Ismene: Provisioning and Policy Reconciliation
in Secure Group Communication™

Patrick McDaniel Atul Prakash
Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor
pdmcdadaprakash @eecs.umich.edu

Abstract

Group communication systems increasingly provide security services. However, in practice, the use
of such systems is complicated by the divergent requirements and abilities of group members. In this
paper, we define a policy language called Ismene that direcfgdhesioningof security-related resources
at member sites. The communication service is defined through a reconciliatiogrofia policyand
member'docal policiesinto a security configuration. Group authorization and access control appropriate
for the operating conditions and session configuration are also defined within the policy. The use of Ismene
policies to define security is illustrated through an extended example of a group application built on the
prototype Ismene framework.

1 Introduction

Recent advances have addressed many of the difficult problems in secure group communication [36, 29].
However, a critical, but as yet largely unaddressed, problem is the reconciliation of the differing security
requirements of group members. Group members can belong to different organizations that desire to place
unigue restrictions on participation and represent different capabilities. Security requirements can also differ
from session to session, depending on the nature of the session and the environment in which it is conducted.
Thus, the conditional requirements of all parties must be considered in constructing a secure group. In this
paper, we define a policy language, called Ismene, that permits the specification and reconciliation of group
and member security requirements.

In Ismene, a security policy specifies two central aspects that are important in group communication:
provisioningandauthorization and access contrdBoth aspects are specified in group and local polices. We
define agroup policyas the statement of the entirety of security-relevant properties, parameters, and facilities
used to support a group session. Thus, a group policy states how security directs behavior, the entities allowed
to participate, and the mechanisms used to achieve security objectives. This use of policy affords a degree
of coordination; dependencies between authorization, access control, data protection, key management, and

“This work is supported in part under the National Science Foundation Grant #ATM-9873025 and by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0508. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. Government.

other facets of a communication can be represented and enforced within a unifying policy. A member states
the set of local requirements on group sessions throdghad policy. The group and member local policies
arereconciledwithin an environment prior to the establishment of each session.

The provisioning aspect of a security policy identifies the basic security requirements and the mapping of
those requirements into a configuration of security-related services or mechanisms at member sites. Ismene
group and local policies ameconciledto arrive at a specific configuration for a session. Potential participants
of a session verify that the session’s configuratioocaspliantwith their local policy before participating. A
group policy is tested against a set of legal usage assertions thanagyfsisto ensure that any configuration
resulting from reconciliation will not introduce negative side effects.

The authorization and access control aspect of a security policy defines how sessions regulate action within
the group. The authorization and access control implemented by a group is explicitly stated in its configuration.
Ismene is limited to expressions of positive criteria under which access is allowed, but permits the integration
of other authorization frameworks where more expressive power is required.

Ismene focuses on the configuration of secure groups from the group and local policies. We define a group
policy as the statement of the entirety of security-relevant properties, parameters, and facilities used to support
a group session. Thus, a group policy states how security directs behavior, the entities allowed to participate,
and the mechanisms used to achieve security objectives. This use of policy affords a degree of coordination;
dependencies between authorization, access control, data protection, key management, and other facets of a
communication can be represented and enforced within a unifying policy.

Policy has been used in different contexts as a vehicle for representing authorization and access control
[37, 4, 8, 38, 33], peer session security [39], quality of service guarantees [6], and network configuration [35].
These approaches define a policy language or schema appropriate for their target problem domain. Ismene
expands on this work by defining an approach in which policy is used to provision and regulate the services
supporting communication, and to check the compliance of the group definition with local requirements.

Mechanism composition has long been used as a building block for distributed systems [28, 30, 2, 3, 11,
27]. Composition-based frameworks specify the compile or run-time organization of sets of protocols and
services used to implement a communication service. The resulting software addresses the requirements of
each session. However, the definition and synchronization of specifications is largely relegated to system
administrators and developers. Our approach seeks to extend compositional systems by defining a language in
which security requirements are consistently mapped into a system configuration.

The remainder of this paper describes the design and use of the Ismene. We have constructed a number of
tools for the creation and analysis of Ismene specifications. The format and semantic of Ismene is detailed. We
define and briefly discuss approaches for policy reconciliation, compliance checking, and analysis. We have
extended a secure group communication framework [1] to implement group security from Ismene policies.
Several non-trivial group applications have been developed on the augmented framework. The use of Ismene
is illustrated through an extended example of one such application in the latter sections of this paper. We
discuss a number of works related to policy in secure group communication.

2 Language Goals and Requirements

To motivate the goals of Ismene, the following presents simplified security requirements for an example
group teleconferencing applicatiai, . Thetc application is to be deployed within a compamnydget.com.
widget.com’s organizational policy fotc requires the following:

¢ the confidentiality of all session content must be protected by encryption sl or AES (provi-
sioning requirement)
e participation in a session is restrictedédget.com employees (access control requirement)
Now supposedlice wishes to sponsor a session of applicatonthat meets her following local policy:

2

¢ Alice wishes to use onl E'S cryptographic algorithm only (provisioning requirement); and
¢ she wishes to restrict the session to Ble.eWidgets team (access control requirement)

A basic requirement on the policy language is that it must be able to specify provisioning and access control
policies at the application level as well as for each member, and resolve them into a specific session policy
instance. In the above example, the result of such resolution is that Alice’s session is restricted to members
who are in bothBlueWidgets andwidget.com (access control requirement), and the cryptographic modules
must be configured so that all content is encrypted udift (provisioning requirement).

In general, security requirements can be more complex. For example, Alice may wish to restrict access to
certain hours of the day, require that the session be rekeyed when new members join or leave, etc. Furthermore,
other members in the group may have their own local security policies. Before a new member participates,
it must be able to check whether the session’s policy satisfies its local policy. If it does not, it can choose to
abstain from the group rather than compromise its security policy.

Policy must also be responsive; changes in membership or the execution of a security-relevant action can
affect the session configuration. Conversely, the session must be able to make access control decisions based
on the use and configuration of security mechanisms.

Ismene, thus, has the following primary goals:

e flexible provisioning Ismene must allow the provisioning of groups based on an assessment of run-time

conditions and the local policies of the members.

e action-dependent provisioninglsmene must allow the modification of session configuration based on
changes in membership or the execution of a security-relevant action.

e authorization and access controlThe authorization and access control embodied by a session must be
explicitly, but flexibly, stated in Ismene. Authorization and access control should not only be based on
operating conditions, but also on the current session configuration.

e policy compliance Any member participating in a group must be able to assess compliance of a con-
figuration with its local security policy.

¢ legal usage analysisIsmene must be able to determine whether a configuration represents the proper
usage of the underlying security mechanisms.

3 Ismene Policy Description Language

This section describes the design and use of the Ismene policy language. We begin in the following subsection
by detailing the construction and processing of group security policies.

3.1 Approach

Depicted in Figure 1, a group is modeled as the collectiguantficipantscollaborating towards a set of shared
goals. We assume the existence gidicy issuerwith the authority to state session requirements. The issuer
states the conditional requirements of future sessions throughrale policy Each member states the set
of local requirements on future session througlocal policy. Each participant trusts the issuer to create a
group policy consistent with session objectives. However, a participant can verify the compliance of a policy
instancewith theirlocal policy.

An initiator is an entity that generates arstancefrom group and local policies. The initiator may or may
not be a participant of the group. An instance defines session provisioning and the rules used for authorization
and access control. Provisioning is the result oftdmonciliation of the group and local policies within the
runtime environment. Through provisioning, an instance identifies relevant session requirements, and defines
how requirements are mapped into a configuration. The initiator is trusted to evaluate the group and local
policies correctly.

(Initiator) (Participant)
.Reconcmatlon /1 : C Participant)

...

[Pollcy Issuerj/ (Participant)

: Compliance

Analysis :
. mm i e —

I Group Policy [Local Policy [_] Policy Instance

Figure 1: System Model - A session is a collectionpafticipantscollaborating towards some set of shared
goals. A policyissuerstates a group policy as a set of requirements appropriate for future sessions. The
group and expected participant local policies are reconciled to arrivgpaliGy instancestating a concrete

set of requirements and configurations. Prior to joining the group, each participant checks compliance of the
instance with itdocal policy.

To simplify, Ismene policies are a collection of totally ordered provisioning and action cla&sesi-
sioning clause&dentify configuration. Participant software is modeled as collections of secnéthanisms
Associated with a mechanism is a setohfigurationparameters used to direct its operation. Each mechanism
provides a distinct communication service that is configured to address session requirements. A provisioning
clause explicitly states configuration through a set of mechanisms and parameters.

Authorization and access control rules are defineattion clausesAn action clause defines the conditions
under which a protected action should be allowed.

Each provisioning and action clause is defined as the tuple:

<tag> : <conditionals> :: <consequences>;

Tagsare used to provide structure to the policy. Intuitively, tags represent session requirements or identify a
protected action. The organization of tags dictates the relationships between clauses, and ultimately guides
policy reconciliation.Conditionalscontain zero or more predicates describing the conditions under which the
consequences are to be enforced. Predicates are Boolean functions used to test the operating environment,
session configuration, local or global state, or the presence of credentials. The result of the evaluation of a
predicate isrue where the conditional holds arfdlse otherwise. Consequenceslentify provisioning and
authorization. Each consequence states a session requirement, a configuration, or the acceptance of an access
request. The Ismene grammar is described in Appendix A.

The semantic of a clause are as follows; if all the conditionals in the clause evaluate tahen the
consequences need to be enforced. For example, a clause containing conditionals and consequences
q1 - - - gm represents the logical expressiGn A ... Ac,) = (g1 A ... Agm). Thus, the result of an evaluation
over a set of clauses is a conjunction of consequences. The collection of consequences defines precisely how
the session’s security parameters are allowed to be configured.

Clauses associated with a single tag are evaluated in the order in which they are defined in the policy. Eval-
uation of a tag stops when a clause evaluates to true (i.e., the conditionals hold). In this case, the consequences
are enforced and all other clauses associated with the tag are ignored. If a clause evaluates to false then the
next clause associated with the tag is evaluated.

Returning to thevidget.comexample described in the previous section, the network administrator respon-
sible for setting application policy atidget.comacts as the policy issuer. The administrator generates the
following group policy for thec application:

provision : :: pick(config(idhdlr(conf=des)), config(idhdlr(conf=aes)));

join : Credential(&cert,iss=$CA,subj.O=widget.com,subj.CN=$joiner) :: accept;
Theidhdlr defined in therovision clause is a mechanism providing security guarantees over application
content. Theconf=des andconf=aes are configuration parameters applied to ithedlr ~mechanism
stating how confidentiality is to be provided. Thiek configuration is used to state flexible policy; either
DES [26] or AES [9] can be used to implement confidentiality, but not both or neitheijoirne action clause
states that only entities supplying a certificate credential with subject organizatividgst.comand issued
by a (known and trusted) CA should be admitted to the group.

Local policies are used by each participant to describe local requirements on future sessions. Alice defines

her local policy as follows:

provision : :: config(idhdlr(conf=aes));

join : Credential(&cert,iss=$CA,subj.O=BlueWidgets,subj.CN=$joiner) :: accept;
Through this local policy, Alice states that any session must implement a confidentiality policy using the
idhdlr mechanism implementing AES. Th&n clause states the session must enforce a policy that re-
quires participants supply a certificate issued by a trusted CA with a subject organizaiiluedfidgets

Alice acts as the initiator in sponsoring ttee session. She acquires the local policies from the expected
session participants. For this example, only the group policy and Alice’s local policy are used. The instance
resulting from reconciliation is as follows:

provision : :: config(idhdlr(conf=aes));
join : Credential(&cert,iss=$CA,subj.O=widget.com),
Credential(&cert,iss=$CA,subj.O=BlueWidgets,subj.CN=$joiner) :: accept;
The reconciliation of théc group and Alice’s local policies attempts to find a configuration that is consistent
with both policies. In this case, the configuratioonfig(idhdlr(conf=aes)) is selected. The use of
two credential conditionals in thein clause represents a conjunction; credentials fulfilling the criteria for
each condition must be supplied to gain access to the group.

The $CA descriptor in the above examples identifiesribute defining the public key of a known and
trusted certificate authority. Aattribute describes a single or list-valued invariant. For example, the following
attributes define a single-valued version nhumber and list-valued ACL:

version = < 1.0 >;

JoinACL := < {bob}, {john}, {george} >;
The occurrence of the symbol “$” in any clause signifies that the attribute should be replaced with its value.
Theattribute setis the set of all attributes. An application can add to the attribute set by passing name/value
(list) pairs to the Ismene algorithms.

Prior to their use in any session, group policies amalyzedio determine if they represent legal configu-
rations. Legal configurations are stated throaghkertions Assertions represent invariant properties required
by all instances. Logically, these statements identify illegal and mandatory configurations. For example, the
assertion:

assert: config(keymgt(mem=leavesens)) :: config(membership(leave=explicit));

states that a key management mechanism configured with leave sensitivity [25] requires (is dependent on) the
membership mechanism configured to provide explicit leaves. Thus, for this assertion to hold, any instance
defining the leave sensitive key management must also define the membership mechanism with explicit leaves.
Throughanalysis Ismene guarantees that no instance resulting from the reconciliation of the group policy with
any set of local policies will violate policy assertions.

5

Each potential participant acquires the policy instance prior to joining a group. The participant determines
the consistency of the instance with its local policy througtompliancealgorithm. Alate joiner (i.e., a
members whose local policy was not considered during the creation of the instance) is free to participate if the
instance complies with their local policy. Participants in thesession check the compliance of the instance
received from Alice, and if successful, can participate in the session. Note that any participant whose local
policy is used in the initial reconciliation phase is trivially compliant.

The following sections describe the format and use of the two types of clauses in Ismene; provisioning
clauses and actions clauses.

3.2 Provisioning Clauses

Provisioning clausesre used to develop a policy instance from conditional statements. Each provisioning
clause identifies zero or moesvironmentatonditionals used to define when the consequences are applied to
the instanceConfiguration tag, andpick consequences define how the instance is derived and defined.

Environment conditionals test the session environment. Each environment conditional is defined as a (pos-
sibly parameterized) predicate assessing a measurable aspect of the environment. However, the evaluation of
environmental conditionals is outside the scope of the Ismene language. The environment in which Ismene
is used is required to provide an interface for the evaluation of predicates. This approach separates the defi-
nition of relevant conditionals from the process of policy evaluation. Authorization and access control policy
languages often defer condition evaluation (e.g., through upcalls in GAA API [33]).

Configuration consequences define how the requirements of a session are realized through configuration.
Each such consequence identifies either a mechanism or mechanism configuration to be added to the policy
instance. For example, consider the following clauses defining secrecy and integrity policies:

confidentiality : privateGroup() :: config(idhdlr(guar=conf));
integrity : RmteScope($mcaddr) :: config(idhdir(intg=rfc2104,hash=md5));

Theconfidentiality clause states confidentiality should be provided when group is private (as indicated
by theprivateGroup predicate, but does not state how this is achieved (i.e., assumes the specification of
a cryptographic algorithm occurs elsewhere). The second clause indicates that integrity is enforced through
MD5-based HMACs [31, 23] if the session multicast address is remotely scoped (e.g., multicast traffic will ex-
tend beyond the local network). The application or infrastructure using Ismene is required to provide interfaces
for evaluating therivateGroup ~ andRmteScope conditionals.

Pick consequences afford the initiator flexibility in developing the session. Semantically, the pick statement
indicates that exactly one configuration must be selected. Information in the local policies guide evaluation
towards the most desirable configuration (see Section 3.4).

Tag consequences describe the organization of the group policy. The structure defined by the organization
of tags defines the dependencies between sub-policies. Each tag consequence requires the evaluation of other
clauses, which may lead to the introduction of further configurations and tags.

Consider the following policies appropriate for public and private sessions in a conferencing application:

provision : private($addr,$pt) :: config(idhdir(guar=conf)),

strong_key_mgmt, confidentiality;
provision : :: config(idhdlr(guar=conf)), weak_key_mgmt, confidentiality;
strong_key_mgmt : :: config(lkh_rekeying()), secrecy;
secrecy : ManagerPresent($group) :: config(lkh_rekeying(sens=mem));
secrecy : :: config(lkh_rekeying(sens=leave));
weak_key _mgmt : Audio(), Video() :: config(kekkey(rekeyperiod=240));
weak_key mgmt : Video() :: config(kekkey(rekeyperiod=120));
weak_key mgmt : :: config(kekkey(rekeyperiod=60));
confidentiality : sensitive($subject) :: pick(config(idhdir(encr=3des)),

config(idhdlr(encr=desx)));

confidentiality : :: config(idhdlr(encr=des));

This policy states that private groups should be configured with strong key management and confidentiality, and
non-private groups with weak key management and confidentiality. Initially, the conditionals associated with
the first provision clause are evaluated. If the group is private (as determined by the address),ittetrthe
mechanism is configured to enforce confidentiality andstneng _key _mgmt and confidentiality

tags are evaluated. If this fails, the evaluation falls to the next clause defining a policy for non-private groups
by applying thedhdlr configuration and evaluating threeak _key _-mgmtandconfidentiality tags.

The evaluation of the strong key management requirement illustrates how a session provisioning can be
responsive to membership. The (unconditional) strong key management clause states that a LKH mechanism
should be used. However, in applying tbecrecytag consequence, the instance will arrive at a backward
or membership rekeying policy, depending on a manager being expected to participate. Thus, groups with
managers are afforded greater protection from non-members through a membership-sensitive policy that rekeys
following any membership change.

The weak _key _-mgmt clauses describe how the quality of service provided by key management can be
determined by the types of data being transmitted (e.g, audio and video groups rekey least frequently, followed
by video only, followed by other groups). Thus, through similar policies, configuration can be a reflection of
the available resources or the demands made on surrounding infrastructure.

Pick consequences are useful in environments where the issuer wishes to set standards for operation, but
does not wish to mandate an implementation. The first confidentiality clause states that, for groups with
sensitive subjects, thdhdlr mechanism can (only) be configured to use either the 3DES [26] or DESX [22]
algorithms to implement a strong confidentiality policy. If the subject is not sensitive, then the group will
implement confidentiality by DES encryption.

3.3 Action Clauses

The action clauses defined in an instance identify the authorization and access control policy enforced by
the group. Action clauses can contain configuration, credential, and environmental conditionals (i.e., tag
consequences are not allowed), and are restrictaddeptandreconfigconsequences. An accept consequence
indicates that an action should be allowed. Téeonfigconsequence represents the need for a reevaluation of
the group and member provisioning policies.

Ismene representscdosed worldin which denial is assumed. An action is allowed only if the evaluation
of an associated action clause leads taereptconsequence. The tag of an action clause identifies the action
to be considered (e.gjoin , send). The set of protected actions are defined by the issuer, and assumed
knowna priori by the security mechanisms. Ismene is consulted for acceptance when any protected action is
undertaken.

Configuration conditionals test the presence of configurations in an instance. A configuration conditional
returnsTRUEwhen the configuration is defined in the instance. The semantics of a pick conditionabrs the
of the configurations; the conditional returhRUEIf any one of the configurations described in the pick are
contained in the instance.

Credential conditionals test the characteristics of authorization information associated with a protected
action. A credential is modeled in Ismene as a set of attributes. For example, an X.509 certificate [18] can be
modeled as attributes for subj.O (subject organization), issuer.CN (issuer canonical hame), etc. To illustrate,
consider the following action clause:

join : Credential(&cert,sgner=$ca,subj.CN=$joiner) : accept;
The first argument of a credential conditional (denoted with “&” symbol) represents binding. The credential

test binds the matching credentials (see below) to the (&cert) attribute. This binding is scoped to the evaluation
of a single clause. Conditionals are evaluated left to right.

The second and subsequent parameters of a credential conditional define a matching of credential attributes
with attribute or constant values. The above example binds the credentials that were issued by a trusted CA
(sgner=$ca)and have the subject name of the joining entiiyt{j. CN=$joiner)tothe&cert attribute.

The conditional returns true if a matching credential can be found. The assertion of valid and appropriate
credentials is outside the scope of Ismene. Hence, it is up to the application is to validate and pass to Ismene
the set of credentials associated with an action.
Consider the following set of action clauses:
join : config(idhdIr(encr=des)), In($JoinACL,$joiner),
Credential(&cert,sgner=3%ca,subj.CN=%$joiner) : accept;
join : Credential(&cert,sgner=$ca,delegatejoin=true),
Credential(&tocert,sgner=&cert.pk,subj.CN=$joiner) :: accept;
eject : sensitive($subject),
Credential(&cert,sgner=%ca,role=X,subj.CN=$ejector) :: accept;
send : Credential(&key,key=$sessky), pick(config(idhdir()),
config(gdhdnlr())) :: accept;

The firstjoin describes an ACL-based policy for admitting members to the group. The member is admitted
to the group if she is identified in thioinACL list attribute, she can provide an appropriate credential, and
the session is encrypting traffic using DES.

The evaluation of action clauses is performed as with provisioning clauses. The g@oond consulted
only when the conditionals of first clause do not evaluat€RWE The secongoin clause describes a dele-
gation policy. The first credential conditional binglsert to the set of credentials delegating join acceptance
(in this case, the set of certificates from the CA delegating join acceptance). The second conditional tests the
presence of any credential signed with a delegated public key. Ismene is restricted to explicit delegation chains;
each link in the chain must be explicitly stated as a credential conditional.

Theeject clause describes basic role based authorization and access control. This clause states that the
theeject action will be allowed only if a credential stating the requester’s right to assume thx cale be
found. If the credential is found, the requester, acting in Xlis allowed to eject another member. A similar
clause can be defined for each action ¥lis authorized to perform.

Credentials can be used to test knowledge of session specific keys. For exampéndhaction clause
describes the conditions under which an application message should be accepted. The clause states that the
right to send a message in sessions configured witldtivedlr or gdhdnlr mechanism is predicated only
on proof of the knowledge of current session key (matclisgsskey).

3.3.1 Reprovisioning the Group

Thereconfig statement provides a means by which the group may advise the environment of a need to re-
evaluate the session configuration. Consider the following action clauses that define a group policy requiring
re-provisioning before members belonging to 8pecialUsers group are admitted:

prejoin : In($SpecialUsers, $joiner),

Credential(&cert,sgner=%ca,subj.CN=$joiner) :: accept, reconfig;
join : In($SpecialUsers,$joiner), config(idnhdir(encr=des)),
Credential(&cert,sgner=$ca,subj.CN=$joiner) :: accept;

provision : SpecialUsersPresent() :: config(idhdir(encr=aes));

provision : :: config(idhdlr(encr=des));
To support re-provisioning, joining the group becomes a two phase process. Initially the member will perform
a prejoin, after which the environment will be requested to re-provision the sessionprohiesion tags
specify that AES encryption should be configure&jifecialUsers are present and DES otherwise.

reconfig only causes notification; actual re-provisioning is outside the scope of Ismene. Re-provisioning

may or may not be successful. The process of transitioning of a session to a new policy instance is a non-trivial
problem that is largely unaddressed by current secure group communication systems. The prejoin step was in-
troduced to handle the possibility that re-provisioning could fail or take substantial time. Only after the session
is successfully re-provisioned to use AES, a member belonging ®gbkeialUsers is admitted.

8

3.3.2 Integrating Ismene with External Authentication Frameworks

Ismene desires to take advantage of more expressive authentication frameworks (e.g., PolicyMaker [4], KeyNote
[5], GAA API [33], Akenti [34]). In this way, Ismene need not replace existing approaches, but augment them.
The following action clause describes how KeyNote can be used within an Ismene policy:

join: KeyNote($locCreds,$attrset) :: accept;

This clause states that a member should be admitted to the group only if KeyNote can gemeoatecd
compliancestating authorization to join the group. The conditional states that all credentials and the entire
attribute set be passed to KeyNote (e.g., $locCreds, $workset). This is precisely the set of information used to
evaluate a KeyNote policy.

3.4 Provisioning Policy Reconciliation

A group policy is reconciled with the local policies of the expected participants to arrive at a configuration.
Thus, reconciliation determines which requirements are relevant to a session, and ultimately how the session
is implemented. Described in Appendix B, policy reconciliation is the recursive assessment of clauses defined
over the set of tags, conditionals, and consequences. The spesigiontag is the start symbol for recon-
ciliation of provisioning. Group and local policies are required to have at least one clause defined with the
provisiontag.

Reconciliation of provisioning policies takes the intersection of the group and local policies. However, in
Ismene, the group policy is authoritative; all configurations and pick statements used to develop the instance
must be explicitly stated in the group policy. Local policies are consulted only where flexibility is expressly
granted by the issuer through pick statements.

Reconciliation begins by testing the conditionals associated with thepfirgision clause in the group
policy. If all conditionals evaluate to true, the clause consequences are applied to the instance. If not, then
the next clause associated with the tag is evaluated. If no clause evaluates to true, then the policy cannot be
resolved and the session cannot be implemented.

Applied configuration consequences are added to the instance. Configurations are ordered by their in-
troduction into the instance. Tag consequences indicate the need for further reconciliation. All applied tag
consequences are added to the ordered set of tags that must be evaluated. Clauses associated with these tags
are evaluated as described above. Reconciliation terminates when the set of tags to be evaluated is empty.

The local policy of each expected group member is evaluated prior to the reconciliation of the group policy.
The local policies are evaluated starting with fitevisiontag as defined above. However, all pick statements
are left unresolved. The result of each evaluation is an local policy instance defining the local requirements of
the member.

The local policy of an expected participant guides the resolutiguiakfstatements to the most desirable
configuration. To simplify, if a configuration in the pick is in the local policy, it is selected. If the local policy
provides no such guidance, the pick is left unresolved and the next local policy is consulted.

Conflicts may arise when consulting multiple local policies. For example, consider a group policy pick
statement defining configurations fdrand B. A conflict occurs when some local policies requieand
others require3. The resolution of the pick statement will determine who can participate in the session.

One resolution algorithm uses a majority policy; whichever configuration gets the most votes (required by
largest number of local policies) wins. However, this approach has the undesirable property that may leave
a large number (or all) local policies with unaddressed requirements. Thus, potentially, all members may be
prohibited from participation.

A second algorithm establishes an ordering between local policies. A more important member’s local
policy would be considered first, and others when they provide no guidance. Our current implementation uses

this solution. Note that there is a reduction from MIN COVER (NP-complete) [12] to the problem of finding
an optimal solution (where the maximum number of local policies are satisfied).
The following group and local policies illustrate reconciliation (local policys ordered beforé,):

group policy prOV|S|on_: " cgnflg(A), p|_ck(config(B), config(C)), X;
X: o pick(config(D), config(E));

local policyl; provision: :: config(A), config(B);

local policyls provision: :: config(B), config(D);

Initially, the (unconditional) group policy would reconcile to the configuratiband picks for 8 or C') and

(D or E). [; would be consulted firstcon fig(B) would be selected from the first pick statement because
[requires it./; provides no guidance for the second pick statement. In this Gaseuld be consulted and

D selected. Thus, the resulting instance would contqjinB, and D. Note that the introduction of other
local policies or requirements may lead to an unreconciliable local policy. For exampjegl§fo required
another configuratiomonfig(E) , the algorithm would arrive at the instande B,andE. In this case, the
requirement forD in [, cannot be satisfied, and the member associatedould choose not to participate.

Each policy represents a graph whose nodes are clauses and edges are tag consequences. We restrict
the organization of tags by requiring that this graph be acyclic. Logically, this prevents recursively defined
requirements. This ensures that no reconciliation of policy can lead to the introduction of a previously eval-
uated clause. Because no clause is visited more than once and assuming conditionals are evalyhed in
reconciliation is P-time computable in the number of clauses.

3.5 Authorization Policy Reconciliation

Authorization and access control policies are enforced through the reconciliation of the action clauses defined
by an instance. An instance defines the action clauses to be enforced by the groupdlitboghation Policy
Reconciliation

The set of clauses determining authorization and access control in an instance is defined by the intersection
of the group and local policies. For example, consider group policy that defines the action clausgs:(
accept;) and ¢;: co i accept;). Further, a local policy defines an action clausg as;(:: accept;), and another
local policy defines the action clause: (c4 :: accept;). Authorization reconciliation algorithm takes the logical
and of these policies; the action clause is faris defined as

t1: ((c1 Vea) Acg Acy) i accept
Thus, the action clauses defined by an instance are the conjunction (one for each group and local policy) of
disjunctions (one for each action clause definedtfdn a policy). Authorization reconciliation constructs

an action clause for each actione 7' from the action clauses in the group and local policieszonfig
consequences listed in any of the considered policies are added to the action clause in the instance.

3.6 Compliance

Not all participants local policies are required to be consulted during reconciliation. There, a participant
must be able to check the compliance of an instance with its local policy prior to participating in a session.
Compliance is successful if all requirements stated in the local policy are satisfied by the instance. There are
two phases of compliance; provisioning and authorization.

Provisioning compliance uses the instance resulting from the evaluation of the local policy starting from
the provisiontag. Each configuration and pick statement must be satisfied by the instance. A configuration is
satisfied if it is explicitly stated in the instance. A pick statement is satisfied if at least one configuration from
the list is contained in the instance. Thus, the execution time of the provisioning compliance grows linearly
with the number of consequences.

10

Participants may wish to place requirements on authorization and access control. An instance should never
be more permissive than the local policy. In general, checking compliance of authorization and access control
policies is difficult. Gong and Qian found that the closely related problem of determining interoperability
between authorization policies is NP complete [14].

Logically, Ismene authorization compliance assesses whether the instance implies the local policy. Given
an expressior; describing authorizations in an instance, and a similar expression describing a locakpolicy
it is easy to check compliance between the policies by testing whether the exprgssion, is a tautology.

To illustrate, consider the action clauses defined in the following instance and local policies:
policy instance X : (¢1 A c2) V c3 :: accept;
X : ¢t accept;

local policy A

: c3 1t accept;
local policy B X : ¢y, c3 :: accept;
The group policy will be compliant with the local policy A because the policy is less permissive((g.9.,
c2) Vcg = c1 V e3). The group policy is not compliant with local policy B because the group policy is
more permissive (e.g(¢1 A c2) V c3 & ¢1 A c3). Tautology testing such expressions is NP-complete [12].
However, the local policies we have encountered are generally restricted to a few clauses with a small number
of conditionals. Thus, compliance can be can be executed using reasonable resources.
Authorization compliance is the process of determining, for each attienT’, that the conditionals of
the instance action clause frare sufficient to satisfy at least one action clause in the local policy. Failure to
satisfy an action clause represents a more permissive policy; an action that would be allowed by the instance
would be denied by the local policy.

3.7 Analysis

Itis important to restrict instances to legal configurations. Thus, Ismene must be able to describe the acceptable
usage and configuration of the security mechanisms. To this end, we intradsegionsinto the policy
language. Semantically, an assertion indicates that a configuration must or must never be true in any instance.
Assertions are independent clauses (i.e, the clause does not contain tag consequences). Positive (negative)
assertions must (not) be satisfied by any policy instance.

A number of systems have investigated techniques guaranteeing correct and efficient construction of soft-
ware from components [17, 24]. These approaches typically describe relations defining compatibility and
dependence between components. A configuration is deemed correct if it does not violate these relations.
For example, Hiltunen [17] defines the conflict, dependency, containment, and independence relations. The
following describes assertions representing these relations (independence is assumed):

conflict (Ais incompatible wittB) assert : :: | config(A(),config(B());
dependency (Alepends oiB) assert @ config(A()) :: config(B());
inclusion (AprovidesB) assert : config(A()) :: ! config(B());

In our current implementation, tranalysisalgorithm attempts to determinedahy instance resulting from
a group policy can violate a set of assertions. In the worst case, this requires the generation of all possible
instances (there may an exponential number of them). We found that most reasonable configurations exhibit a
degree ofndependencethe introduction of a configuration is largely the result of the reconciliation of a few
clauses. Hence, the evaluation of an assertion can be reduced to the analysis of only those clauses upon which
the configurations stated in the assertions are dependent.

Assertions can be used in the group policy to state issuer requirements. For example, the issuer may wish
to assert a completeness property [20, 7] that any instance resulting from reconciliation enforces confidentiality
over the application data. Thus, knowing in advance thalstinenegeneric andxor data handler mechanisms
configured with confidentiality are the only available means by which this property can be provided, the issuer
states the following completeness assertion:

11

Exporter

Transfer Group

...

Figure 2: Theimird filesystem mirroring application - Update announcements reporting changes to the
mirrored filesystem are distributed by an exporter authority over the long-lived control group. File updates are
transferred to interested importers over short-lived transfer groups.

Control
Group

assert : :: pick(config(idhdir(guar=conf)), config(gendhir(guar=conf)),
config(xordhlr(guar=conf)));

Analysis rejects any policy failing to preserve this requirement.

4 Ismene Implementation and Example Usage

The Ismene specification language has been fully implemented isrtiene Applications Programming In-
terface (API). The API defines interfaces for the creation, parsing, reconciliation, and analysis of Ismene
policies. A number of tools used to support the development of Ismene policies have been constructed. The
Ismene policy compileipdicc , validates the syntax of a group policy and performs analysis.

We have extended a secure group communication framework [1] to construct secure groups through Is-
mene policies. The implementation consists of approximately 30,000 lines of C++ source and has been
used as the basis for several non-trivial group applications. All source code and documentation for the
Ismene language, the secure group communication framework, and applications are freely available from
http://antigone.eecs.umich.edu/

We now illustrate an actual use of Ismene to specify policies for a secure filesystem mirroring application,
imird . Theimird application, based on specified policies, is currently used to distribute the Ismene and
group communication framework source code from our main repository to the users’ and developers’ machines
in our experimental lab.

An imird filesystem is a directory tree whose contents are distributed lexporter The exporter is
a distinct member of the group who distributes copies of the files within the exported directory tree. The
importersare group members who maintain a synchronized copy dhtire filesystem on their local disk.

The exporter acts as an authority for the files and directories in the filesystem. The operatiord of is
depicted in Figure 2 and summarized in the following:

1. The exporter periodically transmigginouncement® a group, called theontrol group consisting of
all potential importers. The announcement daes contain the actual files. Instead, it contains the
names, MD5 content hashes, modification dates, and sizes of files in the filesystem. Importers receiving
this information compare these contents with their copy of the imported filesystem. Where differences
require update (e.g., a local file is not consistent with the announcement), a download request is sent to
the exporter.

12

% File : (imird.ipdl) Group Policy for the imird Mirroring Application
% Attributes Section

group := < imird Policy >;

issr:= < iIQBVAw ... >;

% Provisioning Section

provision: :: authentication, membership, grouptypepol;
grouptypepol: isControlGroup() :: memkey, weakconf;
grouptypepol: :: timekey, strongdat;

authentication: :: config(OpenSSL());

membership: :: config(IMember(retry=3,rexmit=5));
memkey: :: config(lkhkey(sens=memsens));

OO ~NOOULD WN P

ol
N O

13 timekey: :: config(kekkey(rekeyperiod=300));

14

15 % Data Security Policies

16 weakconf: :: config(idhdlr(guar=conf)),

17 pick(config(idhdir(conf=des-cbc)), config(idhdir(conf=rc2)));
18 strongdat: :: config(idhdlr()),confsauth;

[EnY
©

confsauth: isSensitive($file) :: config(idhdir(guar=conf,conf=3des)),
config(idhdlr(guar=intg,intg=md5)), config(idhdlr(guar=sauth,sauth=ssig));
confsauth: :: config(idhdir(guar=conf,conf=desx)), config(idhdlr(guar=intg,intg=md5)),
config(idhdlr(guar=sauth,sauth=ssig));

NNDNNDN
A WNRELO

% Authorization/Access Control Policies

init: isControlGroup(),Credential(&cert,iss=$issr,subj.CN=$joiner) :: accept;

init: Credential(&cert,iss=$issr,fs=$fsys,subj.CN=$joiner) :: accept;

join: isControlGroup(),Credential(&cert,iss=$issr,subj.CN=$joiner) :: accept;

join: Credential(&cert,iss=$issr,fs=$fsys,subj.CN=$joiner),groupSmaller(100) :: accept;
rekey: isControlGroup(),Credential(&key,key=$kekkey) :: accept;

rekey: Credential(&key,key=$lkhKey) :: accept;

WNDNNDNN
O ©Woo~NO O,

31 send: Credential(&key,key=$sessKey) :: accept;

32 sendauth: Credential(&cert,iss=$issr,subj.CN=$sender) :: accept;
33 leave: :: accept;

34

35 % Policy Verification

w
»

signature := < sdD5aR ... >;

Figure 3: Animird Group Policy

2. The exporter collects the download requests and creates a new group, ¢edlesfer group for each
file that is to be updated. An announcement for each transfer group is broadcast to the control group
prior to the initialization of the transfer group. This announcement contains the transfer group address
(multicast address and port) and identifies the file to be transferred.

3. The importers who require the specified file join the associated transfer group. After a certain interval,
the exporter reliably and securely multicasts the updated file to the transfer group. The importers leave
the group at the completion of the transfer, and the group is terminated.

Security policies for the above application, in general, will differ, depending on factors such as the sensi-
tivity of files and announcements, importers, and available crypto mechanisms. In Figure 3, we list an example
policy we have used witimird . For brevity, we omit the legal usage assertions associated with this policy.
This example policy has the following general provisioning and access control requirements.

Provisioning requirements in the example policy

e Announcements, sent to the control group, are considered less sensitive than the files broadcast to the

13

% Description : (exploc.ipdl) Exporter Local Policy
issri= < iIQBVAwW ... >;

% Requirements

provision: :: authentication, data_security;

authentication: :: config(OpenSSL());

data_security: isControlGroup() :: config(idhdlr(guar=conf));
data_security: :: config(idhdlr(guar=conf,guar=sauth));

OO ~NOOULD WN P

[EnY
o

% Authorization and access Control

export: Credential(&cert,iss=$issr,fs=$fsys,ex=true,subj.CN=$exporter) :: accept;
policy: Credential(&cert,pk=$issr,iss=$issr) :: accept;

init: Credential(&cert,iss=$issr,subj.CN=$joiner) :: accept;

sendauth: Credential(&cert,iss=$issr,subj.CN=$sender) :: accept;

% No local policy reguarding the actions below

join: :: accept; rekey: :: accept; send: :: accept; leave: :: accept;

PR R RRR
oA WN R

Figure 4. Animird Local Policy

transfer groups. Thus, the control group requires that application traffic only have weak confidentiality
(line 16 in Figure 3). Group content should be protected from past and future members (line 12).

e The actual data files, sent only to the transfer group, are generally more sensitive than announcements.
Thus, they require stronger confidentiality as well as data integrity (lines 18-22). To prevent compro-
mised importers from asserting forged files, sender authenticity is required (lines 20 and 22). In addition,
as stated on line 13, tiianekey clause is used to specify that a Key-Encrypting-Key [16] key distri-
bution mechanism rekey the session every 300 seconds.

The provisioning clauses in the group policy also specify further details about the above requirements. The
pick statement on line 17, for example, states that the weak confidentiality requirement can be met either by
using DES-CBC [26] or RC2 [32] as the encryption algorithm.

Thestrongdat clause (line 18) states the requirement for strong guarantees over the group content. The
isSensitive($file) conditional on line 19 tests the sensitivity of the file to be transferred (where $file is
an application supplied attribute). If the file is deemed sensitive, triple DES must be used (line 19). Otherwise,
DESX must be used (line 21). To ensure integrity, MD5 [31] must be used, and to provide sender authenticity,
stream signatures [13] must be used (lines 20 and 22).

The compliance of the instance is assessed against the local policies. The exporter’s local policy described
in Figure 4 states minimal requirements for data security. In this example, these requirements are trivially
satisfied by any instance resulting from the reconciliation of the group policy. The importers’ local policies
(not shown) are subject to the same compliance checks.

Access control requirements in the example policy

The group policy places authorization and access control restrictions on the control and transfer groups via
action clauses (lines 25-33). Authorization is statedriird through permission certificates. The exporter
is issued a certificate identifying that it is the authority for a particutard filesystem. Prior to joining any
group, each participant is issued a certificate for each filesystem that they are allowed to import. The public
key of the filesystem authority is stated explicitly through igsr attribute (line 4 in the group policy and
line 2 in the local policy). The primary access control requirements stated in the group policy are as follows:

¢ Initial authentication: Authentication must occur before a potential member can acquire the policy
instance (through thait action, lines 25 and 26). A potential participant is required to present a
permission certificate to authenticate themselves to the control group. In addition, a certificate for the

14

parent filesystem of the file being transferred is also required in order to initiate participation in a transfer
group.

¢ Join actions: The same criteria used for initialization is used for gaining access to the group, with the
exception that a group member is not allowed to join transfer groups containing 100 or more participants.
Thejoin clause containing thgroupSmaller() conditional (28) enforces a ceiling on the size of
transfer groups.

e Other actions: Subsequent acceptance of action within the group is predicated on the presence of the
appropriate keys. For example, the send clause (31) states that any group message must have, at a
minimum, a session key credential. Implicitly, any malformed message is ignored (e.qg., if a configured
integrity property is not preserved).

The local policy of importers also places restrictions on the session. In particular, each importer must
determine that the exporter is authentic and the group policy was issued by an authorized issuer. This is
represented by thexport (11) andpolicy (12) clauses in the local policy; the exporter must present a
certificate stating that have authority over the filesystem and that the group policy was signed by an issuer
identified in the local policy, respectively.

5 Related Work

Several recent group communication systems, including DCCM [10], GSAKMP [15], and Antigone [25],
support the notion of a group security policy that defines the configuration of the security aspects of the system.
In all these systems, generally, the group security policy is assumeddtatie In that sense, the policy
instance generated from Ismene can be considered as the policy input to these group communication systems.
Ismene extends these systems by stating the conditions under which certain policies should be enforced. In
addition, Ismene expresses policies that involve aspects of both provisioning and access control (support for
the latter is limited in the above systems).

The problem of reconciling multiple policies in an automated manner is only beginning to be addressed. In
the two-party case, the emerging Security Policy System (SPS) [39] defines a framework for the specification
and reconciliation of local security policies for the IPSec protocol suite [21]. To handle a similar situation in
Ismene, two local policies for the two ends of the IPSEC connection can be specified. These policies will be
resolved against a group policy that leaves the choice of mechanisms open via pick statements.

In the multi-party case, DCCM system [10] provides a negotiation protocol for provisioning. The first
phase of the protocol involves the initiator sending a policy proposal to each potential member and receiving
counter proposals. Subsequently, the initiator declares the final policy that potential members can accept or
reject, but not modify. Policy proposals define an acceptable configuration (which, for particular aspects of
a policy, can contain wildcard “don’t care” configurations). An advantage of this protocol is that the local
policy need not be revealed to the initiator. Ismene, if desired, can be easily adapted to use the DCCM'’s
negotiation protocol. Ismene is more expressive because it can be used to state conditions under which various
configurations can be used and when configurations need to be reconsidered in response to actions. The
authorization and access control model is also more general in Ismene.

Language-based approaches for specifying authorization and access control have long been studied [37, 4,
8, 38, 5, 33], but they generally lack support for provisioning. Because of the vast earlier work in this area
and to simplify the language design, Ismene does not attempt to be as expressive for stating complex access
control rules. Instead, as identified in Section 3.3.2, Ismene is designed to leverage the expressive power of
other access control systems via external authorization services.

The PolicyMaker [4] and KeyNote [5] systems provide a powerful and easy to use framework for the
evaluation of credentials. Generally, support for provisioning and resolving multiple policies is not the focus of

15

these systems. When desired, these systems can be invoked in Ismene conditionals to leverage their expressive
power and extend their use to group communication systems.

In [19], KeyNote has been used to define a distributed firewall application. The technique is to use condi-
tional authorizations, where conditions involve checking port numbers, protocols, etc. However, it still remains
problematic to construct a configuration, based on multiple local policies, or for determining the correctness
of a configuration. The provisioning clauses and legal usage assertions of Ismene can help address these
problems.

6 Conclusions

We have presented a language-based approach fprayigioningandaccess contrabf secure groups through

the specification of security policies. Central to Ismene is the specification of conditional security requirements
throughgroup andlocal policies The group and local policies are reconciled towarg®licy instance The
definition of provisioning and access control for a session is precisely stated in the policy instance. Policies
can be used to express the relationships and interactions between provisioning and access control.

We have constructed prototype support libraries and tools used for the creation and use of Ismene policies.
Using the tools, group participants can determine the compliance of a policy instance with their local policies.
A group policy can be analyzed for completeness and consistency against legal usage assertions.

Ismene has been successfully integrated with a secure group communication framework [1]. A number of
applications have been built and policies tested. The use of Ismene to define a filesystem mirroring application
was illustrated.

References

[1] Anonymous.Masked for anonymity

[2] Philip A. Bernstein. Middleware: A Model for Distributed System Servic€ommunications of the
ACM, 39(2):86-98, February 1996.

[3] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, and Wanda Chiu. Coyote: A System for Con-
structing Fine-Grain Configurable Communication Servick€M Transactions on Computer Systems
16(4):321-366, 1998.

[4] M. Blaze, J. Feigenbaum, and Jack Lacy. Decentralized Trust Managemdpriodeedings of the 1996
IEEE Symposium on Security and Privapgges 164-173, November 1996. Los Alamitos.

[5] M. Blaze, J. Feignbaum, J. loannidis, and A. Keromytis. The KeyNote Trust Management System -
Version 2.Internet Engineering Task Forc&eptember 1999. RFC 2704.

[6] David C. Blight and Takeo Hamada. Policy-Based Networking Architecture for QoS Interworking in IP
Management. IrProceedings of Integrated network management VI, Distributed Management for the
Networked Millenniumpages 811-826. IEEE, 1999.

[7] D. Branstad and D. Balenson. Policy-Based Cryptographic Key Management: Experience with the KRP
Project. InProceedings of DARPA Information Survivability Conference and Exposition (DISCEX '00)
pages 103-114. DARPA, January 2000. Hilton Head, S.C.

[8] L. Cholvy and F. Cuppens. Analyzing Consistancy of Security Policiesl9®v7 IEEE Symposium on
Security and Privacypages 103-112. IEEE, May 1997. Oakland, CA.

16

[9] Joaen Daemen and Vincent Rijmen. AES Proposal: Rijndael. AES submission, June 1998.
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.prf

[10] P. Dinsmore, D. Balenson, M. Heyman, P. Kruus, C Scace, and A. Sherman. Policy-Based Security Man-
agement for Large Dynamic Groups: A Overview of the DCCM ProjectProceedings of DARPA In-
formation Survivability Conference and Exposition (DISCEX ,@@ges 64—73. DARPA, January 2000.
Hilton Head, S.C.

[11] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Computational Grids.
In Proceedings of the 5th ACM Conference on Computer and Communications Squagig 83—92.
ACM, 1998.

[12] M. R. Garey and D. S. Johnso@omputers and Intractibility, A Guide to the Theory of NP-Completeness
W. H. Freeman and Co., New York, NY, first edition, 1979.

[13] R. Gennaro and P. Rohatgi. How to Sign Digital Stream®&rbteedings of CRYPTO 9Fages 180-197,
August 1997. Santa Barbara, CA.

[14] L. Gong and X. Qian. The Complexity and Composability of Secure InteroperatioRroreedings of
the IEEE Symposium on Research in Security and Privaages 190-200, Oakland, California, May
1994. IEEE.

[15] H. Harney, A Colegrove, E. Harder, U. Meth, and R. Fleischer. Group Secure Association Key Manage-
ment Protocol Draft). Internet Engineering Task Forcdune 2000.
draft-harney-sparta-gsakmp-sec-02.txt

[16] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Specificétitannet Engi-
neering Task ForceJuly 1997. RFC 2093.

[17] Matti Hiltunen. Configuration Management for Highly-Customizable SoftwHt& Proceedings: Soft-
ware 145(5):180-188, 1998.

[18] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure Certificate and CRL
Profile. Internet Engineering Task Forcdanuary 1999. RFC 1949.

[19] Sotiris loannidis, Angelos D. Keromytis, Steve Bellovin, and Jonathan M. Smith. Implementing a Dis-
tributed Firewall. InProceedings of Computer and Communications Security (CCS), p2@g@s 190—
199, 2000. Athens, Greece.

[20] Sushil Jajodia, P. Samarati, and V. Subrahmanian. A Logical Language for Expressing Authorizations.
In In Proceedings of the 1997 IEEE Symposium on Security and Priyagyes 31-42, Oakland, CA,
March 1997. IEEE.

[21] S. Kent and R. Atkinson. Security Architecture for the Internet Protodoternet Engineering Task
Force November 1998. RFC 2401.

[22] J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Searéhoteedings of Crypto
‘96, pages 252—-267, August 1996.

[23] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authenticdtiternet
Engineering Task ForgeApril 1997. RFC 2104.

17

[24] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hayden, Kenneth Birman,
and Robert Constable. Building Reliable High-Performance Communication Systems from Components.
In Proceedings of 17th ACM Symposium on Operating Systems Principles (SQSBI8)e 33, pages
80-92. ACM, 1999.

[25] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A Flexible Framework for Secure Group Com-
munication. InProceedings of the 8th USENIX Security Sympospages 99-114, August 1999.

[26] National Bureau of Standards. DES Modes of Operation, (FIPS PUBJ&leral Information Process-
ing Standards PublicatigrDecember 1980.

[27] P. Nikander and Arto Karila. A Java Beans Component Architecture for Cryptographic Protocols. In
Proceedings of 7th USENIX UNIX Security Symposipages 107-121. USENIX Association, January
1998. San Antonio, Texas.

[28] H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz. Paving the Road to Network Security or the
Value of Small Cobblestones. Proceedings of the 1994 Internet Society Symposium on Network and
Distributed System Securjtifebruary 1994.

[29] Adrian Perrig, Dawn Song, Doug Tygar, and Ran Canetti. Efficient Authentication and Signature of
Multicast Streams over Lossy Channels.2000 IEEE Symposium on Security and Privguyges 56—
70. IEEE, May 2000. Oakland, CA.

[30] R.Van Renesse, K. Birman, and S. Maffeis. Horus: A Flexible Group Communication Sy@temmu-
nications of the ACM39(4):76-83, April 1996.

[31] R. Rivest. The MD5 Message Digest Algorithnmternet Engineering Task Forcépril 1992. RFC
1321.

[32] R. Rivest. Description of the RC2(r) Encryption Algorithrmternet Engineering Task Forcdanuary
1998. RFC 2268.

[33] T. Ryutov and C. Neuman. Representation and Evaluation of Security Policies for Distributed System
Services. InProceedings of DARPA Information Survuvability Conference and Expasjiages 172—
183, Hilton Head, South Carolina, January 2000. DARPA.

[34] M Thompson, W. Johnson, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari. Certificate-based Access
Control for Widely Distributed Resources. Rroceedings of 8th USENIX UNIX Security Symposium
pages 215-227. USENIX Association, August 1999. Washington D. C.

[35] A. Westerinen, J. Schnizlein, J. Strassner, Mark Scherling, Bob Quinn, Jay Perry, Shai Herzog, An-Ni
Huynh, and Mark Carlson. Policy Terminologipraft). Internet Engineering Task Forcduly 2000.
draft-ietf-policy-terminology-00.txt

[36] C.K.Wong, M. Gouda, and S. S. Lam. Secure Group Communication Using Key Graptiecéedings
of ACM SIGCOMM 98 pages 68-79. ACM, September 1998.

[37] T. Woo and S. Lam. Authorization in Distributed Systems; A New Approadburnal of Computer
Security 2(2-3):107-136, 1993.

[38] T. Woo and S. Lam. Designing a Distributed Authorization ServicePrmceedings INFOCOM '985an
Francisco, March 1998. IEEE.

18

[39] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette, P. Helinek, P. Krishnan, A. Jackson, D. Mankins,
M. Shepard, and S. Kent. Domain Based Internet Security Policy Manageme@mnbckedings of DARPA

Information Survuvability Conference and Expositipages 41-53, Hilton Head, South Carolina, Jan-
uary 2000. DARPA.

19

Appendix A - Ismene Grammar

The following describes the Ismene grammar.wbird represents a string of non-whitespace alphanumeric
characters. Astring is a string of alphanumeric characters (i.e., may contain newline and whitespace charac-
ters).

<policy> := <statements>
<statements> := <statement> ";" ["," <statements>]
<statement> := <attribute> | <prov_clause> | <action_clause> | <assertion>

<attribute> := <identifier> ":=" "<" <value> ">" |
<identifier> ":=" "<" <value list> ">"
<value list> := "{" <value> "}" ["," <value list>]

<identifier> := word
<value> := string

<prov_clause> := <tag> ™" [<conditionals>] "::" <consequences>

<tag> := <identifier>

<conditionals> := <var> "=" <value> ["," <conditionals>] |
<predicate> "(" [<args>] ")" ["," <conditionals>]

<var> := "$" <identifier>

<predicate> := <identifier>
<args> := <var> | <identifier> ["" <args>]
<consequences> := <pick> | <config> | <tag> ["," <consequences>]

<pick> := "pick" "(" <config> "," <config> ["," <configs>] ")"
<configs> := <config> ["," <configs>]
<config> := "config” "(" [<cfgstmts>] ")"

<cfgstmts> := <mechanism> ["(" <params> ")"] [, <cfgstmts>]
<mechanism> := <identifier>
<params> := <identifier> "=" <value> ["," <params>]

<action_clause> := <tag> "" [<action_conditionals>]
":" "accept" [, "reconfig"]

<action_conditionals> := <action_condition> ["," <action_conditionals>]
<action_condition> := <conditionals> | <credential> | <config> | <pick>

<credential> := Credential "(" <bind var> "" <cred_args> ")"

<bind var> := "&" <identifier>

<cred_args> := <identifier> "=" <value> ["," <cred_args>] |
<identifier> "=" <var> ["" <cred_args>] |
<identifier> "=" <bind var> ["," <cred_args>]

<assertion> := "assert" "" [<assert_conds>] ":" <configs>;

<assert_conds> := <condition> | <config> ["," <assert_conds>]

20

Appendix B - The Ismene Reconciliation Algorithm

The following describes the reconciliation algorithm used to develop a group configuration (provisioning) from
the group &) and local policies R). Thepick(d, R) function resolves pick consequené¢owards desirable
configurations using local policies R (see Section 3.4 for details).

Function reconcile
inputs
s start symbol (e.gprovision
o Group Policy
R local policies

outputs
& policy instance (ordered set of configurations)

variables
w FIFO gueue of tagsd.head returns first element)
¢ clause €.tag, c.conds, c.consq denotes the tag, conditionals,
and consequences @frespectively)

function reconcile(s, a, R)

{
w=s,a=10
while (w! = ()
{
c=¢|¢tag = w.head, ¢;,c; € a, (7 > 1) = (j = 1)
if (Vd € c.conds,d =TRUE))
{
Vq € c.consq do
{
if g is configuration & =a&+q
elseif gispick & = &+ pick(q, R)
elseif gistag w=wUgq
¥
}
a=a—c
}
return &
}

21

