiguous, users can get beyond SKETCH’s
approximate polygonal models to see what they want to see. This is
an important concept: we do not believe that sketchyrendering adds
noise to a signal; rather we believe that it conveys the very wide
tolerance in the user’s initial estimates of shape. The user is saying
“I want a boxabout this long byabout that high andabout that
deep.” Showing a picture of a box withexactlythose dimensions
is misleading, because it hides the important information that the
dimensions are not yet completely determined.

A line drawing effect is achieved by rendering all polygonal ob-
jects completely white, and then rendering the outlines and promi-
nent edges of the scene geometry with multiple deliberately jittered
lines; thez-buffer therefore handles hidden-line removal. A char-
coal effect is created by mapping colors to grayscale and increasing
the ambient light in the scene; a watercolor effect that washes out
colors is created by increasing the scene’s ambient light. There are a
number of other techniques that we would like to explore, including
pen and ink style textures, and drawing hidden edges with dashed
lines.

Objects are assigned a default random color when they are created
to help differentiate them from the scenery. We can also copy colors
from one object to another. By just placing the cursor on top of
one object and pressing the Shift modifier, we can “pick up” that
object’s color. Then, we can “drop” this color on another object
by placing the cursor over it and releasing the modifier. We can
also explicitly specify colors or textures for objects. In our present
implementation, we do this by placing the cursor over the object
and typing the name of the color or texture. Although this interface
requires the keyboard, it is consistent with SKETCH’s interface
philosophy of not making users search through a 2D interface for
tools to create particular effects. In the future, we expect that voice
recognition, perhaps in conjunction with gesturing, will be a more
effective way to establish surface properties for objects (and perhaps
other operations as well).

6 Future Work
We regard SKETCH as a proof-of-concept application, but it has
many flaws. Many of the gestures were based on an ad hoc trial
and error approach, and some of the gestures still do not satisfy
us. For example, the pause in the freehand curve gesture rapidly
becomes annoying in practice — the user wants to do something,
and is forced to wait. Possible solutions of course include using
more modifier keys, although we would rather find a solution that
preserves the simplicity of the interface.

SKETCH is based on an interface that is stretched to its limits.
We expect that adding just a few more gestures will make the system
hard to learn and hard to use. We’d like to perform user studies on
ease of use, ease of learning, and expressive power for novice users
as a function of the number of gestures. We’re also interested in try-
ing to determine to what extent artistic and spatial abilities influence
users’ preference for sketching over other modeling interfaces.

We have begun to implement a tablet-based version of SKETCH.
The current generation of tablet pens include pressure sensitivity
in addition to a single finger-controlled button, and one "eraser-
like" button. In order to develop an equivalent interface for the
tablet, we simply need to treat a specific pressure level as a button
click to achieve the equivalent of three buttons. Therefore, the
button 1 drawing interactions described for the mouse are done by
simply pressing hard enough with the penpoint of the tablet pen.
To achieve the button 2 operations of the mouse, the user simply



presses the finger controlled button on the tablet pen. Finally,
to effect camera motion, the user turns the pen over and uses its
"eraser" to manipulate the camera. Our initial efforts with a tablet
based interface lead us to believe that a tablet based system could be
far more effective than a mouse based system, especially if pressure
sensitivity is cleverly exploited.

SKETCH is a tool for initial design — the “doodling” stage,
where things are deliberately imprecise. But initial design work
should not be cast away, and we are examining ways to export
models from SKETCH to modelers that support more precise edit-
ing, so that the sketch can be moved towards a final design. Since
subsequent analysis and design often requires re-thinking of some
initial choices, we are also interested in the far more difficult task
of re-importing refined models into SKETCH and then re-editing
them, without losing the high-precision information in the models
except in the newly-sketched areas.

The scenes shown here and in the video are relatively simple.
Will sketching still work in a complex or cluttered environments?
We do not yet have enough experience to know. Perhaps gestures
to indicate an “area of interest,” which cause the remainder of the
scene to become muted and un-touchable might help.

The tradeoffs in gesture design described in Section 4 must be
further explored, especially with user-studies.

7 Acknowledgments
Thanks to Dan Robbins, Tim Miller, and Lee Markosian for many
helpful discussions. Thanks also to Andries van Dam and the Graph-
ics Group, as well as our sponsors: grants from NASA, NSF, Mi-
crosoft, Sun and Taco; hardware from SGI, HP and Sun.

References
[1] M. Akeo, H. Hashimoto, T. Kobayashi, and T. Shibusawa.

Computer graphics system for reproducing three-dimensional
shape from idea sketch.Eurographics ’94 Proceedings,
13(3):477–488, 1994.

[2] Artifice, Inc. Design Workshop. Macintosh application.

[3] T. Baudel. A mark-based interaction paradigm for free-hand
drawing.UIST ’94 Proceedings, pages 185–192, Nov. 1994.

[4] E.A. Bier. Snap-dragging in three dimensions.Computer
Graphics (1990 Symposium on Interactive 3D Graphics),
24(2):193–204, Mar. 1990.

[5] V. Branco, A. Costa, and F.N. Ferriera. Sketching 3D models
with 2D interaction devices.Eurographics ’94 Proceedings,
13(3):489–502, 1994.

[6] R. Bukowski and C. S´equin. Object associations: A sim-
ple and practical approach to virtual 3D manipulation.Com-
puter Graphics (1995 Symposium on Interactive 3D Graph-
ics), pages 131–138, Apr. 1995.

[7] J. Butterworth, A. Davidson, S. Hench, and T.M. Olano.
3DM: A three dimensional modeler using a head-mounted
display.Computer Graphics (1992 Symposium on Interactive
3D Graphics), 25(2):135–138, Mar. 1992.

[8] M. Chen, S. Joy Mountford, and Abigail Sellen. A study in
interactive 3-D rotation using 2-D control devices.Computer
Graphics (SIGGRAPH ’88 Proceedings), 22(4):121–129, Au-
gust 1988.

[9] M. Clowes. On seeing things.Artificial Intelligence, (2):79–
116, 1971. North-Holland.

[10] M. Deering. Holosketch: A virtual reality sketch-
ing/animation tool.ACM Transactions on Computer-Human
Interaction, 2(3):220–238, 1995.

[11] T. Galyean and J. Hughes. Sculpting: An interactive volumet-
ric modeling technique.Computer Graphics (SIGGRAPH ’91
Proceedings), 25(4):267–274, July 1991.

[12] M. Gleicher. Integrating constraints and direct manipula-
tion. Computer Graphics (1992 Symposium on Interactive
3D Graphics), 25(2):171–174, March 1992.

[13] K.P. Herndon, R.C. Zeleznik, D.C. Robbins, D.B. Conner,
S.S. Snibbe, and A.van Dam. Interactive shadows.UIST ’92
Proceedings, pages 1–6, Nov. 1992.

[14] D. Kurlander and S. Feiner. Inferring constraints from multiple
snapshots.ACM Transactions on Graphics, 12(4):277–304,
Oct. 1993.

[15] D. Lamb and A. Bandopadhay. Interpreting a 3D object from a
rough 2D line drawing.Visualization ’90 Proceedings, pages
59–66, 1990.

[16] J.A. Landay and B.A. Myers. Interactive sketching for the
early stages of user interface design.Proceedings of CHI’95,
pages 43–50, 1995.

[17] J. Lansdown and S. Schofield. Expressive rendering: A review
of nonphotorealistic techniques.IEEE Computer Graphics &
Applications, pages 29–37, May 1995.

[18] J.D. Mackinlay, S.K. Card, and G.G. Robertson. Rapid con-
trolled movement through a virtual 3d workspace. InProceed-
ings of the 1986 Workshop on Interactive 3D Graphics, pages
171–176, October 1986.

[19] G. Magnan. Using technical art: An industry guide. John
Wiley and Sons, Inc., 1970.

[20] D. Pugh. Designing solid objects using interactive sketch
interpretation.Computer Graphics (1992 Symposium on In-
teractive 3D Graphics), 25(2):117–126, Mar. 1992.

[21] D. Rubine. Specifying gestures by example.Computer Graph-
ics (SIGGRAPH ’91 Proceedings),25(4):329–337, July 1991.

[22] E. Sachs, A. Roberts, and D. Stoops. 3-draw: A tool for de-
signing 3D shapes.IEEE Computer Graphics & Applications,
pages 18–25, Nov. 1991.

[23] M. Salisbury, S. Anderson, R. Barzel, and D. Salesin. In-
teractive pen–and–inkillustration. Computer Graphics (SIG-
GRAPH ’94 Proceedings), pages 101–108, July 1994.

[24] S. Sistare. Graphical interaction techniques in constraint-
based geometric modeling.Proceedingsof Graphics Interface
’91, pages 85–92, June 1991.

[25] S.S. Snibbe, K.P. Herndon, D.C. Robbins, D.B. Conner, and
A. van Dam. Using deformations to explore 3D widget de-
sign. Computer Graphics (SIGGRAPH ’92 Proceedings),
26(2):351–352, July 1992.

[26] J.M. Snyder and J.T. Kajiya. Generative modeling: A sym-
bolic system for geometric modeling.Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):369–378, July 1992.

[27] P. Strauss and R. Carey. An object-oriented 3D graphics
toolkit. Computer Graphics (SIGGRAPH ’92 Proceedings),
26(2):341–349, July 1992.

[28] W. Wang and G. Grinstein. A survey of 3D solid reconstruction
from 2D projection line drawings.Computer Graphics Forum,
12(2):137–158, June 1993.

[29] L.R. Wanger, J.A. Ferwerda, and D.P. Greenberg. Perceiv-
ing spatial relationships in computer-generated images.IEEE
Computer Graphics and Applications, 12(3):44–58, May
1992.


