

QED: <u>Quick Error Detection Tests</u> for Effective Post-Silicon Validation

Jiong Xue 11/12/2015

Outline

- Background
- Proposed Solution QED
 - EDDI-V
 - RMT-V
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

Background

- Post-Silicon Validation
- Electrical Bugs
- Error Detection Latency

Inter-core store-to-load latency

Motivation

Long latencies limit the effectiveness of debug

Outline

- Background
- Proposed Solution QED
 - EDDI-V (Error Detection by Duplicated Instructions for Validation)
 - RMT-V
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

EDDI-V

Duplicate instructions and compare the results

EDDI-V Implementation

Reserve half of general purpose registers

EDDI-V Implementation

Reserve half of memory

EDDI-V Advantages

- Inst_min vs Inst_max
 - Minimum and maximum of original instructions inserted before QED code
- Bounded error detection latency
- Tradeoff between latency and intrusiveness

Outline

- Background
- Proposed Solution QED
 - EDDI-V
 - RMT-V (Redundant Multi-Threading for Validation)
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

RMT-V

Duplicate the original thread

RMT-V Implementations

- Software RMT-V (S-RMT-V)
 - Lock-free queues implemented in software
 - Three instructions per enqueue operation
- S-RMT-V with Hardware Queues (S-RMT-V-HQ)

RMT-V Implementations

- Hardware RMT-V (H-RMT-V)
 - Monitor automatically enqueues the results

Outline

- Background
- Proposed Solution QED
 - EDDI-V
 - RMT-V
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

Hardware Experiments

- Quad-core Intel Core i7 Processor Platform
- Voltage and frequency can be changed
- Temperature remains constant

Error Detection Latency Results

- Error detection latencies \downarrow by six orders of magnitude
- Masked errors can be detected

Electrical Bug Coverage Analysis

- QED can improve coverage
- Coarse-grained assertions may not be sufficient to reduce error detection latencies

Outline

- Background
- Proposed Solution QED
 - EDDI-V
 - RMT-V
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

Simulation Experiments

- 4-core 4-way out-of-order MIPS processor
- Goal:
 - Estimate error detection latency
 - Characterize error detection latency for H-RMT-V

Simulation Results

- Latencies are within 1k cycles
- Simulation results are consistent with hardware experimental results

Outline

- Background
- Proposed Solution QED
 - EDDI-V
 - RMT-V
- Experimental Evaluation
 - Hardware experimental results
 - Simulation results
- Conclusion

Conclusion

- Improve error detection latencies by six orders of magnitude
- Improve the coverage of post-silicon validation tests

Questions?

Debate

- Since QED detects only electrical bugs, is it good to combine QED with ISA diversity method?
- Which approach is better, EDDI-V or RMT-V?

Thank you!

Backup

