Name:

EECS 570 Final Exam
Winter 2024

unique name:

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points

/20

/30

/30

AN |-

/20

Total /100

NOTES:

Closed book. One 8.5” x 11” page of notes is allowed.

Calculators are allowed

Don’t spend too much time on any one problem.

You have about 120 minutes for the exam (avg. 30 minutes per problem).

There are 10 pages in the exam (including this one), Please ensure you have all pages.

Be sure to show work and explain what you’ve done when asked to do so.

1/10

1. Short Answers [20 points]

a.

A memory system is coherent if there is a total order on all __stores____ to any given
address.

This isn’t enough for consistency. Sequential Consistency (SC) assumes there is a total

order among _all operations to all addresses

Sun’s “Relaxed Memory Order” (RMO) allows unordered, coalescing post-retirement
store buffers, but the compiler cannot reorder loads between stores.

Q True ’ False

Sequential Consistency (SC) makes nearly all compiler optimizations illegal, but (in
c/c++ programming model) operations within an expression may be reordered.

‘ True Q False

Order the following four network domains in terms of their latency requirements:
low latency ================> High latency

LANs(Local Area Network)
WAN(Wide Area Networks)

SANs(Storage Area Networks)

®@ O OO
O @ O O

OCNs/NoCs(Network on Chip)

2/10

2. Murphi for MSI [30 points]

Answer the questions on the following page about verifying the MSI protocol using

Murphi. You should make the same assumptions as PA2, listed here:

1.

It uses an interconnect network that supports only point-to-point communication. All
communication is done by sending and receiving messages. The interconnect network
may reorder messages arbitrarily. It may delay messages, but it will always deliver
messages eventually. Messages are never lost, corrupted or replicated. Message
delivery cannot be assumed to be in the same order as they were sent, even for the
same sender and receiver pair.

At the receiving side of the interconnect system, messages are delivered to a receive
port. Once a message has been delivered to the receive port, it will block all subsequent
messages to this port until the message is read. Consider this behavior equivalent to
that of a mailbox with room for only one letter: you have to remove the letter from the
mailbox before you can receive the next one. On the sending side, there is no such
restriction: you can always send messages. The interconnect system has enough buffer
space to queue messages.

For the purpose of this assignment, you may assume that there is no limit on the buffer
space in the interconnect system. However, your protocol will be considered broken if
there is a way to generate an infinite number of undelivered messages. Besides, you will
not be able to verify your protocol in this case.

You may assume that the interconnect network supports multiple lanes. For each lane,
you have a separate set of send- and receive-ports for each unit. Traffic on one lane is
independent of traffic in the other lanes. Messages will never switch lanes. Note that
using fewer lanes is better.

Each processor has a dedicated cache that is not shared with any other processor.
All caches must be kept coherent by your cache coherency protocol. Processors may
issue load and store operations only. Because this assignment only deals with cache
coherency and not with consistency issues, you will be concerned with only one
storage location (address). However, you need to model cache conflicts. To do this,
you need to model a third operation besides load and store: a cache write-back. Write-
backs normally arise from a cache conflict if the old line is dirty. Write-back operations
may occur at any time between any pair of load/store operations. If the cache is in a
clean state, you may simply set it to be invalid or take the appropriate action according
to your CC protocol. Cache replacements of dirty lines must obviously write the line back
to memory.

You should assume that the coherency unit is equal to one word and that all loads and
stores read or write the entire word.

Besides processors with their caches, there is one memory unit in your system. The
memory unit has a directory-based cache-consistency controller which ensures that only
one processor can write to the memory block at a time (exclusive-ownership style
protocol). The directory representation is unimportant for this assignment. You should
assume that you have a full directory (bit vector) that can keep track of all sharers.

The interconnect system can send messages from any unit to any other unit. It is OK if
your protocol requires that a cache controller has to send a message to another cache
controller.

3/10

a. Assume core 0 is in the S state and core 1 wants to transition from | state to S state.
Only core 0 is on the sharer list. What messages are sent if this is a 4-hop system?

(from whom to whom, message name, and what information is included)

1) GetS request Core 1 to Home with address.

2) Response Home to Core 1 with data.

b. What about a 3-hop system? (Note: PA2 implements a 3-hop system)

1. GetS request Core 1 to Home with address.

2. Response Home to Core 1 with data.

c. [Race conditions] Assume core 0 and core 1 both send a GetM message to the home
node. What should the Home node do to avoid race conditions?

The home node should stall the GetM message received later until it finishes the first request.

For example, if GetM from core 0 arrives at the HomeNode earlier, it should process it, and

grant core 0 Modified permission. It should stall the GetM request from core 1 until it receives
the MAck from core 0 and confirms that core 0 is in the Modified state.

d. PA2 setup allows multiple virtual channels on the interconnect network. Is it okay if all

the messages are sent on a single channel? Why and why not (use examples to

explain)?

No. Sending all the messages on a single channel will cause deadlocks. For example, in the
situation of question c), stalling the GetM message from core1 will block the Ack message from

core0, and cause a deadlock.

e. Processor-initiated rules. Specify all possible rules a processor can fire and what

coherence messages are sent when itis in M, S, or | state.

p.state = Invalid

(example)_rule “write request at invalid state.” Send GetM to HomeNode.

rule “read request at invalid state.”:

p.state = Modified

rule “dirty eviction”:
p.state = Shared

rule “upgrade request”:

rule “evict cache in shared state”:

Send GetS to HomeNode

send PutM to HomeNode

send GetM to HomeNode

send PutS to HomeNode

4/10

3) Network-on-Chip [30 points]

When designing topologies, there are several important properties to consider that can affect
NoC performance. One of these considerations is average hop count which measures the
average number of hops required to travel between any two processors on the chip. Consider
the following incomplete NoC topology where each node represents a processor and each line

represents a link.

O O——O

a. As a NoC topology designer, what single link would you add between any two processors in
this network to minimize the average hop distance in the NoC? Draw the link above and give a
one-sentence explanation. (Note: the length of each link is not a consideration for this question.)

For each subnetwork, we can find the “central node” that routing traffic to minimizes average hop count and then
connect those two thereby minimizing average hop distance in the whole network.

5/10

In class we have covered many different topologies. One of the most basic topologies is an NxN
grid. Researchers at the University of Michigan are investigating alternatives to this using 3D
topologies like the one below (these are two representations of the same NoC topology).

b. In one sentence each, name an advantage and a disadvantage of this topology compared to
a 3x3 grid topology.

(+) Example: the longest path between nodes is now 3
(—) Example: 3D topologies are more complex to build

Note: path diversity was not a valid advantage or disadvantage in this example. Take a
3x3 mesh vs a 3x3x3 torus topology. You can think of the mesh as being a strict subset
of the torus - all of the mesh’s links and nodes are contained in the torus, but the torus
has far more links and a whole new dimension that messages can travel in hence it
offers a strict advantage in path diversity. Both a 3x3 mesh and the 3D topology in this
problem have the same number of links and nodes, they are just organized differently.
This means that for certain node pairs more possible paths could be routed in the mesh,
and for other pairs there are more possible paths in the 3D topology - neither is strictly
better.

c. Below is the state of the link queues. Identify the cyclical resource dependency in the
network that is causing a deadlock by circling the links involved - you can do this on either

representation.
Link A-B |A-C |A-D |B-A |B>H |CoF |C-B |F-E |E-D |D-A
Packet Destination | H F D G | E B D A C

In one sentence explain why this is a cyclical resource dependency:

Each packet in the queue wants to advance to the next link but that link will not be free until it advances the packet
currently waiting in the queue - this happens in a cycle that creates a cyclical resource dependency.

6/10

d. We now want you to design a deadlock-free routing algorithm for this topology. Assume
there is only one message class and you can use at most two virtual channels (Hint: work
on making routing deadlock-free within each 2D layer first, then think of how to connect
them in a deadlock-free manner.)

(i) How is routing done within each 2D layer? Explain how VCs are used within a layer.

Example answer: always route traffic clockwise in a 2D layer. Select some point in the 2D layer as the
dateline - all packets switch from VCO to VC1 once they pass the dateline.

(ii) How is routing done between each 2D layer? Explain how VCs are used between layers.

Example answer: On the bottom layer we go clockwise until we reach the first link that can take us up - we
take this link then go clockwise again until we reach the destination. For the other case (starting in the top layer), we
can immediately take a link down, and then go clockwise until we reach our destination. When routing from the
bottom layer to the top layer we always use VCO and when routing from the top layer to the bottom layer we always
use VCI.

e. Argue why your algorithm is deadlock-free in 3-4 sentences.

My messages always travel clockwise on a 2D layer, meaning any resource dependency
would have to happen in a ring spanning the entire 2D layer. My algorithm won’t have a
resource dependency on a 2D layer because the dateline breaks any dependency that
travels one direction in a ring.

Additionally, it is not possible for there to be a deadlock between 2D layers because all
messages traveling up and all messages traveling down use different VCs, meaning that
independent of datelines there will never be a cycle on the same VC that goes up and then
comes back down (and vice versa).

7/10

4) Consistency [20 points]

Given the following litmus test, for each given output value set, mark (by shading the box)

whether it is a valid outcome or not for the different consistency models.

Core 0

Core 1

Core 2

Core 3

(1) a =1
(i2) r1=a
(i3) 2=b

(4) b =1
(i5) r3=b
(i6) rd=a

(i7) r5=a
(i8) 16 = b

(i9) r7=b
(i10) r8=a

Example

r1

r2

r3

r4

r5

ré

r7

r8

_— | [[| |

Not
Vali

SC

TSO — MCA Style (IBM 370)

TSO — rMCA Style (Sun)

PC — nMCA Style

PSO

8/10

a. Output of
r1
r2
r3
r4
r5
ré
4
r8

OOl lalala

o T T oL

o= <~0 =

SC

TSO — MCA Style (IBM 370)
TSO — rMCA Style (Sun)
PC — nMCA Style

PSO

This is the IRIW test case that shows that the PC (hnMCA) model doesn’t enforce write atomicity.
The other models are invalid for this test case. The PSO model was not discussed this
semester as to what the write atomicity model was, so will accept either answer.

b. Output of
r1

r2

r3

r4

r5

ré

74

r8

Alalalalool—

o T T oL

a=m<~0 =

SC

TSO — MCA Style (IBM 370)
TSO — rMCA Style (Sun)
PC — nMCA Style

PSO

9/10

This is the test case from lecture that shows how the IBM 370 does not allow for a core to read
a value from the write buffer before other cores have seen it. Itis invalid for SC and MCA.
Valid for the others.

c. Output of
r1
r2
r3
r4
r5
ré
74
r8

Alalalalalo|=a|—

o T T oL

o= <~+0 =z

SC

TSO — MCA Style (IBM 370)
TSO — rMCA Style (Sun)
PC — nMCA Style

PSO

There is a RAW dependency in the core for i4 and i5, so this outcome is not possible for any of
the models.

d. Output of
r1
r2
r3
r4
r5
ré
r7
r8

RN PN f'e] o) PR RN IR KN

10/10

o T T oL

o= <~+0 =

SC

TSO — MCA Style (IBM 370)
TSO — rMCA Style (Sun)
PC — nMCA Style

PSO

If we execute the instructions in this order (i7 i8 i1 i4 i2 i3 i5 i6 i9 i10) the outcome is valid under
SC, so it will be valid for all models.

11/10

