
Preserving Synchronizing Sequences of Sequential Circuits After
Retiming

Maher N. Mneimneh Karem A. Sakallah John Moondanos
University of Michigan Intel Corporation

{maherm,karem}@umich.edu john.moondanos@intel.com
Abstract We propose a novel approach to preserve the syn-
chronizing sequences of a circuit after retiming. The significance
of this problem stems from the necessity of maintaining correct
initialization of circuits after retiming optimizations. It has been
previously shown that forward retiming moves across fanout
stems can destroy a synchronizing sequence. We build on this ob-
servation and introduce the notion of “invalid states” that might
arise due to forward moves. We show that the set of synchronizing
sequences of a given circuit can be preserved by modifying transi-
tions from those invalid states. We present an algorithm that im-
plicitly computes the set of invalid states. Then, we describe a
post-retiming synthesis step that incrementally resynthesizes
some next-state functions to alter the behavior of invalid states to
ensure correct post-retiming initialization. We report promising
experimental results on the ISCAS 89 benchmarks and on a set of
retimed circuits from an Intel Pentium-III class microprocessor.

I. Introduction

Retiming [5] is a transformation applied to a sequential circuit to im-
prove its performance. Retiming has been rigorously studied in the
past and utilized to improve various design characteristics: delay, area,
power, testability, etc. The implications of retiming transformations
on circuit functionality have been investigated as well [1, 3, 4, 5, 8]. It
has been shown that not every state of the original circuit necessarily
has an equivalent state in the retimed circuit and vice-versa; only “suf-
ficiently old” [5] states in both circuits have corresponding equivalent
states. As a result, the retimed design has to be delayed by applying an
arbitrary input sequence (of length equal to the maximum number of
forward moves) after which its behavior will be identical to that of the
original circuit. A direct consequence is that the original and retimed
circuits do not always have the same set of synchronizing sequences
[3, 8].

Synchronizing sequences play a vital role in initializing datapath
components of a design. These sequential circuits usually have mem-
ory elements with no external reset input. After power-up, a synchro-
nizing sequence is applied to bring the circuit to a known state.
Consider as an example a memory array: it is not critical for the mem-
ory array to power-up in a known state. A memory controller can pro-
vide synchronization by applying, for example, an input sequence that
sets all the memory locations to 0. Usually, it is not known apriori
which synchronizing sequence is applied to bring the circuit to a
known initial state. At other times, the selection of a synchronizing se-
quence is user-controlled. For example, in the case of the memory ar-
ray, it might be the case that initialization is controlled by a user
specified input sequence (through software). That sequence can set all
locations to 0, all locations to 1, or some locations to 0 and others to 1.
It is apparent from the above discussion that retiming circuits initial-
ized by synchroninzing sequence can potentially cause initialization
problems; a synchronizing sequence for a circuit might not synchro-

nize a retimed version of that circuit. This restricts the applicability of
retiming in a practical environment. Although a retimed circuit might
be superior to the original one in terms of delay, area, or power, it
might result in unexpected functionality.

In this paper, we propose a post-retiming synthesis step to main-
tain a circuit’s set of synchronizing sequences. We show that the set
of synchronizing sequences of a given circuit can be preserved by
modifying transitions from states that are not “sufficiently old” in the
retimed circuit. We call these states invalid states. Such states arise
from forward moves of latches across fanout stems [3, 8]. These
moves induce a don’t care condition that we utilize to map the behav-
ior of invalid states to valid ones. We incrementally synthesize partic-
ular next state functions to reflect the required changes. The outcome
is a sequential circuit that can be initialized by any synchronizing se-
quence used on the original circuit.

The paper is organized as follows. In Section II, we review se-
quential circuit models, finite state machines, and retiming. Section III
reviews the effect of retiming on synchronizing sequences and dem-
onstrates how a post-retiming synthesis can maintain the set of syn-
chronizing sequences. In Section IV, we present an algorithm for
implicitly computing the set of invalid states. Section V presents our
synthesis algorithm. Experimental results on the ISCAS 89 bench-
marks and a set of circuits from an Intel Pentium-III class micropro-
cessor are discussed in Section VI. The paper is concluded in Section
VII with pointers to future work.

II. Preliminaries

A synchronous sequential circuit has a finite number of inputs
(), a finite number of outputs (), and a
finite number of state or memory elements (). The
combinational part of the circuit is made up of internal signals
() representing the outputs of combinational gates. A
clock signal synchronizes the operation of the memory elements.
Each of these signals takes one of two possible values or . We will
refer to as the input variables, as the
output variables, as the state variables, and

 as the internal variables. The state is defined by the
assignment of values to the circuit’s state variables. In what follows,
we use a state and its binary encoding interchangeably
(.)

Synchronous sequential circuits can be modeled as a 3-tuple
 where is directed graph whose verti-

ces correspond to the inputs, outputs and internal nodes of the cir-
cuit, and whose edges represent the connections between the vertices.

 is function mapping every vertex to its type (primary input,
primary output, flip-flop, fanout stem, and different combinational
gates) and is a labeling function mapping each vertex to a
Boolean variable.

 –

m
x1 x2 … xm, , , l z1 z2 … zl, , ,

n y1 y2 … yn, , ,
k

w1 w2 … wk, , ,
clk

0 1
x1 x2 … xm, , , z1 z2 … zl, , ,

y1 y2 … yn, , ,
w1 w2 … wk, , ,

s y �
n

�
� 0 1,{ }�

M V E,〈 〉 G L, ,()� V E,〈 〉

V

G v V�

L v V�

A finite-state machine (FSM) M is defined as a 6-tuple
 where is a finite set of states, is

the input alphabet, is the output alphabet, is the
state-transition function, is the output function, and

 is the set of initial states. Synchronous Sequential circuits are
modeled using FSMs. The state-transition function, , determines the
next state of the machine based on its current state and inputs. The out-
put function, , determines the machine’s output based on its current
state and inputs. We can write:

where , , ,
, , and .

The state transition graph of an FSM , , is a labeled
directed graph where each vertex corresponds to a
state of (and is labeled with), and each edge between
two vertices and corresponds to a transition from state to state

 in . The edge is labeled where is the input that causes
the transition from to and is the output during that transition.
A synchronizing sequence of a machine is an input sequence that
drives to a specific state , regardless of the initial power-up
state. If such a sequence exists, is resettable and is a reset
state of . A synchronizing sequence is also called a reset sequence.
Two states and of a machine are equivalent, written as

, if and only if, for every possible input sequence applied, the
same output sequence results.

Retiming [5] is a sequential optimization technique that moves
memory elements across combinational blocks. Retiming is formally
defined by a function where is the set of vertices exclud-
ing the latches and is the set of integers. indicates that

 latches were moved forward from the fanins of to its fanout,
while indicates that latches were moved backward
from ’s fanout to its fanins. Retiming induces a functional relation
between the latches of the original and retimed circuits; we call such
a relation the retiming invariant [6].

III. Retiming and Synchronizing Sequences

It has been previously shown [3, 8] that retiming doesn’t completely
preserve synchronizing sequences. This scenario arises when latches
are moved forward across fanout stems. As an example consider the
circuit and its corresponding STG shown in Fig. 1(a). The input se-

quence 1 is a synchronizing sequence for this circuit. The circuit in
Fig. 1(b) is obtained by a retiming across a fanout stem of the original
circuit. The input sequence 1 is not a synchronizing sequence for the
retimed circuit. As another example, consider the two circuit in Fig.
1(c). We have omitted their STGs for brevity. One can easily verify
that the sequence is a synchronizing sequence for the original
but not the retimed circuit. It is instructive to note that it is possible for
retiming moves across fanout stems to maintain synchronizing se-
quences. As an example, consider the circuits in Fig. 1(d) where one
is derived from the other by a forward movement across a fanout stem.
It can be easily shown that both circuits have the same set of synchro-
nizing sequences.

The reason that causes forward latch movement across a fanout
stem to destroy a synchronizing sequence is the introduction of addi-
tional states that do not correspond to any states in the original circuit.
Let us go back to the example of Fig. 1(a). The STG of the retimed cir-
cuit has four states. States and (of the retimed circuit) corre-
spond to states and (of the original circuit) respectively.
However, and do not correspond to any states; those states vi-
olate the retiming condition that requires signals , , and to be
equivalent i.e. . We call this retiming condition the
retiming invariant. A state violating this invariant is an invalid state.
Note that an invalid state can be equivalent to a valid state. For exam-
ple, is equivalent to in Fig. 1(b). Since transitions from invalid
states are different from those of valid states, synchronizing sequences
might not be preserved. In the retimed circuit of Fig. 1(b), the invalid
state transitions to on an input of while all valid states tran-
sition to when the input is applied. Consequently, the input se-
quence is not a synchronizing sequence for the retimed circuit.

Definition: Let circuit be obtained from by retiming and let
 be the corresponding retiming invariant. A state in the

STG of is invalid if it does not satisfy .

Backward retiming moves across a fanout stem do not destroy any
existing synchronizing sequence, but might introduce new ones. As an
example, if the original and retimed circuits of Fig. 1(a) and (b) re-
verse roles, then the backward movement of latches and intro-
duces a new synchronizing sequence (the sequence 1) which does not
synchronize the circuit to the right of the figure. However, introducing
a new synchronizing sequence does not pose an initialization problem
as does destroying one. Backward and forward movements across

M Q Σ ∆ δ λ Q
0

, , , , ,()� Q Σ
∆ δ:Q Σ Q→×

λ:Q Σ ∆→×
Q0

δ

λ

y+
δ y x,()� z λ y x,()�

x x1 … xm, ,()� y y1 … yn, ,()� y+ y1
+ … yn

+, ,()�
z z1 … zl, ,()� δ δ1 … δn, ,()� λ λ1 … λl, ,()�

M STG M()
V E,〈 〉 v V�

si M si e E�
si sj si

sj M ik ol� ik

si sj ol

M
M sreset

M sreset

M
s1 s2 M

s1 s2�

r:V �→ V
� r v() 0<

r v() v
r v() 0> r v()

v

x1 z1

y1w1x1x1 z1

y1w1
y2x1 z1

y3

w1 y2x1 z1

y3

y2x1 z1
x1x1 z1

y3

w1

Figure 1: (a) and (b) Single latch movement across a fanout stems destroys a synchronizing sequence of length 1 (c) two latch movements across
a fanout stem destroy a synchronizing sequence of length 2 and (d) latch movement across a fanout stem that does not alter the set of syn-
chronizing sequences

(a)

00 11

0/0
1/1

0/0
1/1

01

10

-/0

0/0 1/1

00 11

0/0
1/1

0/0
1/1

01

10

-/0

0/0 1/1

x1

z1
y1

w1

w2

w3

x1x1

z1
y1

w1

w2

w3

x1

z1

y2
w1

w2

w3

y3

x1x1

z1

y2
w1

w2

w3

y30 1
0/0

1/1

0/0
1/1

0 1
0/0

1/1

0/0
1/1

(c) (d)

x1

z1
y1

w1

w2

w3y2

x1x1

z1
y1

w1

w2

w3y2

x1

z1

y5
w1

w2

w3

y6y4

y3

x1x1

z1

y5
w1

w2

w3

y6y4

y3

(b)

0 1,()

00 11
0 1

01 10
y1 y2 y3

y1 y2 y3� �()

10 00

01 00 1
11 1

1

M2 M1
I M1 M2,() s

M2 I M1 M2,()

y2 y3

combinational gates do not alter the set of synchronizing sequences af-
ter retiming [3, 8].

In what follows, we show how we can modify the combinational
logic of a retimed circuit to preserve the set of synchronizing sequenc-
es. The underlying intuition is the observation that valid states never
transition to invalid states:

Proposition: Let circuit be obtained from by retiming. Then,
there exists no transitions from valid to invalid states in the STG of

.

Consequently, a retimed circuit can be operating in an invalid state
if 1) it powers up in such state or 2) it transitions to it from another in-
valid state. By the above proposition, we can modify the transitions
from invalid states without affecting the functionality of the circuit.
By making an invalid state “behave” like a valid state, the set of syn-
chronizing sequences can be preserved. Let us demonstrate the proce-
dure on the retimed circuit of Fig. 1(a). We know that and are
invalid states. One possibility is to make state 01 behave like state 00,
and 10 behave like 11. In other words, the next state of on an input
is identical to the next state of on that input. The same applies for
states and . The resulting STG is shown in Fig. 2(a). The new
next-state function for and is shown in Fig. 2(b). The minterm
colored in grey corresponds to the difference between the old and new
next-state function. Although we can resynthesize the new function
from scratch, we propose to incrementally change the old next state
function as illustrated in Fig. 2(c). We synthesize the new minterm

 (the new AND gate) and OR it with the original next-state
function. The logic introduced is shown in the grey box in Fig. 2(c). It
is easy to verify that the new circuit has the same synchronizing se-
quences as that in Fig. 1(a).

It is instructive to note there exist other possibilities for modifying
the behavior of invalid states to preserve synchronizing sequences.
For example, one can make both invalid states behave like state ,
or make both states behave like state . Each different mapping re-
sults in a different next-state function. We will discuss how we per-
form our mapping in Section V. In the next section, we present an
algorithm to compute the invalid states after retiming.

IV. Implicitly Computing the Set of Invalid States

We present a procedure to compute the invalid states of a circuit ,
obtained from by retiming. The procedure consists of two steps.
The first step discovers the latch movements that were applied to the
original circuit by calculating the retiming function at each node. In
the second step, retiming is replayed on the original circuit using the
retiming function . During the second phase, whenever there is a
latch movement that results in invalid states, the relation between the

new latches is recorded. In what follows, we present these two steps
in detail.

In the first step, the two circuits and
 are traversed to discover the latch move-

ments that were carried out during retiming. The output of this step is
a function which describes how was obtained from .
We assume that the primary input and output names did not change af-
ter retiming. We also assume that the order of fanins of each gate was
not changed. These requirements simplify the algorithm for structural
comparison. The algorithm is illustrated in Fig. 3. Function Discov-
erRetime finds corresponding primary outputs of and . It
sets for each of the primary outputs and calls DiscoverRe-
timeRec.

DiscoverRetimeRec is a recursive procedure. It first checks
whether the node v1 is a primary input node. If this is the case, the pro-
cedure returns. If v1 was visited previously, the procedure returns as
well. The core computation is performed in the for loop. For each in-
coming edge to v1, the procedure finds the number of latches, n1, be-
tween u1 and v1 where u1 is the first non-latch node on a path ending
in v1. Then u2, the node that corresponds to u1 in the retimed circuit
is obtained and n2 is computed similarly. Note that n1 and n2 repre-
sent the old and new edge weights in retiming terminology. The com-
putation of is based on the observation that

. Thus, . The pro-
cedure is then recursively called on u1 and u2. Note that each node is
visited once and consequently the complexity of this step is linear in
the total number of nodes.

In the second step, the retiming moves computed previously are
exercised on . The algorithm for this step is illustrated in Figure 4.
The algorithm examines each non-latch node with and
decides how many latches, if any, can be moved across . If ,
we compute the maximum number of latches, , that can be moved
backward across . If , only latches are moved. Other-
wise, latches are moved and the node has to be revisited to com-
plete the remaining moves.
When , a similar procedure is used to move latches forward.
In this case, we also compute the set of invalid states. This is achieved
by the procedure UpdateCondList(). We maintain a list of Boolean
functions called CondList; CondList records the retiming-induced re-
lations that arise among latches that trace back to movements across
fanout stems. Initially, CondList is empty. When a latch is moved for-
ward across a fanout stem, the relation that exists between the new
latches at the outputs of the fanout stem are added to CondList (the re-
lation forces the values of the latches at the output of the stem to be
identical.) In a later step, suppose that are moved for-
ward creating the retiming relation . CondList
is updated as follows: each condition in CondList is checked to see if

M2 M1

M2

Figure 2: (a) The modified STG of the retimed circuit of Fig. 1(b), (b) the karnaugh map of the next-state function of (the next-state function
of is identical), and (c) the resynthesized circuit that preserves the set of synchronizing sequences

y2
y3

00 11

0/0
1/1

0/0
1/1

01

10

0/0

0/0 1/1

1/1

00 11

0/0
1/1

0/0
1/1

01

10

0/0

0/0 1/1

1/1

x1

y2y3

11111

00000

10110100
x1

y2y3

11111

00000

10110100

x1

z1

y2
w1

w2

w3

y3

x1x1

z1

y2
w1

w2

w3

y3

(a) (b) (c)

01 10

01
00

10 11
y2 y3

x1y2�y3

00
11

M2
M1

r

r

M1 V1 E1,〈 〉 G1 L1, ,()�

M2 V2 E2,〈 〉 G2 L2, ,()�

r:V Z→ M2 M1

C1 C2
r 0�

r
n2 n1 r v1() r u1()–+� r u1() n1 n2– r v1()+�

C1
v r v() 0�

v r v() 0>
m

v m r v()≥ r v()
m

r v() 0<

y1 y2 … yk, , ,
ŷ f y1 y2 … yk, , ,()�

it has any of in its support. If this is not the case,
CondList is not modified. Otherwise, all the conditions that share vari-
ables with are conjoined together with

 and the variables are existen-
tially quantified. The result is a new condition that replaces all old
conditions.

Let us consider the application of the algorithm on the circuits of
Fig. 5. It can be clearly seen that , and

. The algorithm starts by moving across . Two new
latches and are created. In addition, the condition is
added to CondList. Next, and are moved across to create

. The relation shares a variable with .
Thus, both relations are ANDed to get . In
addition, the and are existentially quantified since we only care
for the relation between the new latches and . The new condi-
tion replaces . Finally, and are moved
across creating . As a result, is ANDed with
the previous relation to get . Finally, we
existentially eliminate and to get .

From the retimed circuit, we observe that and .
Thus, the relation between the latches of the retimed circuit is

. Any state satisfying is a valid state while any
other state is invalid. As an example, the state is an invalid state.
This indicates that 10 of the retimed circuit does not have any corre-
sponding state in the original circuit. From the latch movements per-
formed by retiming one can easily verify that for to have a
corresponding state, and must hold.

Finally, we explain one subtle point about the algorithm in Fig. 4.
One can clearly observe that for each different movement across a
fanout stem we create a different condition on CondList. Finally, we
might end up with more than one condition. A state is valid if it satis-
fies all conditions. However, we do not conjoin all the conditions to-
gether. The intuition behind this is that we can resynthesize the next
state functions that depend on each condition separately.

V. Resynthesizing Next-State Functions that depend
on Invalid States

In this section, we describe how to modify the behavior of invalid
states by resynthesizing particular next-state functions.

If a next-state function shares variables with a given set of valid
states , the next-state function should be resynthesized. The set of
valid states acts as the care-set for the function . Let the new syn-
thesized next-state function be . Consider a minterm of .
preserves the behavior of whenever . If , then
corresponds to an invalid state. To map the behavior of this minterm
to one that is part of a valid condition, we set where
is a minterm satisfying . Formally,

where .
A particular operator that satisfies the previous equation and that

can be efficiently computed with BDDs is the constrain operator [2].
The definition of the constrain operator depends on the distance be-
tween two minterms which is defined as follows. If the Boolean vari-
ables have the BDD variable ordering

 then the distance between two minterms
 and where

, , and is defined as:

The constrain operator is defined as follows:

where and is minimum. Note that there are other
possible ways of constructing from and . We choose the con-
strain operator since it can be efficiently computed using BDDs.
Using the constrain operator, we have . We can use a syn-
thesis tool to synthesize . However, the original next-state func-
tion might have a special structure that we like to preserve. Instead, we
modify incrementally to reflect the differences between and .

y1 y2 … or yk, , ,

y1 y2 … yk, , ,
ŷ f y1 y2 … yk, , ,()� y1 y2 … yk, , ,

r f1() 1–� r w1() 1–�

r w2() 1–� y1 f1
n1 n2 n1 n2�()

n1 y2 w1
n3 n3 n1 y2·�() n1 n2�()

n1 n2�() n3 n1 y2·�()
n1 y2

n2 n3
n2 n3�+() n1 n2�() n2 y3
w2 n4 n4 n2 y3+()�()

n2 n3�+() n4 n2 y3+()�()·
n2 y3 n3� n4+()

Figure 3: Algorithm for discovering the retimings moves

function DiscoverRetime(C1,C2)
begin

for(each v1 in C1)
v1.isVisited = false

for(each v1 in C1 with G(v1) == PO)
find corresponding node v2 of C2
r(v1) = 0
DiscoverRetimeRec(v1,v2)

end
function DiscoverRetimeRec(v1,v2)
begin

if(G(v1) == PI)
return

if(v1.isVisited == true)
return

v1.isVisited = true
for(each incident edge on v1)

Find first non-latch vertex u1
Find corresponding node u2 of C2
n1 = num. of latches between u1 and v1
n2 = num. of latches between u2 and v2
r(u1) = n1 - n2 + r(v1)
DiscoverRetimeRec(u1,u2)

end

y4 n3� y5 n4�

y4� y5+() y4� y5+()
10

10
y1 1� y1 0�

f
c

c f
fnew x f fnew

f c x() 1� c x() 0� x

fnew x() f y()� y
c y() 1�

fnew x()
f x() if c x() 1�

f y() if c x() 0�



�

c y() 1�

x1 x2 … xn, , ,
x1 x2 … xn≤ ≤ ≤
a a1 a2 … an, , ,()� b b1 b2 … bn, , ,()�

ai bj, 0 1,{ }� 1 i n≤ ≤ 1 j n≤ ≤

a b– ai bi– 2n i–

i 1�

n

��

f c

f c x()
f x() if c x() 1�

f y() if c x() 0�



�

Figure 4: Algorithm for computing valid states

function ComputeValid(C,r)
begin

CondList: list of Boolean functions
CondList = empty
finished = false
while !finished

finished = true
for(each v in V)

if(G(v) == latch or r(v) == 0)
continue;

if(r(v) > 0)
m = max. backward moves across v
if(m >= r(v))

Move r(v) latches backward
else

Move m latches backward
finished = false

else
m = max. forward moves across v
if(m >= |r(v)|)

Move |r(v)| latches forward
else

Move m latches forward
finished = false

UpdateCondList()
end

c y() 1� x y–
fnew f c

fnew f c�

fnew

f fnew' f

The synthesized is illustrated Fig. 6. The grey logic indicates the
incremental changes applied to obtain from . It is easy to verify
that .

VI. Experimental Results

To experimentally evaluate our proposed framework, we implement-
ed the proposed algorithm in C++. We use the CUDD BDD package
[9] for Boolean function manipulations. We report our results on the
ISCAS 89 benchmarks and circuits from an Intel Pentium-III class mi-
croprocessor. All experiments were conducted on a 2 GHz Pentium 4
machine having 1 GB of RAM and running the Linux operating sys-
tem.

Our results are presented in Table 1. Circuit names are listed in
column 1. Column 2 shows the retiming optimization performed using
SIS [7] (version 1.2): “delay” indicates retiming for minimum clock
period while “area” indicates retiming for minimum area. All circuits
were first retimed for minimum clock period. Of these, the ones unal-
tered by minimum clock period retiming were retimed for minimum
area. Only four circuits s344, s349, s820, and s832 were not altered
under both constraints. For s35932 and s38417 retiming for minimum
clock period did not alter the circuits and when retiming for minimum
area SIS ran out of memory. Results for these circuits are not reported.

For most of the smaller circuits, retiming resulted in backward
moves only. To be able to test our approach, we reversed the role of
the original and retimed circuits to get forward moves. For circuits in
which retiming resulted in forward and backward moves, we applied
our algorithms on both the original and retimed circuit. This is shown
in Column 3: “original” indicates that retiming was applied on the

original circuit to get the retimed version while “retimed” indicates
that retiming was applied on the retimed circuit to get the original cir-
cuit. For s510, s1196, and s1512 retiming did not result in any move-
ment across fanout stems. Thus the set of synchronizing sequences is
automatically preserved. This is indicated by a “-” in Column 3. Col-
umn 4 indicates the number of next state functions that need to be re-
synthesized out of the total number of these functions. The last column
indicates the cover size after the next state function are synthesized.
The number is obtained by finding the size of a BDD cover for the two
functions and and accumulating that for all next-state
functions that have to be resynthesized.

The main observation from the results in the table is that in most
cases, none of the next-state functions need to be resynthesized and
consequently there is no area overhead. In other words, the set of syn-
chronizing sequences are automatically preserved. For these circuits,
even though retiming moved latches forward across fanout stems, no
invalid states were generated by this process and thus there is no need
to modify the next-state logic. We traced back the cases under which
this occurs. We identified two cases that frequently occur for these cir-
cuits. The cases are illustrated in Fig. 7. In Fig. 7(a), although retiming
moved the two registers and across a fanout stem, the final re-
sult of retiming is a single register . One can easily see that

 is the relation that holds between the three registers.
When we existentially eliminate and , we get the identity. Con-
sequently, there are no restriction on the values that can assume.
Fig. 7(b) shows two circuits where one is retimed from the other. We
can compute the relation between the old and new latches as

. To obtain the relation between
 and , we existentially quantify , , and . On performing

this, we obtain the identity relation. Thus, although registers might be
moved across fanout stems, the combinational logic that they will
move through might result in no invalid states. A particular condition
of this second case that happens a lot in the ISCAS89 benchmarks is
movement of a fanout register across identical combinational gates.
For this case, no invalid states will result as well.

MEM OUT in Column 4 indicates that the BDD ran out of mem-
ory (1GB limit) when computing the set of invalid states.

TABLE 1: Results on the ISCAS89 circuits
Circuit Retimed For base circuit #resyn/#latches Cover Size

s298 delay retimed 0/14 0
s382 area retimed 15/21 2209
s499 delay retimed 0/22 0
s510 delay - - -
s526 delay retimed 0/21 0
s635 delay retimed 0/32 0
s641 area retimed 19/19 613
s713 area retimed 19/19 613
s938 delay retimed MEM OUT -
s953 delay retimed 0/29 0
s967 area retimed MEM OUT -
s991 delay retimed MEM OUT -
s1196 area - - -
s1269 delay original 81/96 6,0929,794

retimed 0/37 0
s1423 delay retimed 0/24 0
s1488 delay retimed 0/6 0
s1512 delay - - -
s3271 delay original MEM OUT -

retimed 0/116 0
s3330 delay original MEM OUT -

retimed 0/81 0
s3384 delay original MEM OUT -

retimed 12/183 27,628,460

fnew

fnew f
f fnew f�·+() fnew� f·()�· f fnew+() f� fnew+()· fnew� �

igure 5: Two circuits one derived from the other using retiming

x1
z1

f1y1

y2

y3 z2

w1

w2

x1
z1

f1y1

y2

y3 z2

w1

w2

x1
z1

f1 y4

z2
y5

w1

w2

x1
z1

f1 y4

z2
y5

w1

w2

TABLE 2: Results from an Intel Pentium-III class microprocessor
Circuit
Name

Before
Latches

After
Latches

Time
(sec)

Mem
(MB)

Affected
NSFs Cover Size Var

Order
C1 219 222 158 301 35 3.09E+13 Dyn
C2 221 223 5.9 206 1 199848 Dflt
C3 226 229 6 198 1 84310 Dflt
C4 231 233 3.2 197 1 10520 Dflt
C5 243 246 4.6 204 1 244412 Dflt
C6 351 357 9.1 271 23 367916 Dflt
C7 377 379 28.1 427 1 63183252 Dflt
C8 428 437 13.6 304 25 280044 Dflt
C9 480 491 28.4 352 11 19207990 Dflt
C10 1855 1857 35.2 316 1 2.71345E+11 Dyn

igure 6: Resynthesized next-state function

f

fnewf’

fnew’f
fnew

f

fnewf’

fnew’f
fnew

fnewf� fnew�f

y1 y2
y3

y3 y1�y2��()
y1 y2

y3

y4 y1�() y5' y1�y3� y2�y3�+()�()
y4 y5 y1 y2 y3

Similarly, in Table 2, we list the results of the application of our
techniques on selected circuits from an Intel Pentium-III microproces-
sor. In Column 2, we list the number of latches in the circuit before it
was retimed. In Column 3, we list the number of latches after retiming
operations were performed. In this case, we considered only retiming
operations that involved movements of latches forward through fanout
stems. Columns 4 and 5 list the CPU time and memory requirements
for the execution of the algorithms in Figure 3 and Figure 4 on dual
Intel Xeon 2.4GHz servers with 1GB of RAM running the Linux op-
erating system. These algorithms were implemented on top of the ca-
pabilities of Intel’s Formal Equivalence Verification system. In
Column 6, we list the number of next state functions that turned out to
be affected and in need of resynthesis. In Column 7, we list the sizes
of the covers of the BDDs that get computed in accordance to what we
have listed in Column 5 of Table 1. Finally, in Column 8, we list
whether dynamic reordering was necessary (indicated by Dyn) or the
default ordering that the Formal Equivalence Verification system pro-
duces is sufficient (indicated by Dflt).

VII. Conclusion

Today’s designs have complex performance requirements that neces-
sitate the application of rigorous optimization algorithms. Retiming is
one such algorithm that proved to be successful at improving various
design parameters. However, the practicality of retiming is hindered
by initialization problems that can alter a circuit’s functionality. This
is due to the fact that a synchronizing sequence that initializes a design
might not initialize its retimed version.

We tackled the above problem in this paper. We showed that it is
possible to maintain the synchronizing sequences of a circuit after
retiming by introducing limited combinational modifications to the re-
timed circuit. We established the notion of “invalid states” that arise
by forward movements of latches across fanout stems and showed that
these states cause initialization problems after retiming. We presented
an algorithm that implicitly computes the set of invalid states. Next,
we showed how we can preserve synchronizing sequences by making
invalid states “imitate” valid states in their behavior. We showed how
to accomplish this by incremental resynthesis of particular next-state
functions.

The experimental results were quiet interesting. For most of the
retimed benchmarks, no invalid states were introduced even in the
presence of forward movements across fanout stems. We identified
general patterns under which such conditions arises. We also demon-
stracted the application of the algorithm on industrial circuits.

Currently, we are investigating the effect of our synthesis on the
area and performance of the circuits in which the next-state functions
had to be altered. In addition, we are trying to develop a more ad-
vanced engine for computing the invalid states that combines BDD
and SAT technologies. This can help avoid the memory explosion we
faced in some of the benchmarks. Finally, we like to study the modi-
fications needed to preserve a subset of the synchronizing sequences.
This problem has practical significance as the designer might have
knowledge of what particular sequences are used in initialization.

VIII. Acknowledgments

This work is funded by the DARPA/MARCO Gigascale Silicon Re-
search Center.

References

[1] S. Brookes, “Using Fixed-Point Semantics to Prove Retiming
Lemmas,” in Formal Methods in System Design, 1993

[2] Olivier Coudert, and Jean Christophe Madre, “Symbolic Compu-
tation of the Valid States of a Sequential Machine: Algorithms and
Discussion,” in Proceedings of the International Worshop on For-
mal Methods in VLSI Design, January 1991.

[3] A. El-Maleh, T. Marchok, J. Rajski, and W. Maly, “Behavior and
Testability Preservation Under the Retiming Transformation,” in
IEEE Transactions on Computer-Aided Design, vol. 16, pp. 528-
543, May 1997.

[4] G. Even, “The Retiming Lemma: A Simple Proof and Applica-
tions,” Integration, VLSI Journal 1996.

[5] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Cir-
cuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

[6] M. Mneimneh and K. Sakallah, “REVERSE: Efficient Sequential
Verification for Retiming,” International Workshop on Logic Syn-
thesis, 2003.

[7] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. Stephen, R. Brayton, and A. SAngiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,”
University of California, Berkeley, Tech. Report, May 1994.

[8] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton, “The
Validity of Retiming Sequential Circuits,” in Proceedings of the
32nd Design Automation Conference, 1995.

[9] F. Somenzi, “CUDD: CU Decision Diagram Package Release
2.3.1,” Technical Report, University of Colorado at Boulder,
2001.

x1 z1

f1 w1

w2

f2

w3 y3x1 z1z1

f1 w1

w2

f2

w3 y3

Figure 7: (a) and (b) Examples of retimed circuits with no invalid states

z1
1

f1y1

y2

w1

w2

w3f2 z1z1
1

f1y1

y2

w1

w2

w3f2

(a)

w2
y2

z2
x2

f1y1 w1

z1

x1

x3
y3

w2
y2

z2z2
x2

f1y1 w1

z1z1

x1

x3
y3

w2
z2

x2

f1 w1

z1

x1

x3

y4

y5
w2

z2z2
x2

f1 w1

z1z1

x1

x3

y4

y5

(b)

