Formal Verification of Hardware and Software Systems
EECS 598-006 Winter 2017

TuTh 9:00-10:30
1690 BBB
Instructor: Karem Sakallah

Overview:

This course explores the latest advances in automated proof methods for
checking whether or not certain properties hold under all possible
executions of a complex hardware or software system. Specifically, we
focus on the class of “control-centric” properties, namely those properties
that are weakly-dependent on the data state of the system. Examples of
such properties include, among others, the equivalence between different
implementations of an instruction set architecture (hardware) and the
correct usage of an Application Programming Interface (software).

The key to the scalable verification of such properties is a closed-loop
CounterExample-Guided Abstraction Refinement (CEGAR) framework that
involves:

a. A suitable state transition system encoding of the software or
hardware being checked and the property they are expected to
satisfy;

b. Structural abstraction of irrelevant data state that has nothing or
little to do with the property;

c. Full unbounded reachability analysis of the abstract state space
using efficient incremental induction algorithms;

d. Concretization of any resulting abstract counterexamples to
determine their feasibility;

e. Automatic refinement of any spurious counterexamples that bring
back only those relevant data constraints needed to provably
establish that the property holds or to demonstrate a true
violation.

The automated reasoning engines that make this possible are the modern
Conflict-Driven Clause-Learning (CDCL) Boolean Satisfiability (SAT) solvers,
the SAT modulo Theory (SMT) solvers, and the Minimal Unsatisfiable
Subset (MUS) extractors.

Logistics:

This is a graduate special topics course. The only prerequisites are graduate standing in CSE and good
programming skills. The course will be based on reading classic papers on software and hardware verification
as well as more recent papers that describe advances in automated reasoning algorithms and their
applications to verification. A theme of the course will be to find common threads that tie together the
seemingly-disparate methods used in HW and SW verification. Students can expect to learn how to encode
software programs and hardware circuits as transition systems, and how to develop suitable abstractions for
checking control-centric properties. Additionally, they will have hands-on experience with a variety of existing
reasoning and verification tools and the option of developing extensions to these tools. The course work will
consist of a few short assignments to help the students master the main technical issues and semester-long
individual or group projects selected by the students. The course is expected to satisfy the CSE PhD depth
requirement.



