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Abstract

Register allocation is an important optimization for high performance microprocessors
but  there is no consensus in the architecture or compiler communities as to the best num-
ber of registers to provide in an instruction set architecture. This paper discusses reasons
why this situation has occurred and shows from a compiler perspective that, compared to
the conventional 32-register file, 64 or more registers enables  performance improvements
from 5% to 20%. This is demonstrated with existing advanced compiler optimizations on
the SPECint95 and SPEC2000 benchmarks. This work also documents that the optimiza-
tions eliminate cache hit operations, converting common-case cache hits to faster register
accesses. Finally, this work provides additional measurements for the proper number of
registers in a high-performance instruction set and shows that most programs can easily
use 100 to 200 registers when multiple active functions are considered for simultaneous
allocation to the register file.

1. Introduction

Large register files have many advantages. If used effectively they can: 1) reduce memory
traffic by removing load and store operations; 2) improve performance by decreasing path length;
and 3) decrease power consumption by eliminating operations to the memory hierarchy. Their
merit derives from the fact that they require few address bits and act as a very high-speed cache.

On the other hand, large, multi-ported register files can become the critical path that sets
the cycle time of the processor. There have been a number of proposals to circumvent this prob-
lem by implementing the register file either by physically splitting it, or providing a cache of the
most frequently used registers and having a large backing store for the full architected set of reg-
isters. [7, 25, 26, 27]. The caching technique is particularly useful in a register renaming proces-
sor, where the architected (logical) register file can be much larger than the physical register file.
In such a case, the physical register file acts as a cache for the larger architected register set. In
this paper, we assume that the implementation issues can be solved using such techniques.

Instead of considering implementation issues of large register files, we focus on their per-
formance advantages. In scientific and DSP code, there are well-known techniques for exploiting
large register files. However, a common view has been that large files are difficult to use effec-
tively or are not necessary in general purpose code. In this paper we will show that this is not
indeed the case by applying several existing advanced compiler optimizations separately and then
in combination. The results show that at least 64 registers are required for highest performance,
and many more if the scope of register allocation is increased beyond the function boundary to
include multiple functions which are active simultaneously on the call stack.
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For control-intensive integer codes, the kind we are focusing on in this work, previous
research to determine the best number of registers has not arrived at a clear consensus. For exam-
ple, one study suggests that the number of processor registers that can be effectively used is lim-
ited to a couple dozen [1]. Others have suggested that existing compiler technology cannot make
effective use of a large number of registers [2]. Studies on the RISC I architecture refer to earlier
work which shows that 4 to 8 windows of 22 registers each (for a total of 80 to 144 registers) is
sufficient to house the locals and parameters for over 95% of function calls [3, 4]. In addition
there has been much effort in the area of optimizing spill code; this is indicative of a need for
more registers.

Floating point and DSP codes are generally thought to be able to take advantage of a large
number of processor registers if the compiler utilizes advanced transformations such as loop
unrolling, register renaming, accumulator and induction variable expansion, and software pipelin-
ing. One study confirmed this by showing that for a set of loop nests from the PERFECT and
SPEC suites, register utilization increases by a factor of 2.6 after all ILP transformations were
applied. While most optimized loops required fewer than 128 registers, the average register usage
was about 70 for the loops studied [5]. However, other work which used some similar benchmarks
found that after 32 registers, adding registers produced only a marginal performance improve-
ments, particularly if sophisticated code generation techniques are used [6]. Finally another study
showed that optimal performance for a number of Livermore kernels requires 128 to 256 registers
[7].

This lack of agreement in the architecture and compiler research communities is mirrored
in commercial processor designs. Table 1 shows the register configuration of several embedded
and workstation-class processors.  While it is true that the register set size on some of these
machines was constrained by backward compatibility and cost concerns, it is interesting to note
the wide variety of register configurations. Incidentally, many of the high performance machines
have larger physical register files to implement out-of-order execution. These additional registers
are not available to the compiler.

Architecture Type Architecture/Family Register Configuration

Embedded

SHARC ADSP-2106x [29] 16 primary; 16 alternate; 40 bits wide

TI TMS320C6x [32] 2 files of 16 registers; 32 bits wide; 1 Mbit on-chip 
program/cache/data memory

Philips TriMedia TM1000 [36] 128 registers; 32 bits each

Siemens TriCore [33] 16 address; 16 data; 32 bits wide

Patriot PSC1000 [39] 52 general purpose registers; 32 bits wide

Workstation

Intel IA32 [34] 8 int; 8 float in a stack; 32 bits wide

Transmeta Crusoe TM3120, 
TM5400 [40] 64 int; 32-bits wide

Intel IA64 [35] 128 int, rotating and variable-size windows; 128 
float; 64 bits wide; 64 1-bit predicates

DEC Alpha 21x64 [31] 32 int; 32 float; 64 bits wide

Sun Sparc V9 [30]

8 globals, 16-register window with 8 ins and 8 
locals, as well as access to 8 outs which are the 
next window’s ins, all 32-bits. Number of fixed-
sized windows from 3 to 32. 32 64-bit floating 
point regs.

Table 1. Register configurations for a number of embedded and workstation processors. 
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There are several possible reasons for these mixed results, at least as far as integer codes
are concerned. First, a small number of registers is suggested by the fact that a typical program-
mer does not usually have a large number of scalar variables in each function. Second, temporary
variables are short-lived and can be packed into a small number of registers. Third, many data ref-
erences are made through structure or array variables whose components cannot be easily allo-
cated to registers. Fourth, variables local to a function are typically the only candidates considered
for permanent register allocation. Though some global variables could be allocated to registers for
their entire lifetime, most compilers leave them in memory and shuttle them in and out of registers
with load and store operations. Fifth, local variables cannot generally live in the register file while
a called function is executing unless a register windowing approach is used to house the variables
from multiple functions in different regions of the register file. Sixth, compiler optimizations are
often deliberately throttled in order to avoid introduction of spill code. Thus 32 registers might
appear to be sufficient because the optimizations have been artificially restricted to that level.

On the other hand, sophisticated compiler optimizations can significantly increase the
number of variables by performing loop optimizations. These optimization temporaries can create
greater register pressure than arithmetic and other simple temporaries since they live over longer
ranges. The pool of register allocation candidates can also be enlarged by including array ele-
ments and scalar global variables. Furthermore, global variable register allocation can increase
the number of registers that are required. Finally, variables that are aliased can be allocated to reg-
isters for some portions of their lifetime, further increasing the number of candidates for register
allocation.

Many of the earlier studies did not have access to the advanced compiler transformations
used today, either because the transformations were not known, or were not available in the com-
pilers used for the studies.  The lack of freely available optimizing compilers suitable for research
studies has had a limiting effect on earlier research.

This paper makes the case that for integer codes, a large architecturally-visible register file
is necessary for high performance, and such large files can easily be utilized by current compiler
technology. In fact, if the compiler does not use the right optimizations, the apparent register
requirements of the program can be significantly lower than reality. To this end, we explore the
performance effects of four sets of optimizations in this paper. The first is traditional function-
level optimizations. These increase register pressure by adding temporary scalar values and
extending scalar lifetimes [8, 9]. The second optimization allocates global scalar variables and
addresses to registers for their lifetime. The third is register promotion for aliased variables and
global scalars. The fourth is function inlining, which effectively combines the live registers of two
functions into one allocation pool. Each of these techniques increases the pool of register alloca-
tion candidates and depending on the benchmark can significantly impact performance. All of
these optimizations have been examined in previous work but this study examines them in combi-
nation in order to present the register requirements of a modern optimizing compiler.

The presentation will proceed as follows. Section 2 describes the compilation environment
and includes descriptions of the optimizations that we report on in this paper. Section 3 describes
our simulation setup. In Section 4 we present our experimental results. Each transformation is
analyzed for its effects on overall performance, register pressure, and other effects. In addition, an
incremental analysis is provided to examine how much benefit the non-traditional transformations
provide over classical optimization. Section 5 presents some more evidence that a large number of
registers is necessary for integer codes. Section 6 describes some previous work on register archi-
tecture. We summarize our conclusions in Section 7 and provide directions for future research.
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2. Compilation Environment

This section describes the optimizations that were applied to increase register usage. We
use the MIRV C compiler. MIRV is an ANSI C compiler which targets the Intel IA32 and Sim-
pleScalar PISA architectures; for this work, the PISA architecture is used because it offers the
ability to use up to 256 registers. The baseline optimization level is -O1, which includes classical
optimizations. The compiler performs graph-coloring register allocation and does scheduling both
before and after allocation. The number of registers available for allocation is passed as a com-
mand-line argument to the compiler. A complete description of the MIRV compiler, the types and
order of optimizations, and a comparison against GCC is outside of the scope of this paper. This
information can be found in our technical report [28].

We use MIRV to transform the C files of the SPECint95 and SPEC2000 benchmarks into
the MIRV high-level intermediate representation (IR). The IR files for each module are then
linked together, producing a single “linked MIRV” file for the benchmark. Once linking is done,
the MIRV compiler can apply the optimizations that are used in this work to show that general
purpose code can take advantage of a larger register set. The following subsections briefly
describe these optimizations.

2.1 Register Promotion

Register promotion allows scalar values to be allocated to registers for regions of their
lifetime where the compiler can prove that there are no aliases for the value. The value is pro-
moted to a register for that region by a load instruction at the top of the region. When the region is
finished, the value is demoted back to memory. The region can be either a loop or a function body
in our compiler. The benefit is that the value is loaded once at the start of the region and stored
once at the end, and all other accesses to it during the region come from a register allocated to the
value by the compiler.

Constant values that cannot fit into an instruction can also be promoted to a register in
order to eliminate load-immediate instructions. Finally, indirect pointer references can also be
promoted to a register. The register promoter in MIRV can promote global scalar variables,
aliased local scalar variables, constants, and indirect pointer references (we call these derefer-
ences). For the remainder of this paper, we will only consider loop regions.

2.2 Link-time Global Variable Register Allocation

One shortcoming of register promotion is that promoted global scalars are moved into and
out of registers each time the loop (promotion region) is invoked. This causes unnecessary load
and store instructions. Instead, MIRV can allocate global variables to registers for their entire life-
time. This eliminates the need to move the globals in and out of registers at region boundaries.

Post-link allocation can be used separately from register promotion, in which case it
achieves much the same effect, in addition to avoiding the movement of values at region bound-
aries. It could also be applied after register promotion. In our experiments, we consider its appli-
cation apart from promotion to isolate its benefit.
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2.2.1 Allocating Global Variables

Instead of allocating globals into the set of local registers, we allocate them to a separate
area of the register file. This is similar to the global registers in the SPARC and IA-64 architec-
tures [22, 23].  After linking the program’s intermediate representation into one file and doing the
appropriate coalescing of global variable declarations and definitions, the compiler determines if
the global’s address is ever taken and annotates that into the global’s declaration in the intermedi-
ate representation.

Next we run the MIRV SimpleScalar/PISA backend and select the global variables to allo-
cate to registers. Because the usage of registers 0-31 is fixed by the System V ABI, MIRV allo-
cates global variables to registers 32..32+N, where N is set by a compiler command-line option. A
global variable must satisfy two conditions before it is considered a candidate for permanent allo-
cation to a register. First, its address cannot be taken anywhere in the program. This ensures that
we can allocate the variable to a register for its entire lifetime without being concerned about
aliasing conditions. Second, the global cannot be an imported variable.  The second condition
ensures that we only allocate user variables to registers—we have opted not to modify the C
library code and thus do not attempt to allocate imported library variables to registers.

MIRV uses three heuristics to determine which global scalars to put into registers. The
first is a simple first-come-first served algorithm. It selects the first N allocatable global variables
and allocates them. The second heuristic is based on a static frequency count estimate. It is deter-
mined by the following formula:

(Eq. 1)

That is, a reference to a variable within the top level of a function is given weight 1. A use
within a loop is given weight 4 << 1 = 8. A use within a doubly-nested loop is given weight 16,
and so on. Candidates are sorted by frequency count with the highest frequency variables getting
preference for registers.

The third and final heuristic is based on a dynamic frequency-of-use. The program is
instrumented with counters which are used to keep track of the execution frequency of the block
statements in the program. The program is then run on a training data set and the final counter val-
ues are used to compute how many times a given global variable was accessed. This data is more
accurate than the static frequency count estimate.

We only consider the static frequency count heuristic in this paper since the first-come-
first-serve is dependent on variable declaration order and the dynamic heuristic does not provide
appreciable performance improvements when there are more than a few registers available for
globals. We call the configurations based on the static heuristic “statX” where X is the number of
registers in the machine. In our experiments, X minus 32 of those registers are permanently set
aside for global variables; the original 32 registers are left to behave according to the ABI specifi-
cation.

Once the candidates are chosen, they are allocated to a register by the MIRV backend. If
the variable being allocated has an initial value, initialization code is inserted into the beginning
of main().

static frequency count (loop nest level ? 4 << loop nest level : 1)
all uses and
definitions

∑=
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We do not use lifetime ranges to compact more global variables into the given number of
registers. We think that trying to compact globals into fewer registers will not yield much appre-
ciable benefit unless the machine has very few registers. Of course, if an existing ISA is used,
then there are very few registers in general so it would be beneficial to try to compact them. Com-
pacting globals by sharing registers requires movement of data between memory and registers.
Register promotion does exactly that, so it is evident that these two optimizations are related.

2.2.2 Allocating Global Constants

Global arrays are responsible for a large portion of the computation in some programs.
Each time a global array is referenced, its base address is formed and then used as part of an
indexing calculation. This address formation (or materialization) takes two instructions on the
PISA (MIPS IV) ISA because of the range limit on immediate constants. Even with loop invariant
code motion that moves these address computations out of loops, many such instructions are exe-
cuted.

We optimize this case by creating a new global scalar variable pointer which is initialized
to point to the base of the global array. This pointer is then used in all array indexing computations
instead of materializing the address. The new pointer variable is allocated to a global register for
the entire program so that instead of materializing it at each point of use, a single register refer-
ence is all that is required. This reduces the number of load-immediate and add instructions that
are executed. We call this optimization address promotion. Address promotion should not be per-
formed if the pointer cannot be allocated to a register because rematerializing the address is prob-
ably cheaper than loading it from memory.

Loop invariant code motion can move many of these instructions out of local loops
because they compute an invariant base address. Promoting the base address into a register
removes all such instructions entirely instead of just moving them outside of the loops, which is
important for functions which are themselves called within a loop. This optimization may seem
wasteful at first because it is allocating a constant value (label) to a register. However, the fre-
quency of these operations and the ease with which register allocation can memoize them make
these operations prime candidates for optimization. Thus address promotion eliminates redundant
computation by memoization. This effect is present in the go benchmark as will be mentioned
later.

Local arrays cannot benefit from this optimization since their base address is already
essentially in a register (at a constant offset relative to the frame pointer).

2.3 Inlining

MIRV inlines two kinds of functions: those that are called from one call site and those that
are “small.” Functions that are invoked from one call site are called singletons. There are a sur-
prising number of singleton functions in the SPEC benchmarks as shown in  the fifth numeric col-
umn of Table 2. From 17% to 63% of functions are called from a single call site. These can be
inlined profitably without causing code expansion because the original function can be removed
after inlining.

Singleton functions are inlined in MIRV if the estimated register pressure is below a cer-
tain bound. Otherwise, if inlining were performed, there might be extra spill code introduced. For
example, if there are 3 live registers at the call site and a maximum of 8 live registers in the single-
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ton callee, then inlining will require 11 registers whereas before inlining, 8 registers was sufficient
because of the prologue spills and epilogue reloads present in the singleton callee. As more regis-
ters are made available to the inliner, this quickly becomes a non-problem.1 The bound is set to
the total number of registers available to the compiler for the specific simulation (either 32, 64, or
256 in this paper). Small functions are those with fewer than 10 C statements. No register pressure
measurements are examined for small function inlining.

Small functions are currently inlined until the code is expanded to a user-defined limit.
The limit we use for this paper is 10%, which means that we do not allow inlining to expand the
static code size by more than 10%. This is not a problem in practice. For example, inlining all the
small functions in go at every call site only results in a 7% code expansion. Once a singleton is
determined to be suitable for inlining based on our register pressure heuristic, the function is
inlined without regard for code expansion because the original copy of the function will be
deleted after inlining. The net code expansion will be about zero.

A potential negative effect of inlining is that of poor code layout. Inlining a function can
make performance worse if functions are aligned in such a way that they conflict with each other

1. Some have disagreed with our approach. It is true that there are no more live values before inlining than 
after. However, combining the allocation candidates of the two functions together can cause spill code 
which performs worse than the original prologue/epilogue code. Our heuristic for this is to look at regis-
ter pressure to determine if more spilling code will be introduced.

Category Benchmark
Total 

Functions

% Functions 
called from 
0 or 1 call 

sites

SPECint95

compress 30 23% 40%

gcc 2,046 15% 26%

go 383 0% 63%

ijpeg 475 46% 29%

li 382 49% 17%

m88ksim 291 22% 30%

perl 349 4% 26%

vortex 959 29% 33%

SPECfp2000

ammp 206 23% 42%

art 41 12% 34%

equake 36 11% 53%

SPECint2000

gcc ? ? ?

gzip 140 16% 31%

mcf 39 8% 54%

parser 349 6% 36%

vortex 959 29% 33%

vpr 301 5% 43%

Table 2. Functions in SPEC benchmarks that are called from 0 or 1 call sites (-
O1 optimization). These are compile-time measurements and do not include 
functions never called dynamically. 
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or if the working set size of the program has been made large enough that it does not fit into the
cache. These issues are not examined in this paper but are described elswhere in the literature
[42].

3. Simulation Environment

All simulations were done using the SimpleScalar 3.0 simulation toolset [24]. We have
modified the toolset (simulators, assembler, and disassembler) to support up to 256 registers. Reg-
isters 0-31 are used as defined in the MIPS System V ABI [10]. Registers 32-255 are used either
as additional registers for global variables OR additional registers for local caller/callee save vari-
ables.

We ran variants of the SPEC training inputs in order to keep simulation time reasonable.
Table 3 shows the data sets used for these experiments. Our baseline timing simulator is the
default sim-outorder configuration; it is detailed in Table 4. Detailed information is available else-
where [28].       

Category Benchmark Input

SPECint95

compress 30000 q 2131

gcc regclass.i

go 9 9 null.in

ijpeg specmun.ppm, -compression.quality 25, other args as in training run

li boyer.lsp (reference input)

m88ksim ctl.lit (train input)

perl jumble.pl < jumble.in, dictionary up to ’angeline’ only

vortex 250 parts and 1000 people, other variables scaled accordingly

SPECfp2000

ammp test input modified so that numstp is 1, short.tether has the first 162 
lines, and all.init.ammp has a subset of the statements in the original

art -scanfile c756hel.in -trainfile1 a10.img -stride 2 -startx 134 -starty 
220 -endx 139 -endy 225 -objects 1 (test input)

equake < inp.in (test input)

SPECint2000

gcc first 1442 lines of test input cccp.i

gzip input.compressed 1 (test input)

mcf inp.in (test input)

parser 2.1.dict -batch < test.in

vortex 250 parts and 1000 people, other variables scaled accordingly

vpr
net.in arch.in place.in route.out -nodisp -route_only -
route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -
first_iter_pres_fac 4 -initial_pres_fac 8 (test input)

Table 3. Description of benchmark inputs. 
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4. Experiment Results

The results of our experiments are presented in the following subsections. The baseline in
all cases is MIRV -O1 with 32 registers. In each set of graphs in the following subsections, the
first two bars are the MIRV -O1 results with 64, and 256 registers. The graphs show simulated
cycles for each of the SPECint and SPEC2000 benchmarks described in the previous section.1

Each figure shows the performance improvement of the respective optimization compared to -O1
with 32 registers so that it is clear what the individual optimization is doing to performance. Sec-
tion 4.1 shows -O1 versus -O1 with register promotion. Section 4.2 shows -O1 versus -O1 with
link-time allocation. Section 4.3 shows -O1 versus -O1 with inlining. Section 4.4 shows the com-
bination of all 4 sets of optimizations. The final subsection, Section 4.5, shows some information
on the cache effects of the optimizations.

Note that -O1 performance can actually become worse when the number of local registers
is increased because of extra spill code in the prologue and epilogue to handle callee save regis-
ters.

4.1 Register Promotion

Our first set of results shows the performance increases due to register promotion. In addi-
tion to the two -O1 bars, each graph has three bars for register promotion, for 32, 64, and 256 reg-

SimpleScalar 
parameter

Value

fetch queue size 4

fetch speed 1

decode, width 4

issue width 4 out-of-order, wrong-path issue included

commit width 4

RUU (window) size 16

LSQ 8

FUs alu:4, mult:1, memport:2, fpalu:4, fpmult:1

branch prediction 2048-entry bimod, 4-way 512-set BTB, 3 cycle extra mispredict latency, non-
spec update, 8-entry RAS

L1 D-cache 128-set, 4-way, 32-byte lines, LRU, 1-cycle hit, 16KB

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, 16KB

L2 unified cache 1024-set, 4-way, 64-byte line, 6-cycle hit, 256KB

memory latency 18 for first chunk, 2 thereafter

memory width 8 bytes

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Table 4. Simulation parameters for sim-outorder (the defaults). 

1. Note to the reviewer: There are several empty entries in the graphs and tables that follow. These simula-
tions will be completed for the final paper.
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isters. Register promotion improves performance from 5% to 15% on some benchmarks. Other
benchmarks, most notably li, actually get worse with register promotion. This is due to spilling
caused by the promotion. 

The art benchmark was helped a great deal by register promotion. Examination of the
benchmark source reveals five integer global variables which are used heavily in loops for com-
parison and array indexing operations. In addition, there are several global pointers into arrays
and other data structures that are promoted. Promotion provides a significant performance win by
reducing the number of loads by 46%. A small reduction in store instructions (2.3%) indicates
that these variables are not modified often by the program. These variables may not require full
promotion but can use a weaker form that only considers load instructions.

As the number of registers is increased for promotion, results generally improve slightly.
Some benchmarks, such as m88ksim and vortex, show a performance degradation. This is due
to the extra register save and restore operations at function call boundaries. This overhead out-
weighs the benefit of promotion. While the reduction in the number of memory operations for go,
ijpeg and equake is significant (10%-15% of each category), performance only improves by
about 5%-8%.

4.2 Link-time Global Variable Register Allocation

Figure 2 shows the performance results when link time allocation is applied. The results
reported are for 32 and 224 registers specifically set aside for global variables. Because of pre-
compiled libraries, we could not permanently allocate any global variables to registers 0-31.  This
optimization reduces the number of load instructions anywhere from 0% to 50%.  Some bench-
marks, such as ijpeg, vortex and equake see little or no reduction in memory operations.
For those benchmarks that do see a significant reduction, performance improves up to 15%. 

Figure 1. Performance of register promotion. 
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Performance actually degrades in some cases when the number of registers set aside for
global variables is increased from 32 to 224 (the stat64 and stat256 configurations, respectively).
This is not intuitive and indeed is due to another effect: code layout. For example, for vortex
compiled with -O1 optimizations, the instruction cache miss rate is 7%. For the same program
compiled with link-time allocation, the instruction cache miss rate is over 9%.

The effect of allocating base addresses is significant for some benchmarks, particularly
go, which accesses a lot of global arrays. In this case, loads and stores are reduced as well as
address arithmetic. Essentially, the base address has been memoized into a register. This reduces
the amount of redundancy in computation that is seen during program execution.

Compress is not a particularly good benchmark to study in this context because most of
the benefit of link-time allocation comes from two global pointer variables which index into I/O
buffers. These are used in two small helper functions called getbyte() and putbyte(),
which were introduced when the program was made into a benchmark. Link-time allocation helps
to remove this inefficiency and eliminates almost 60% of the load instructions and nearly 50% of
the store instructions in that benchmark.

Many of the benchmarks show that adding registers for global variables is much more
important than adding registers for local variables. For example, the compress benchmark does
not benefit at all at the -O1 optimization level with 64 or 256 registers. However, setting aside 16
registers for globals vastly improves the performance. This is true for go, m88ksim, art, gzip,
and vpr, and to a lesser extent some of the other benchmarks.

Adding registers for locals does impact performance by 5% or more for go, m88ksim,
and equake. Sometimes variables are aliased for a small initial portion of their overall lifetime
and could be allocated permanently to a register afterwards. For example, we noticed that in the
compress benchmark, the global seedi integer could be allocated to a register after it is ini-

Figure 2. Performance of post-link allocation. 
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tialized through a pointer. However, this yielded only a marginal performance improvement, so
we did not investigate this further.

Link-time allocation is much more effective than register promotion at improving perfor-
mance. This points out the importance of permanently allocating globals into registers. Promotion
can achieve some of this benefit by removing loads and stores from loop bodies, but it still shut-
tles data back and forth to memory at region boundaries. If the promotion itself occurs within a
function that is called from a loop, the promotion and demotion are still within a loop. Link-time
allocation avoids all such unnecessary data movement.

4.3 Inlining

Figure 3 shows the experiment results when inlining is applied to the benchmarks. The
results suggest that with inlining, register pressure increases significantly.  This is particularly true
for go and equake, as adding more registers results in performance improvements. Other bench-
marks like compress and art do not make use of extra registers.  

Inlining increases register pressure in two ways. First, the local variables for the caller and
callee are combined and allocated in a single graph coloring phase. Both sets of variables compete
for the same set of registers. The function call overhead that takes care of shuttling these two sets
of variables in and out of registers has been eliminated. Second, inlining also increases the scope
of optimization. Because the optimizer has an increased amount of program context, it can per-
form more transformations. As a general rule, transformations increase register pressure by add-
ing temporaries and extending value lifetimes. As a result, inlining increases register pressure
indirectly by opening up more opportunities for program transformation.

Without extra registers, gzip perform worse when inlining is performed. This is mainly
due to register spilling. Inlining introduces too many simultaneously live variables which must

Figure 3. Performance of -O3 (inlining). 
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subsequently be spilled. Often this spill code is more expensive than the function call register save
and restore because it occurs in multiple places (everywhere the variable is referenced).

4.4 Combined Results

The graphs in Figure 4 show what happens when we combine the optimizations of the last
three sections: register promotion, link-time allocation, and inlining. The third bar shown is what
we call “best16”. This includes all the aforementioned optimizations. The ‘16’ in the name indi-
cates that we allowed 16 extra registers for local variables (for promotion and inlining) and 16
extra registers for global link-time allocation, for a total of 32 extra registers. Similarly for
best112, where a total of 224 extra registers are allowed, half for local variables and half for link-
time allocation. The number of cycles required to execute the program is generally by 10% to
20% in almost every case.

In particular for the go benchmark, when best112 is applied, the execution time and num-
ber of dynamic instructions has been reduced by 20% over the baseline -O1 optimization level.
The number of loads has been reduced by over 30% and the number of stores by over 50%.1

Each of the optimizations has increased register usage and takes advantage of extra regis-
ters. For example, the extra 32 registers available in the best16 configuration demonstrate signifi-
cant performance improvements over -O1 optimization. In some cases, like compress, go,
m88ksim, and vpr, the best112 configuration (a total of 224 extra registers) shows 3% to 7%
performance improvement over the best16 configuration. This configuration serves to illustrate
the point that more than 32 registers are required to achieve the best possible performance in our
compilation environment. Ideally, an architecture should have at least 64 registers to allow for the
maximum benefit for register promotion, global variable allocation, and inlining. With more
aggressive alias analysis, optimizations, and scheduling, we are confident that the compiler could
use even more registers than reported here.

4.5 Cache Effects

The number of data cache accesses for the best configurations is shown in Figure 5. The
graph shows the number of data accesses made to the cache. This is an important  metric because
it shows the effectiveness of register allocation techiques in shielding the memory hierarchy from
traffic. The combination of optimizations produce substantial reductions in cache accesses for go,
art, gzip, vpr, and to a lesser extent the other benchmarks.

There are several potential benefits of reducing the number of cache accesses. For exam-
ple, fewer demand accesses to the cache by the processor might allow the memory hierarchy to do
more effective prefetching since it has more time to query the cache to see if prefetch candidates
already reside in the cache. Another important benefit is power savings.

In Table 5, we show the reductions in data cache hits and misses for the best112 configura-
tions. The number of cache misses is not reduced substantially for any benchmark. On the other
hand, the number of cache hits has been reduced in most cases, sometimes as much as 30% to
60%. In effect, the compiler has moved items from the data cache into the register file: those
items that were already hits in the data cache are now hits in the register file. This is a good opti-
mization because the register file will likely be much faster to access than the cache, in addition to

1. Due to space limitations we cannot show the graphs of the counts of instructions, loads, and stores.
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having a much higher bandwidth because of the larger number of ports typically available on a
register file.

This is an important illustration of how it is not always most important to optimize the pri-
mary “bottleneck” in the system. In the case of memory accesses, it is intuitive to focus on reduc-

Figure 4. Performance of the “best” configurations. 
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Figure 5. Data cache accesses in O1 and best various configurations. 
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ing the cache miss latency or miss ratio because misses are expensive in terms of cycles. Such is
the focus of work on prefetching and smarter cache replacement policies. Instead, our research
optimizes the common case, cache hits, and effectively reduces the cache hit time by eliminating
the cache access altogether. From our data, it seems that techniques which reduce cache miss
latency or miss ratio can be applied on top of our optimizations to further improve performance.
Processors with larger caches which have two or more cycle access time would benefit even more
from optimizing the cache hit time this way.

For example, if a load-use instruction pair executes in back-to-back cycles  on a conven-
tional microarchitecture, changing the load into a register access can improve performance by
eliminating the load instruction (one cycle) and also allowing the consumer instruction to start
one cycle earlier, for a savings of two cycles. Compiler scheduling may reduce this benefit by sep-
arating the load from its use. On the other hand, the situation may be worse if the load has to wait
for a free port on the data cache. Allocating the variable to a register instead solves two problems
at once: it reduces path length by elimination of load and store instructions, and it solves the band-
width problem because the register file will typically be highly ported.

In Figure 6 we show how inlining and our “best” optimization impacts instruction cache
performance. Instruction cache performance is not significantly impacted by our optimizations in
most cases. Inlining often results in a better cache hit rate than -O1 optimization. The exceptions
are li95, m88ksim, and vortex, where the instruction cache miss rate increases by 1% or
more. When the “best” optimizations are turned on, the situation is remedied because the best
configuration does not do inlining as aggressively since some registers are reserved for link-time

Category Benchmark

Misses in 
best112 

Relative to 
Baseline

Hits in 
best112 

Relative to 
Baseline

SPECint95

compress 100% 36%

gcc ? ?

go 96% 60%

ijpeg 99% 89%

li 102% 84%

m88ksim 101% 84%

perl 96% 94%

vortex ? ?

SPECfp2000

ammp ? ?

art 101% 38%

equake 100% 89%

SPECint2000

gcc ? ?

gzip 100% 44%

mcf 100% 91%

parser 100% 66%

vortex ? ?

vpr 99% 73%

Table 5. Data cache misses of the best configurations relative to O1-32. 
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global allocation and thus are not available for inlining. Alternative code layouts were not consid-
ered, although our experience indicates this could improve performance by several percent.

5. Theoretical Register Requirements

This subsection examines several measurements to determine what the most appropriate
number of registers would be for an architecture that processes general purpose code.

5.1 Variable Count Arguments

The first measurement we show is a simple counting argument pointing out that there are
many candidates for register allocation. Additional intraprocedural optimizations, such as our -O2
configuration, generally increase the number of candidates for allocation. Inlining in the -O3 col-
umn shows a significant reduction in the number of candidates. This is because inlining
eliminates parameter variables and allows propagation optimizations. At the same time, inlining
increases the number of long-lived variables that are allocated to registers.  

Table 7 shows the number and types of global variables in the benchmarks. The fourth col-
umn in the table shows the percentage of global variables that are not considered as candidates to
be placed into a register. This percentage is computed by linking together the benchmark at the
MIRV IR level and processing the MIRV IR with a filter that determines whether the global vari-
able’s address is ever taken. If it is, then we say the variable cannot go into a register (even though
it may be able to be enregistered for parts of its lifetime).

The integer benchmarks fall into two categories. For the majority of the benchmarks, most
global variables could be allocated for their entire lifetime. Two interesting cases are go and

Figure 6. Instruction cache miss rates for the -O1-32 and best configurations. 
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vortex, where there is a high percentage of globals that are aliased. In both benchmarks, most
of the variables in question are passed by address to some function which changes the global’s
value. The number of call sites where this happens is usually fairly small for any given variable.
In vortex, a heavily used variable called Theory is modified through a pointer in memory manage-
ment code. It appears that this use through the pointer is for initialization only (so register promo-
tion could promote the global to a register after initialization is over). The floating point
benchmark equake shows similar behavior.

Overall, there are a significant number of global variables in these benchmarks which may
benefit from register allocation. The global aggregates (shown in the fifth column of Table 7) are
the number of arrays and structures found at the global scope. The base addresses of these struc-
tures are candidates for register allocation as well.

Figure 7 shows two more counting arguments. Figure 7(a) shows an estimate of the maxi-
mum register pressure in the “worst” function in each of the benchmarks. Typically under 40 reg-
isters are required by such functions, but occasionally the number climbs well above 50,
particularly under the -O4 optimization level. A similar situation is seen in Figure 7(b), where the
maximum live at any function call site is shown. For example, there are 40 simultaneously live
values at the “worst” call site in the go benchmark under -O1 optimization. 

5.2 Instruction Count Argument

The last section showed measurements of the “worst” functions in the benchmarks but
said nothing about the average register requirements. This section shows data on the register
requirements of the go benchmark over four different optimization levels in Figure 8.1 The X-

Category Benchmark
-O1 Local 
Variables

-O2 Local 
Variables

-O3 Local 
Variables

-O4 Local 
Variables

SPECint95

compress 117 120 49 49

gcc 24842 ? ? ?

go 3435 3490 1948 1948

ijpeg 3321 3330 2251 2251

li 1703 1713 1506 1506

m88ksim 1859 1887 1298 1298

perl 4062 4125 3764 3764

vortex 13690 13778 7859 7860

SPECfp2000

ammp 2332 2364 1855 1855

art 154 254 174 174

equake 191 218 84 84

SPECint2000

gcc ? ? ? ?

gzip 690 714 398 398

mcf 218 218 76 76

parser 1924 2001 1296 1296

vortex 13690 13777 ? 7860

vpr 2244 2388 1639 1639

Table 6. Statistics on local variables under different optimizations levels. 
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axis of each graph is the number of registers in a register bin. The Y-axis shows the percentage of
dynamic instructions that execute in functions which required that number of registers. For exam-
ple, in Figure 8(a), 36% of the instructions come from functions where 13-16 registers are desired
by the function. This does not count special registers such as the frame pointer, stack pointer, glo-
bal pointer, zero, and assembler and kernel reserved registers. We will assume that there are 8
such reserved registers for the sake of argument. For these instructions, a register file size of
13+8=21 to 16+8=24 is the right number.

Figure 7. Other estimates of register pressure in the benchmarks. Note the change in y-axis scale.
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These numbers are produced by annotating the each function with a maxlive attribute
which tells how many registers are simultaneously live in the function. This maxlive number
comes directly from the live variable analysis phase of the backend’s register allocator. Its final
value is computed immediately before the assembly code is generated, so it includes the effect of
spilling code to reduce register pressure for a given register configuration. This information is
used along with a profile that tells how many instructions were executed from each function. Note
that the maxlive number is not how many colors were required to color the graph, but instead is
the maximum number of values that are simultaneously live. It would take at least this many reg-
isters to color the graph without any additional spilling code. Therefore, maxlive is a lower bound
on the number of registers required for maximum performance.

The executable that was used to produce Figure 8(a) was compiled assuming 32 registers
were available on the machine. Figure 8(b) shows that when this assumption is changed, to 256
registers, the profile looks significantly different. In this case, 32 registers are required over 10%
of the time and 40 registers another 10%. This points out that when the compiler is limited to 32
registers, the register-usage profile appears to be very conservative (because of the spilling code
inserted during register allocation). Only when the compiler is loosed from the restriction of a
small register file can a true measurement of register requirements be made.

Thus far, we have shown that with traditional optimizations such as CSE and LICM, the
MIRV compiler could easily and profitably use a machine with 40 or more registers.

Figure 8(c) shows what happens when link-time allocation is applied to go. Even more
registers are required–25% of the time, a register file size of 32-40 is appropriate. Figure 8(d)
shows what happens when all of the optimizations in this paper are turned on. A large shift to the
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right of the graph occurs, and many instructions are executed in a context that requires 56 or more
registers. From this data it is clear that current compiler technology can utilize a large number of
registers. At least 64 registers are required for the benchmarks shown here.

5.3 Cross-Function Argument

The previous sections considered register allocation in the conventional sense, where the
allocator is limited to candidates within a single function. A running program, however, typically
has several functions “in progress” on the call stack. Each of these has some number of live values
which should be summed to find out the best number of registers for the architecture. Since this is
a hard number to compute, in this section we provide a couple of estimates to show the utility of a
cross-function allocation scheme.

The first is simply the call graph depth, shown in Figure 9(a). This graph shows the maxi-
mum call depth reached by the benchmark. Most benchmarks only traverse 10 to 20 levels deep in
the call graph. This supports the classic argument for register windows, which is that windows
will allow the machine to capture most of the dynamic call stack without stack overflows and
underflows, which necessitate memory operations to manage the stack.

The graph in Figure 9(b) shows our estimate of the register requirement of each of the
benchmarks. This estimate is produced by applying the following formula to the dynamic call
graph:

(Eq. 2)

Category Benchmark
Global 

Variables

Un-
allocatable 

Globals

Global 
Aggregates

SPECint95

compress 27 3.7% 14

gcc 1018 7.1% 298

go 80 15% 200

ijpeg 29 3.4% 35

li 79 0.0% 3

m88ksim 106 1.9% 8.7

perl 208 2.9% 42

vortex 515 41.7% 105

SPECfp2000

ammp 48 6.3% 4

art 28 7.1% 4

equake 34 35.3% 4

SPECint2000

gcc ? ? ?

gzip 99 2.0% 47

mcf 6 0.0% 3

parser 83 22.9% 92

vortex 515 41.7% 105

vpr 96 6.3% 10

Table 7. Statistics on global variables under -O1 optimization. 

CGmaxLive caller( ) MAX CGmaxLive callee( ) maxLiveAtCallSite caller( ),+
maxLive caller( ) 

 =
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The formula is applied during a run of the benchmark where the call graph is annotated
with two pieces of information. At each call site, we have placed an integer for the number of live
variables at the call site minus the number of parameters. We call this number maxLiveAt-
CallSite(caller) and do not include parameters under the assumption that CGmaxLive(callee) will
include those. The other number is annotated into the function itself and is the most number of
live variables at any point of the caller function. We call this maxLive(caller).

As an example of how this formula works, consider the following situation. Function A
has maxLive(caller) = 11 and maxLiveAtCallSite(caller) = 3. If we call a function B whose
CGmaxLive is 6, then the simulator says that for this sequence of function calls, max(3+6, 11) =
11 registers is plenty. If B’s CGmaxLive is 9, then the 12 registers is about right.

The graph in Figure 9(b) shows this estimate across our benchmark. A very large number
of registers is suggested. When all optimizations are turned on, the “best” number of registers is
estimated to be about 100 or more for most benchmaks. Some require several hundred registers.
The outlying point is the li benchmark. This is a recursive descent program has a very compli-
cated dynamic call graph for which it would be difficult to keep all values in registers. 

6. Related Work

6.1 Intra-Procedural Allocation

Mahlke et. al. examined the trade-off between architected register file size and multiple
instruction issue per cycle [1]. They found that aggressive optimizations such as loop unrolling
and induction variable expansion are effective for machines with large, moderate, and even small
register files, but that for small register files, the benefits are limited because of the excessive spill
code introduced. Additional instruction issue slots can ameliorate this by effectively hiding some
of the spill code. This work noticed little speedup or reduction in memory traffic for register files
larger than about 24 allocatable registers (often fewer registers were required). The compiler used
in the study was not able to take advantage of more registers because of the conventional applica-
tion binary interface [10] and lack of optimizations in the compiler such as those described here.

Benitez and Davidson study the effect of register deprivation on compiler optimizations
[2]. The technique proposed in that paper is to study the effect of a series of probes where the
compiler is deprived of more registers in each successive probe. This allows the compiler writer
to examine the effect of optimizations on register utilization. The paper suggests that current tech-
nology cannot utilize a large number of registers.

The large body of research into optimizing spill code indicates the prevalence of spill
operations in modern programs and highlights the importance of having a sufficient number of
registers. For example, Cooper and Harvey propose the compiler-controlled memory which com-
bines hardware and software modifications to attempt to reduce the cost of spill code [11]. The
hardware mechanism proposed is a small compiler-controlled memory (CCM) that is used as a
secondary register file for spill code. The compiler allocates spill locations in the CCM either by a
post-pass allocator that runs after a standard graph-coloring allocator, or by an integrated allocator
that runs with the spill code insertion part of the Chaitin-Briggs register allocator. A number of
routines in SPEC95, SPEC89, and various numerical algorithms were found to require significant
spill code, but rarely were more than 250 additional storage locations required to house the spilled
variables. Potential performance improvements were on the order of 10-15% on a processor with
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a 2-cycle memory access time, but effects from larger traditional caches, write buffers, victim
caches, or prefetching were not modeled. These results show the potential benefit of providing a
large number of architected registers–not only simplifying the compilation process, but also
reducing spill code and memory traffic.

Figure 9. An estimate of register pressure based on the dynamic call graph. 
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6.2 Inter-Procedural Allocation

Wall described a link-time approach that allocates local and global variables as well as
labels into registers [17]. The linker can optionally do a global register allocation pass which
builds the call graph of the program and groups functions based on whether they can be simulta-
neously active or not. For functions that can never be simultaneously active, their local variables
can be allocated to the same registers without needing to save and restore them across call bound-
aries. Functions that can be simultaneously active have their locals allocated to separate regions of
the register file, while functions that cannot be live at the same time can share registers. Global
variables as well as constants such as array base addresses take part in the link-time allocation as
well. Once a global is allocated to a register, it resides in that register for its entire lifetime. The
most frequently used variables are selected to be allocated into registers. This is done either with
static estimates or with profiling data. Once it is determined which variables will be allocated to
registers, the linker rewrites the object code under the direction of compiler-provided annotations.
Compared to the baseline—the original code produced by the compiler which has only the 8 tem-
porary registers—the link-time technique improves executable speed by 10 to 25% on a configu-
ration with 52 registers. Link-time allocation (without dataflow analysis or coloring at all) does
better than traditional graph coloring such as is done in a Briggs-Chaitin allocator [19, 20, 21].
Graph coloring can be added in Wall’s system in order to allow variables which do not conflict
within a procedure to share a register. This local coloring is especially important when there are
few registers in the machine but does not improve performance much with 52 processor registers.

Our post-link allocation strategy is closely modeled after an earlier one described by Wall.
First, we compare our results against a more aggressive set of baseline compiler optimizations
than the previous work. Second, we only consider global variables because we do not have the
ability to modify any library code as in the previous study; local variables are allocated with tradi-
tional graph coloriong techniques within the constraints of the application binary interface. Third,
we examine the benefits of global variable register allocation over a wider range of machine con-
figurations; in particular, the number of registers is a variable in this study but was fixed at 52 in
the previous work. Fourth, we choose a simpler frequency-based allocation scheme that does not
build the program’s control flow graph. Finally, our link-time allocation transforms the high and
low-level IRs of the MIRV compiler instead of working at a binary level.

The Sparc architecture’s register windows are a hybrid register/memory architecture
intended to optimize function calls [3, 22]. Each subroutine gets a new window of registers, with
some overlap between adjacent register windows for the passing of function arguments.

Because Wall’s link-time allocator splits the registers across active functions, it is a soft-
ware approximation of the behavior of register windows [18]. Wall concludes that using profile
information to guide the link-time allocator always produces better performance than register
windows. Variable-sized windows are slightly better than fixed-size windows, and it is more
important to add a set of registers for global variables than adding more registers for the window
buffer. This points out the importance of allocating global variables to registers.

Chow describes a similar interprocedural approach to register allocation where the avail-
able functions are visited in depth-first order and allocation made from the bottom of the call
graph towards the top [41]. He calls this the “depth first interprocedural register allocator.” In the
ideal case, if function A calls function B, then B will have been allocated before A is visited. Then
when A is being allocated, it can see the registers that are in use by B and avoid using them. This
allows the compiler to omit prologue and epilogue code to manage callee save registers. In effect,
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this pushes the callee save spills upwards in the call graph, eliminating them from the functions
closer to the leaves. Like Wall’s allocator, this approximates the behavior of hardware register
windows.

6.3 Register Promotion

Cooper and Lu examined promotion over loop regions. Their algorithm is most similar to
what is presented here [14], though our alias analysis is a form of MOD/REF analysis which is
somewhat simpler than used in any of the previous work. Sastry and Ju examine promotion over
arbitrary program intervals using an SSA representation [15]. Lo and Chow use a variant of par-
tial redundancy elimination to remove unnecessary loads and stores over any program region
[16].

All of the previous work shows substantial reductions in the number of dynamic load
instructions executed and varying reduction in the number of stores eliminated. Typically 0-25%
of loads are removed and up to 40% of stores are removed, depending on the program. Explicit
load/store instructions are needed for register promotion because the global variables share regis-
ters which are local in scope. Cooper and Lu’s results indicate that the main benefit of promotion
comes from removing store operations. The other previous work shows that loads are improved
more than stores. This disparity is primarily because the baseline compiler optimizations are not
reported in any detail in any of the papers, which makes it difficult to perform a fair comparison.
Two of the papers only counted the improvement compared to the total number of scalar load and
store instructions [15, 16]. While this shows the improvement of one aspect of the memory bottle-
neck, it does not show how effective promotion is at removing overall memory operations. One of
the papers did not consider the effect of spilling because it simulated with an infinite symbolic
register set before register allocation [16]. Spill code is inserted by the allocator if too much pro-
motion occurs in a region. Each of these papers reported on the improvement in dynamic load and
store counts after their promotion algorithm was applied. They did not report on results from a
cycle simulator as we do here.

7. Conclusions

This work first demonstrated the lack of consensus regarding register set size in research
and commercial products. Research has been contradictory, ranging from statements like “com-
piler technology cannot utilize a large register file,” to the other extreme that register sets of 100
or more registers are necessary for best performance. For commercial parts, register set sizes from
8 to 128 are seen in both the embedded and high performance realms.

While this is the case, the majority of high-volume processors have 32 or fewer registers.
This can be attributed to a number of causes, primarily related to human programming style and
the variables that are considered as candidates for allocation.

We have demonstrated in this paper that existing advanced compiler optimizations can
easily make use of 64 or more registers in general purpose codes. A reasonably aggressive opti-
mizing compiler can make use of registers by allocating global variables, promoting aliased vari-
ables (in regions where it is accessed through one name only), as well as inlining, to improve
performance up to 20%. These performance improvements were possible even when the number
of cache misses did not decrease appreciably when optimizations were applied. This demonstrates
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two additional important conclusions. First, the allocation techniques used here are effectively
moving data from the data cache into the register file. Second, these optimizations eliminate
cache accesses through this movement, effectively speeding up access to data that would other-
wise reside in the cache. Since cache hits are the common case, this is an important optimization.
Other techniques that reduce cache miss penalty such as prefetching, data layout, and smarter
cache replacement policies, are orthogonal to the work here.

Finally, this work demonstrates that we can use even more registers if the compiler can
allocate registers such that active functions share the register file. In this case, 100 to 200 registers
are necessary to satisfy the register requirements of most benchmarks.

We note that there are other candidates for register allocation that we have not explored in
this work. Aliased data items cannot reside in registers for their entire lifetime or in regions where
they are aliased unless support is added to the hardware. We will examine this in future work.
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Appendix A: Register Promotion Implementation

 The following is a simplified explanation of how the algorithm proceeds. Each function in
the module is treated separately, except for the alias information that is shared between functions.

1. Collect global scalar variables and constants into globalCandidateList
2. Collect aliased scalar local variables into localCandidateList
3. Walk through the function and find each variable or constant reference, or suitable 

dereference. If it is a direct reference is to a globalCandidate or localCandidate, store 
this reference into the candidateReferenceList. There is a candidateReferenceList for 
each promotion region. If it is a suitable dereference, also add it to the candidateRefer-
enceList.

4. For each promotion region, remove aliased candidate references from the candidat-
eReferenceList. An alias exists if the alias analyzer has determined there is a potential 
definition or use of the candidate which is not through the candidate’s primary name.

5. For each promotion region, promote all candidates that remain in the candidateRefer-
enceList for the region. Do not promote something in an inner loop if it can be pro-
moted in an outer loop.

In MIRV, dereferences are only promoted in loop regions. A “suitable dereference” is a
load or store operation which satisfies a number of conditions. For this work, these are:

1. The base address is a simple variable reference.
2. The dereference is at the top level block of the loop, i.e. not in a conditional clause. 

Otherwise promoting it might cause a fault.



28

3. The loop must be a do-while loop so that it is guaranteed to execute at least once. This 
is often satisfied because MIRV performs loop inversion to reduce the number of 
branches in the loop, which turns while loops into do-while loops.

4. The variable constituting the base address must be loop invariant and there must be no 
other definitions of it in the loop.

Step 4 in the above algorithm depends on the alias analysis used in the compiler. MIRV
does flow-insensitive, intra-procedural alias analysis. Our alias analysis is based on the presenta-
tion in Muchnick’s book, where he also notes that flow-insensitivity is not usually problematic
[37]. The lack of inter-procedural alias analysis implies that pointers passed in function calls
result in the conservative assumption that anything reachable through the pointer is both used and
defined in the callee. To mitigate the effects of function calls, the compiler performs a simplistic
side-effect analysis [38]. For each function, the compiler records which global objects may be
used and defined in the function. Pointer arguments are assumed to point to any global object of
compatible type. We have observed that this process opens up many more chances for promotion
than would otherwise be possible.

The MIRV promoter can also promote dereferences of invariant pointers. For example, the
loop in Figure 10 has an array reference with a loop-invariant index. The array element can be
promoted to a register as shown in the figure.

Figure 10. Example of promotion of an indirect memory reference.  After optimization, the invariant 
address computation is moved out of the inner loop, leaving a dereference of t1. This constitutes a load 
and store operation. Note that the address arithmetic is now explicit (no C scaling). After register promo-
tion, the dereference is removed from the loop [14].

for (i=0;i<DIM_X;i++) {
  B[i] = 0;

  for (j=0;j<DIM_Y;j++)
    B[i] += A[i][j];

}

Original Code

for (i=0;i<DIM_X;i++) {
  B[i] = 0;
  t1 = &B + i*4;
  for (j=0;j<DIM_Y;j++)
    *t1 += A[i][j];

}

After Optimization

for (i=0;i<DIM_X;i++) {
  t1 = &B + i*4;
  t2 = 0;
  for (j=0;j<DIM_Y;j++)
    t2 += A[i][j];

  *t1 = t2;
}

After Register Promotion


