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ABSTRACT

IMPROVING ENERGY AND PERFORMANCE OF DATA CACHE ARCHITECTURES BY
EXPLOITING MEMORY REFERENCE CHARACTERISTICS

by
Hsien-Hsin Sean Lee

Chairperson: Gary S. Tyson

Minimizing power, increasing performance, and delivering effective memory bandwidth are to-
day’s primary microprocessor design goals for the embedded, high-end and multimedia workstation
markets. In this dissertation, I will discuss three major data cache architecture design optimization
techniques, each of which exploits the data memory reference characteristics of the applications
written in high-level languages. Through a better understanding of the memory reference behav-
ior, we can design a system that executes at higher performance, while consuming less energy, and
delivering more effective memory bandwidth.

The first part of this dissertation presents an in-depth characterization of data memory references,
including analysis of semantic region accesses and behavior of data stores. This analysis leads to a
new organization of the data cache hierarchy called Region-based Cachelets. Region-based Cachelets
are capable of improving memory performance of embedded applications while significantly reducing
dynamic energy consumption, resulting in a 50% to 70% improvement in energy-delay product
efficiency using this approach.

Following this, I will discuss a new cache-like structure, the Stack Value File (or SVF), which
boosts performance of general purpose applications by routing stack data references to a separate
storage structure optimized for the unique characteristics of the stack reference substream. By
utilizing a custom structure for stack references, we are able to increase memory level parallelism,
reduce memory latency, and reduce off-chip memory activity. The performance can be improved by
24% by implementing an 8KB SVF for a processor with a dual-ported L1 cache.

Finally, I will address memory bandwidth issues by proposing a new write policy called Eager
Writeback which can effectively improve overall system performance by shifting the writings of dirty
cache lines from on-demand to times when the memory bus is less congested. It lessens the criticality
of on-demand misses and improves performance by 6% to 16% for the 3D graphics geometry pipeline.
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CHAPTER 1
INTRODUCTION

Following the rapid progression and innovation in the semiconductor industry, the microprocessor
market is gradually converging into two major segments: The first segment is driven by traditional
high-performance microprocessors used in information servers, scientific computation, simulation-
based engineering and ever complicated content-rich multimedia and graphics-oriented applications.
The second segment is growing from the emerging application market in embedded and special pur-
pose processors, e.g. digital signal processing (DSP) processors. These processors are omnipresent
in our daily life, from mobile computers, personal digital assistants (PDA), multi-purpose handsets,
tablet computers, etc., to invisible microcontrollers embedded in household appliances. The design
focuses of this processor category are faster design cycle for time-to-market, low energy consumption,
more constrained die area budget, and flexible integration capability, all while achieving reasonable
performance, making them much different from a traditional high-performance processor design.

Processor architects and researchers in the past decade have been primarily focused on the follow-
ing design space: instruction level parallelism, memory level parallelism, memory throughput, and
low energy designs. Evaluation metrics emphasis were also varied from cycles per instruction (CPI),
instructions per cycle (IPC) to more recent energy-delay product (EDP), to emphasize different
design goals for different market segments at different times.

Entering the 1990s, the per-transistor cost was no longer a roadblock to complex designs due to
significant advancements in semiconductor manufacturing and design technology, processor archi-
tects were given an enormous number of transistors on a single processor chip to devote to extracting
instruction level parallelism (ILP) and enhancing the locality of memory references. Superscalar ar-
chitectures and RISC design philosophy [60] were accepted as the fundamental elements for building
high-performance ILP processors. In the domain of a dynamic ILP processor design, the goal is
to maximize the number of instructions supplied per cycle from the front-end pipeline. Innova-
tive microarchitectural technologies towards this end were proposed and several of them have been
implemented in commercial microprocessors to provide an effective instruction supply to the execu-
tion core; these include aggressive branch predictors [81][84][104][120], trace caches [54][86][95][115],
value predictors [46][79] and simultaneous multithreading [38][109] . All of these technologies aim
at increasing instruction throughput at an extra hardware cost, either from a single program or
from multiple concurrent program threads. In addition, new types of instructions such as predicate
instructions [55][31][33], memory hint [34][96], or branch hint [33] instructions were incorporated
into recent instruction set architectures. Meanwhile, several ILP limit studies [20][69][73][88][112]
were published to address the limits and potential issues of inherent instruction level parallelism,
primarily for integer applications that were known for their high frequency of branch instructions
and scanty instruction level parallelism.

Memory subsystem designs have also been extensively studied including new cache organizations



and replacement policies for more efficient and effective instruction and data management. In the
early days of single-issue processor designs, traditional caches were implemented for reducing ever
higher memory latency. Non-blocking caches were later proposed in [67] to increase execution con-
currency of the instructions that are independent of in-flight cache misses. As the deviation between
processor core speed and DRAM speed increases, multi-level caches are becoming increasingly pop-
ular. Today, several commercial high performance microprocessors are designed with three level
caches [39][40][50][110]. Even though memory latency cannot be completely eliminated, researchers
have developed intelligent hardware and software-based data prefetching mechanisms [23][26] as a
means to improving memory level parallelism by latency hiding. Recently researchers have started
to investigate new techniques for exploiting memory reference locality from the perspective of data
temporality, through hardware and/or software modifications. Techniques proposed in [49][61][93]
classify data based on their temporality of prior reference patterns and then deposit data of different
characteristics into distinct cache/memory structures. Throughout this dynamic classification, these
techniques are able to alleviate the effects of conflict misses and improve hit ratios by preferentially
retaining temporal data, i.e. data exhibiting greater likelihood of reuse, in the main cache. Several
software techniques were also proposed to improve data layout. They usually rely on statistics of
program profiling or affinity region information provided by programmers to re-structure data in
virtual memory space. Based on this information, compilers can generate a data layout with better
reference locality. For example, cache-conscious data placement, proposed in [22], profiles run-time
data affinity for a program and then rearranges data at linker time to achieve better reference
locality. Similarly, array grouping techniques [100] mitigate local cache misses and interprocessor
communication latency by packing non-consecutive references together for parallel applications.

Another major issue in the memory subsystem design is bandwidth. Most of the multimedia,
telecommunication and future emerging applications stream a large amount of data to/from mem-
ory. Network-centric applications are essentially bandwidth-bound. These data streams can easily
saturate memory bus bandwidth. These new applications are the major driving force behind de-
veloping novel high memory bandwidth techniques. The Accelerated Graphics Port (AGP) [29]
was proposed for desktop processors to enhance the memory bandwidth between system memory
and a graphics processor, primarily for delivering graphics commands and texture bitmaps. High
bandwidth Rambus DRAM (RDRAM) [36], Synchronous-Link DRAM (SLDRAM) [57] and Double
Data Rate DRAM (DDR-DRAM) are now accepted as new industry standards for future system
main memory devices. Given a fixed amount of memory bandwidth, architects can also potentially
improve system performance through more intelligent bandwidth management mechanisms that lead
to more effective bandwidth utilization.

The philosophy of this dissertation is to address these design issues (energy consumption, high
performance and high memory bandwidth) by analyzing and exploiting characteristics of data mem-
ory reference streams. By examining these characteristics, we propose architectural solutions to
attack each problem individually. In the first part of this dissertation, we present an in-depth char-
acterization of data memory references, including analysis of semantic region references and behavior
of data stores. The first part of the analysis leads to two new cache structures designed to exploit
the characteristics of high-level programming language semantics which, by convention, partitions
run-time code and data into multiple separate virtual memory regions. The Region-based Cachelets
design, our first novel cache architecture, is capable of improving memory performance of embedded
applications while significantly reducing dynamic energy consumption. The second technique, the
Stack Value File, can increase the performance of general purpose applications by routing stack data
references to a separate register file-like storage structure optimized for the unique characteristics of
the stack reference substream. This technique can increase memory level parallelism, reduce mem-
ory latency, and reduce off-chip memory activity. Then, we analyze the data reference behavior in
a set-associative cache for data streaming applications. We present a novel technique called Eager



Writeback that effectively exploits the data reference features and improves the system performance
by shifting dirty cache line writebacks and balancing memory bandwidth accordingly.

1.1 Contributions

This dissertation makes the following key contributions:

1. Tt investigates data memory reference behavior through the partitioning provided by pro-
gramming language semantics [74]. The resulting characterization and its in-depth analysis
quantitatively demonstrate the information content carried in memory address streams for
each data region.

2. It applies the characterization methodology to some emerging media and communication ap-
plications. Based on the stack and global data memory reference characteristics, a new design
concept called Region-based Cachelets [76] is proposed for low-energy embedded processor de-
signs. This new design scheme physically divides the data cache into parallel cachelets based
on the regions defined by high-level programming languages. We show that the region-based
cachelet design can reduce power consumption substantially without compromising execution
performance for embedded processors.

3. It examines the memory performance impact of programming language semantics and ad-
dressing modes. A new technique, called Stack Value File (SVF) [75] is proposed that uses
a directly indexed circular register file effectively exploit the unique characteristics shown in
stack memory reference stream.

4. Tt presents an Eager Writeback cache [77] for alleviating memory bandwidth constraints based
on our analysis of data cache replacement streams in a set-associative cache. Eager Writeback
is a modified writeback cache replacement scheme for achieving more effective utilization of
memory bandwidth, thereby improving system performance for today’s memory bound appli-
cations.

1.2 Organization

This dissertation is organized as follows. First, the simulation infrastructure and benchmarks
used throughout this dissertation are described in Chapter 2. Chapter 3 discusses the distinct refer-
ence characteristics demonstrated in each data memory region for these applications. Additionally,
we present some observations on dirty writeback behavior in graphics and data streaming appli-
cations. Chapter 4 overviews the dynamic power/energy dissipation issues on caches. Through
data region characterization for media and communication benchmarks, we achieve power savings
by re-organizing the first level cache into variable sized region cachelets that can more efficiently
exploit the memory reference characteristics produced by programming language semantics. Chap-
ter 5 describes the Stack Value File design for high performance processors. This technique exploits
stack reference characteristics to increase memory level parallelism. Chapter 6 presents the Eager
Writeback technique for improving memory bandwidth utilization and thereby improving system
performance. Chapter 7 concludes this dissertation and discusses future research directions.



CHAPTER 2
EXPERIMENTAL FRAMEWORK

This chapter describes the experimental framework used throughout this dissertation, including
our baseline processor simulator and benchmark suites. The detailed simulation models used in
each individual study (such as new microarchitectural additions, instruction set architecture, ma-
chine issue width, cache configuration, memory subsystem modeling, etc.) will be detailed in each
corresponding chapter.

2.1 Processor Simulator and Tool Suites

The infrastructure of our simulation environment used throughout this dissertation is based
on the SimpleScalar tool set originally developed at the University of Wisconsin at Madison [19].
SimpleScalar was implemented to be a portable and extensible tool for microarchitecture research.
This tool set includes a processor simulator and several modified GNU tools and utilities including a
gee-based compiler that is capable of generating target binary to run on the SimpleScalar instruction
set architecture, or the SimpleScalar Portable ISA (PISA). The PISA encoding and addressing modes
are almost identical to the MIPS ISA [64]. The processor simulator is able to simulate both the
Compaq Alpha ISA [102] and PISA. The processor simulator is an execution-driven simulator.
Besides functional simulation and cache simulation, the simulator is also capable of simulating a
dynamic ILP processor with speculative and out-of-order execution support. For dynamic scheduling
machine simulation, the simulator models a Register Update Unit (RUU) that combines the functions
of reservation stations (RS) and the re-order buffer (ROB) necessary for supporting out-of-order
execution. An in-depth description of the RUU mechanism is in [105]. All in-flight instructions
are allocated inside the RUU that maintains correct data flow between dependent instructions.
Functional unit binding, instruction dispatch, data dependency resolution and retirement are all
managed by the RUU. Once an instruction is ready to be committed, it is removed from the RUU
and retired into the architecture state.

In this dissertation, we also study the aspects related to dynamic power dissipation in Chapter 4.
The power dissipation modeling and projection is based on another tool called Wattch developed at
Princeton University [18]. Wattch, an add-on extension to the original Simplescalar simulator, pro-
vides performance simulation as well as both static and dynamic power projection through running
a single-pass of the microarchitecture-level simulation.



|| Benchmark | Source | Application
099.go C Go chess game
124. m88ksim C MCB88100 chip simulator
126.gcc C GNU c compiler 2.5.3
129.compress C UNIX compression utility
130.1 C Xlisp interpreter
132.ijpeg C Image compression/decompression
134.perl C Perl interpreter
147.vortex C Object-oriented database
101.tomcatv | FORTRAN Vectorized mesh generation
102.swim FORTRAN Shallow water equation
103.su2cor FORTRAN Monte-Carlo method
104.hydro2d | FORTRAN Navier Stokes equation
107.mgrid FORTRAN 3D potential field
110.applu FORTRAN Partial differential equation
125.turb3d FORTRAN Turbulence modeling
141.apsi FORTRAN Weather prediction
145.fpppp FORTRAN | Gaussian series of quantum chemistry
146.waveb FORTRAN Maxwell’s equations

Table 2.1: SPEC CPU95 benchmark

2.2 Benchmarks

2.2.1 SPEC

The SPEC benchmark suites are published by the Standard Performance Evaluation Corpora-
tion, a non-profit consortium whose members include researchers, industrial hardware vendors and
software vendors. The main purpose of this benchmark is to provide a common basis for character-
izing the performance of different workstation-level microprocessors. High performance computer
industries typically use SPEC numbers as the major indicator to quantify their machine performance
and compare performance with machines from different vendors. For a processor under development,
architects project and publish the SPEC target performance numbers in order to demonstrate the
performance objective as well as evaluate and justify their new machine design. Every 3 to 5 years,
the SPEC consortium will revise the benchmark contents to reflect a more representative collection
for the state-of-the-art applications.

The SPEC CPU95 (SPEC95) benchmark suite [37] has been widely used by researchers and archi-
tects for the last five years. In some of our earlier research work in this dissertation, we performed
the simulations using SPEC95 benchmark. The SPEC95 binaries used in this dissertation were
compiled using the SimpleScalar GCC compiler that generates code in the PISA format. Table 2.1
describes each benchmark program. The SPEC CPU95 benchmark was retired at July, 2000.

The SPEC CPU2000 benchmark [53] is the most recently published SPEC benchmark as the
successor of the retired SPEC CPU95 benchmark. We primarily use their integer benchmark suite
to perform our research for studying high performance processors that are not targeted for scientific
computing. The binaries of the SPEC CPU2000 benchmark used in this dissertation were compiled
using the Compaq Alpha compiler with optimization level 3 and automatic loop unrolling enabled.
The input files for our experiments are either taken from reference input set or training input set as
explained inside the chapters. Table 2.2 describes the attributes of each benchmark program.

2.2.2 Mediabench

The Mediabench benchmark suite was collected and bundled by researchers at the University of
California at Los Angeles [72]. Mediabench was designed for bridging the gap among the compiler
community, embedded processor architects and embedded software developers. The programs from



[ Benchmark | Source Application
164.gzip C Compression
175.vpr C FPGA circuit placement and routing
176.gcc C C programming language compiler
181.mcf C Combinatorial optimization
186.crafty C Game playing: chess
197.parser C Word processing
252.eon C++ Computer visualization
253.perlbmk C PERL programming language
254.gap C Group theory, interpreter
255.vortex C Object-oriented database
256.bzip2 C Compression
300.twolf C Place and route simulator
168.wupwise | FORTRAN 77 Quantum chromodynamics
171.swim FORTRAN 77 Shallow water modeling
172.mgrid FORTRAN 77 Multi-grid solver
173.applu FORTRAN 77 Parabolic/Elliptic PDEs
177.mesa C 3D OpenGL graphics library
178.galgel FORTRAN 90 Computational fluid dynamics
179.art C Image recognition / Neural networks
183.equake C Seismic wave propagation simulation
187.facerec FORTRAN 90 Image processing: face recognition
188.ammp C Computational chemistry
189.1ucas FORTRAN 90 Number theory / primality testing
191.fma3d FORTRAN 90 Finite-element crash simulation
200.sixtrack | FORTRAN 77 | High energy nuclear physics accelerator design
301.apsi FORTRAN 77 Meteorology: pollutant distribution
Table 2.2: SPEC CPU2000 benchmark
[ Benchmark | Application
cjpeg Discrete Cosine Transform Image Compression
djpeg Discrete Cosine Transform Image Decompression
mpeg2encode | MPEG2 video encoder
mpeg2decode | MPEG2 video decoder
rawcaudio Speech compression using ADPCM standard
rawdaudio Speech decompression using ADPCM standard
g721encode Voice compression using G.721 standard
g721decode Voice decompression using G.721 standard
pgpencode Data encryption and signing using RSA, IDEA and MD5
pgpdecode PGP decoding exercising RSA, IDEA and MD5
pegwitencode | Public key encryption and authentication
pegwitdecode | Public key decryption and authentication
gs Ghostscript
mesa.texgen | Mesa 3D OpenGL library (Textured Teapot)
mesa.osdemo | Mesa 3D OpenGL library (Draw Polygons with Z-buffering)
mesa.mipmap | Mesa 3D OpenGL library (Texture mapping)
rasta Speech recognition
epic Data compression using wavelet decomposition and Hoffman coding
unepic Epic decoding wavelets and Huffman coding

Table 2.3: Mediabench benchmark




| Benchmark | Application

Doom 3D shoot’em-all game
POVray Persistence of Vision Ray-Tracer

xanim Multiformat animation/video/audio viewer
xlock X-window screen saver

Table 2.4: X benchmark

the Mediabench benchmark suite represent the workloads for a variety of emerging multimedia and
communication applications. These applications are also recognized as the application software and
algorithms commonly used in personal telecommunication, mobile and PDA devices. Table 2.3
describes the algorithm for each application.

The binaries were compiled using the SimpleScalar gec compiler in PISA format. The optimiza-
tion level 3 and automatic loop unrolling were turned on in the compilation.

2.2.3 X Benchmark

The X benchmark suite was collected by Todd Austin [98]. It consists of four applications
representing different graphics algorithms as listed in Table 2.4. DOOM, a popular video game
developed by id software corporation, uses a polygon-based rendering algorithm. PO Vray is a public
domain ray tracing package developed for generating photo-realistic images on a computer. The
third application zanim is an animation viewer which processes an MPEG-1 data stream to display
an animated sequence. The final application, zlock, a popular X-window screen saver, renders a 3D
polygonal object on the screen.

2.2.4 3D Geometry Pipeline

Today’s polygon-based 3D graphics engine is composed of two major components, a 3D geometry
processing pipeline and a rasterization pipeline. The 3D geometry processing pipeline as shown
in Figure 2.1 is representative of a very frequently used algorithm in most polygon-based rendering
engines. 3D geometry processing, consisting of intensive floating-point operations on a large quantity
of vertex data from memory, handles vertices from the object model database. It maps the vertices
from the world coordinate space to viewer’s space, i.e. the display. It also computes the interaction
between the light sources and their effect on each vertex for generating the shading intensity to
be used during rasterization. These functions are typically done on the host processor. Once the
vertices are transformed and lit, they are sent to the rasterization pipeline for scan-converting them
into pixels on the display. The rasterization pipeline interpolates color values for each interior pixel
within a polygon. Rasterization is typically performed by a dedicated graphics accelerator.

This pipeline consists of three nested loops wrapped by two outer loops which iterate through
frames and 3D objects in the world space. The first innermost loop processes vertices for each 3D
object assuming the entire object is modeled by a single triangle strip or a triangle fan. A triangle
strip or fan as illustrated in Figure 2.2 is an object representation using a pre-ordered triangulation
scheme. It is supported by popular graphics libraries such as OpenGL [118]. Using such an ordering,
only one incremental vertex needs to be specified to describe a new triangle. For example, T1 is
constructed by V1, V2 and V3. T2 is constructed by V2, V3 and V4. It is a more compact
representation, therefore it requires fewer number of operations performed in the geometry pipeline.
The basic functionality performed inside the innermost loop includes transformation, lighting, and
command output. Figure 2.3 illustrates the control flow chart in block diagrams.

The transformation function projects the new location of each vertex on screen through a 4x4
matrix multiplication and a viewport transformation. The lighting function calculates the interaction



MINI-GEOMETRY ()
while ( frames )
for ( objects in each frame )
for ( every 4 vertices )
/* Transformation */
tz = mll * InV[]o + m21 * InV [y + m31 * InV[]. + m4l;
ty =ml2 x InV[], + m22 x InV[], + m32 * InV[], + m42;
tz = m13 x InV([]e + m23 * InV[]y + m33 * InV[], + m43;
w = ml4 x InV|[]z + m24 * InV[]y + m34 x InV[]. + m44;
OutV[|rw = 1/w;
OutV(|te = Xoffset + tz * OutV[|pw;
OutV |ty = Yossset + ty * OutV(|pw;
OutV ]tz = tz * OutV[]rw;
/* Texture coordinates copying */
OutV(|sn = InV[]y;
OutV(ltv = InV{]s;
/* Lighting Loop */
ID, =IDy; = 1Dy = 0.0;
for ( every light source )
dot = LDir[]e * InV([|ne + LDir[]ly * InNV[|ny + LDir[]. * InV[|nz;
ID, = ID, + Ambient, + Dif fuse, * dot;
IDg, = IDg4 + Ambienty + Dif fuseg * dot;
IDy = IDy + Ambienty, + Dif fusep * dot;
OutV([]ca = ((int)ID, << 24)|((int)IDg << 16)|((int)IDy << 8|a);

/* Device driver loop */
for ( each transformed and lit vertex )
/* Assume Tri-Strip triangles */
/* Copy entire OutV records to graphics AGP memory */
G fzCommandlvertex — 2] = OutV [vertex — 2[;
if (even — numberedvertex)
G fzCommand[vertez] = OutV [vertex];
G fzCommandlvertex — 1] = OutV [vertex — 1];

else
G frCommandlvertex — 1] = OutV [vertez — 1];
G frCommandlvertez] = OutV [vertez];

Figure 2.1: Algorithm of the mini-geometry kernel
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of each vertex with light sources and generates the color intensity for each vertex. This calculation
involves a dot product between the light direction vector and the vertex normal vector using a Phong
illumination model [113]. A single parallel light source with diffuse only components is assumed in
the lighting model. For a parallel light source, per-vertex normal transformations can be replaced
by an inverse transformation of the light source location on a per-scene basis, thus eliminating a
large number of computations for generating light direction vector of each vertex. A color packing
conversion then packs four single-precision floating-point RGBA color intensities into a packed 4-
byte integer. The instruction set architecture of interest is assumed to support four wide SIMD
computation, similar to Intel’s Pentium III Processor.

After finishing with all the vertices in one object, a loop imitating the functionality of a device
driver is invoked (the command output function). This driver loop breaks one triangle strip into
individual triangles and copies these transformed and lit vertices to the uncacheable and/or write-
combinable graphics memory, e.g. Advanced Graphics Port memory space. We adopt the online
driver model [91][121] advocated by Intel’s Pentium III architects in the pipeline. It possesses the
advantage to copy the post-transformed and lit vertices into graphics memory on the fly concurrently
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overlapped with the rest of the geometry processing. There is no need for allocating extra memory
space to an intermediate buffer for device driver, therefore, overall performance is improved.

2.2.5 Streaming Kernel

STREAMING ()

float arrays[MAX], arrays[MAX];

for (m = 0; m < loop;m + +)

for ( arrayali] € each set of L2 cache )

write arraya[i] to way 0;
write arrayali+ 1 x 8 * set_size] to way 1;
write arrayali+ 2 = 8 * set_size] to way 2;
write arrayali+ 3 * 8 * set_size] to way 3;
(‘arrayalj] € each cache line in L2 cache )
read arrayaljl;
compute arrayaljl;
write arraya[m];
( arraygpk] € each set of L2 cache )
read arrayglk] into way 0;
read arrayg(k + 1 x 8 * set_size] into way 1;
read arrayp(k + 2 x 8 * set_size] into way 2;
read arraygplk + 3 * 8 * set_size] into way 3;
write arraya[m];

fo

e}

fo.

e}

Figure 2.4: Algorithm of the Streaming Kernel

The algorithm of Streaming kernel is presented in Figure 2.4. This algorithm mimicking multime-
dia data streaming consists of three inner loops that exercise the L2 cache. The first loop writes data
into array4[]. The second loop reads data from array 4[], performs some floating-point computation
and passes the results to inner loop invariant array elements. Finally the third loop accesses a new
array (arraygl]), displacing elements of array[] from the cache.



This program is designed to represent the typical behavior of many emerging streaming applica-
tions. As pointed out previously, however, in order to highlight the memory system in a uniprocessor,
no actual computational work is performed per data read.

10



CHAPTER 3

MEMORY REFERENCE CHARACTERIZATION

3.1 Virtual Memory Space Partitioning

The run-time storage allocation of a program is conventionally subdivided into several non-
overlapped regions: the generated target code, static and dynamic data objects [2]. The mobility
of data objects depends on the specification of each programming language. For example, all data
objects in Fortran can be allocated statically at compilation time into pre-determined storage areas
for the sizes of their data objects are static and known prior to execution. Therefore, even acti-
vation records can be allocated during program compilation. However, for languages such as C or
Pascal that support data allocation under program control, the locations of these data objects are
manipulated dynamically by a run-time system. These programming language semantics provide
the capability for flexible data manipulation such as dynamic data object allocation and recursive
procedure calls. Thus, the sizes of data structures of a program can vary as needed under different
run-time scenarios. In addition, static binding of activation records can no longer be used in recur-
sive procedural calls. Conventionally, memory references for modern microprocessors fall into the
following categories — code, read-only data (literals), global static data, stack data and heap data;
according to the regions of memory they access and the access method used. The stack data region
is used for the dynamic allocation of activation records; the heap data region is used for dynamic
data object allocation, while code (i.e. program binary), read-only data and global static data are
statically allocated by the compiler and linker.

Ma.
reserved X mem Vax mem
l Stack grows downward
T Heap grows upward
Protected
Data Region
Heap grows upward
Code Region
Data Region Read-only Data Region
i Stack grows downward
Code Region
Read-only data
reserved Mn mem Mn mem
MIPS Architecture Compaq Alpha Ar chitecture

Figure 3.1: Run-time Memory Subdivision for MIPS and Compaq Alpha Architectures
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Figure 3.1 illustrates the regions from virtual memory partitioning used by the MIPS archi-
tecture [64] and the Compaq Alpha architecture [16]. For the MIPS architecture, a system-defined
amount of space is allocated to the stack, which grows down. The top of stack (TOS!) dynamically
maintains the size of the stack, which forms a bound on address references to the stack. The bottom
address range, allocated during compilation, includes read-only data, the instruction code region and
the global static data region. Memory is dynamically allocated at run-time by the program from
the heap, which grows upwards from the middle address range. For both architectures, and most
other architectures, newly allocated stack memory grows from higher addresses to lower addresses,
thus new stack space can be typically allocated via a “push” operation ; heap memory allocation
grows upward.

3.2 Memory Reference Distribution

3.2.1 Distribution of Memory Instructions

The majority of data memory references fall into the stack, global static data and heap regions,
although some applications that intensively use strings, constants, such as data formatting, could
access read-only data quite frequently. For example, using printf() in C often access a user-defined
read-only literal for the format string (first argument). To understand the memory reference behavior
by region, the distributions of run-time data memory accesses were profiled using the following two
benchmark suites, the latest SPEC CPU2000 integer benchmark (SPECint2000) and Mediabench
benchmark, described in Section 2.2. The Compaq Alpha ISA represents a 64-bit architecture while
the PISA is 32-bit. Both processors are RISC-like machines that follow the RISC philosophy of a
load/store architecture. Hence, nothing but load and store instructions may access memory.

Figure 3.2 and Figure 3.3 show the profiling statistics of memory references by regions. The data
in both figures are normalized to the total number of memory instructions. For the SPECint2000
profiling data, an average of 42% of the instructions executed access memory. Stack references
account for an average of 56% of all memory accesses, while global static data references account
for about another 21% and a majority (20%) of the remaining accesses are to the heap. Only 3%
memory accesses are to the read-only data region.

A slightly different behavior from the SPECint2000, the Mediabench contains an average of 24%
of the instructions accessing memory. Out of this 24% memory instructions, stack references account
for an average 39.1% of all memory references, while global static data references and heap references
average about 30% each of the total memory references. Data read from the read-only region are
rather insignificant (about 0.1%) in Mediabench. Also note that djpeg, mpeg2encode, epic and unepic
skew these averages with an extraordinarily large portion of heap accesses.

3.2.2 Distribution of Data Cache Occupancy

As demonstrated in the previous section, stack references account for the majority of the memory
references while global static and heap data account for approximately equal proportions of the rest
of the memory activities. In this section, we will quantify the cache residency behavior by using a
physical data cache structure to characterize their respective occupancy ratio for each data region
at run-time.

Figure 3.4, Figure 3.5, Figure 3.6, and Figure 3.7 show normalized data occupancy ratios for a
direct-mapped, two-way, four-way, and eight-way set associative cache using SPECint2000 bench-
mark; each way of these caches consists of a 16KB content addressable memory. For instance

IThe TOS in this example actually maintains the lowest stack memory address rather than the top memory address.
TOS is thus used as a conventional nomenclature in this case.
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Figure 3.2: Percentage of Memory Access Regions for SPECint2000

in Figure 3.6, a four-way set associative first level cache is used in our profiling experiment. There
are four stacked bars for each program of the SPEC2000int benchmark. In this figure, way0 or the
Most Recently Used (MRU) cache line, is drawn in the leftmost hand side of the four bars; while
way3 or the Least Recently Used (LRU) line is drawn in the rightmost side. The occupancy count for
each memory region in each entry of the cache is calculated as described in the following. Each time
when a data cache access is initiated, we take a snapshot for all cache ways of the set being accessed
and increment the corresponding region occupancy counter for each way based on the region of the
data that reside in that particular cache line entry.

For each stacked bar, we averaged the region occupancy counters across entire cache sets and
normalized each counter for all four data regions: read-only, heap, global static and stack data,
from top to bottom. Overall, it is observed that most of the stack data can be found in way0, i.e.
the MRU state; only 4.4%, 3.0% and 2.6% of the time stack data are residing in wayl, way2 and
way3. Nevertheless, heap data show relatively opposite behavior from stack data. Only 20.6% of
the time, heap are found in MRU state. They spent more of their lifetime in other cache ways:
73.8% for wayl, 81.3% for way2, and 83.5% for way3. For some of the benchmark programs such as
186.crafty and 164.gzip, global static data occupy a longer period of time in wayl, way2 and way3.
This characteristics corresponds to the heavy memory references in global static data in Figure 3.2.
176.gcc also shows slightly different behavior, mainly the stack data. In most of the other benchmark
programs, stack region is only heavily accessed in way0. Once after they were sent from MRU state
down to less recently used ways, they were seemingly replaced out of the cache without being re-
accessed temporally. For 176.gcc, however, the stack data show some temporal locality during their
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Figure 3.3: Percentage of Memory Access Regions for Mediabench

lifetime in all cache ways. Approximately 30% of the time, they are found in wayl, way2 and way3.

As we increased the size of the cache by increasing the number of ways in the cache from Figure 3.5
to Figure 3.7, it is noticed that the heap data tend to occupy the non-MRU ways even more frequently
in most of the benchmark programs. In other words, the heap data contain very little temporal
locality in these integer programs.

The occupancy information collected from this characterization suggests that most of the stack
data would reside in MRU states of cache lines while most of the LRU lines contain heap data.
It implies that heap data are less frequently or unlikely to be promoted again to the MRU state
once they have been demoted to non-MRU states. In fact, this provides some useful information
for heuristics that exploit generational behavior in caches to either reduce power consumption or
enhance cache hit ratio. For example, Kaxiras et al. [65] proposed a technique that reduces static
leakage power by gating off supply voltage V4 of the decayed cache lines, namely, those lines that
are very unlikely to be reused in the near future.

3.3 Analysis of Regional Reference Characteristics

3.3.1 Weighted Reference Distance

We have shown that stack data outstrip the other data in terms of reference activity and cache
occupancy. In this section, we will investigate the average cache line locality, including temporal
and spatial locality, for each region. Our goal here is to understand how often each individual cache
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Figure 3.4: Data Occupancy Ratios in Each Region for a Direct-Mapped 16KB Cache

line of a particular data region is re-accessed during execution. To measure the reference locality in
a quantitative manner, we define and calculate the weighted reference distance for each data region.
We assume that \II?R, 0 denotes the total number of memory references, accumulated from all data
regions, at the time when the n* memory instruction accesses cache line £ in region R. The weighted
reference distance, denoted by Dist(R) for region R is computed as follows. Given there are L cache
lines accessed within the lifetime of a program, and there are N, references for each cache line /¢
within region R. The objective is to obtain an average distance between two successive accesses to
the same cache line, for all cache lines in an infinitely large cache. As long as the memory access
sequence is the same, i.e. no out-of-order effect, the only cache parameter that could change Dist(R)
is the cache line size. The formula is shown below.

L N, n n—
21 21 (Ul g — Tap)
Y (N — 1)

Figure 3.8 illustrates the weighted reference distance for each data region using SPECint2000
benchmark. The cache line size used in this experiment is 32 bytes. Note that the distance on the y-
axis, represented by the number of memory references in-between 2 consecutive accesses to the same
cache line, is plotted on a log scale. As the figure shows, the weighted reference distance of stack
cache lines is mostly below 100 and has a harmonic mean value of 66. The only outlier is 126.gcc that
exhibits a longer Dist(R), close to 10,000. In contrast, the weighted reference distance of heap cache
lines shows a much greater Dist(R) for all the benchmark programs. The Dist(G) of the global
static data spread in-between those of stack and heap data yet are closer to the Dist(S) of stack data.

Dist(R)
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Figure 3.5: Data Occupancy Ratios in Each Region for a 2-way 32KB Cache

The respective harmonic means of the weighted reference distance are 66, 693, 26,387, and 1,499 for
stack, global static, heap and, read-only data regions. This distance can be regarded as a metric of
reference locality or re-access distance for cache lines in each region under the circumstances that
no replacement has ever occurred in the cache.

3.3.2 Unique Memory Block References by Region

Figure 3.9 and Figure 3.10 show the unique memory block (or cache line) references by regions
for 256.bzip2 and mpeg2encode respectively. The intention of this characterization is to understand
the distribution of cache line accessed in each region, measured by the number of references for
each unique memory block during execution. A unique memory block is essentially distinguished by
the frame address of a cache line, i.e. the tag address plus the index address. All cache lines are
tagged and sorted by their numbers of references. On the x-axis, each curve representing each data
region is plotted on a log scale from the most referenced cache line, or the hottest cache line, starting
from a unique memory block identification number 1 at the left, to the least referenced cache line.
The y-axis plots the number of accesses on a log scale as well. Using Figure 3.9 as an example,
the curves of stack, global static and read-only data all drop quite steeply. For instance, after the
top 100 most referenced stack cache lines, the numbers of accesses to each of the rest stack cache
lines are all well below 10,000 times. However, the heap cache lines demonstrate a very distinct
behavior from the other regions. The trend of the heap curve follows very closely to that of the
“all accesses” curve. In other words, after the top 1,000 most referenced cache lines, most of the
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Figure 3.6: Data Occupancy Ratios in Each Region for a 4-way 64KB Cache

rest of the references, spread across a large number of cache lines, go to the heap. Heap data, by
and large, occupy a large cache memory image at run-time. Without regard to conflict misses, it
is seemingly true that architects are designing an ever larger cache for facilitating heap data. The
other SPEC2000int and Mediabench applications all demonstrate a very similar trend as depicted
in Appendix A and Appendix B.

3.3.3 Information Content of Cache Frame Addresses

In this section, we study the information content inherent to the data references of programs
written in high-level languages. Information theory [99] has been widely used to measure the in-
formation complexity of computing and communication systems. Hammerstrom and Davidson [51]
developed several estimation techniques based on information theory for analyzing the information
content of memory addressing. In order to understand the relative information content, or entropy,
of data access streams for each region, we apply the fundamental concepts of information theory to
the data addresses referenced, using the cache frame address as a random variable.

Let P(A;) be the probability of a cache frame address, A4;, being referenced dluring a program’s

lifetime. The information I(A;) carried by each A; is then computed as log, 4 For example,

assuming that only 3 memory addresses are referenced in a program and their respective reference
probabilities are 1, 1,
of these 3 addresses can be compressed and communicated by 1 bit, 2 bits and 2 bits. For a zero-

and %. Then minimum information represented by number of bits for each
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Figure 3.7: Data Occupancy Ratios in Each Region for an 8-way 128KB Cache

memory source [1] system?, the information content or entropy carried for each cache frame address
is P(A;) x I(A;). Therefore, the average entropy H(A, R) of each data region R is defined as:

1
H(A,R) = Z P(A;) xlogy ) = — Z P(4;) *logh )
AiER A;€ER

Using this equation, we calculate and plot the H(A, R) for each region R in Figure 3.11. Ac-
cording to prior analysis and discussion, it is expected that the entropy of heap data addresses
can be much higher than those of the other regions. As shown, the average entropy H (A, Heap)
is approximately 3 times higher than H(A, Stack) and H(A, Static). Namely, heap data addresses
consist of much richer information than the other two major data address regions. We now discuss
how this could impact the cache sizes.

Consider two discrete caches for data storage in region X and Y with their minimum cache sizes
of Cx and Cy to satisfy their data capacity. We define a metric called the expected capacity ratio,
ECR, to be g—;‘ The entropy H (A, R) represents the minimum number of bits needed to convey
information needed for region R. Therefore, the expected capacity ratio of these two caches can be

represented as follows.

X
ECRx — 2 _ o(H(AX)~H(A,Y))

2A zero-memory source is an information system in which the successive information or symbols emitted are
statistically independent.
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Let H(A,X) of region X be a multiple « (alpha) of H(A,Y") of region Y, where the size Cy is
equal to 2. Then we can derive

ECR = 2N(e-1)

Figure 3.12 plots the expected capacity ratio with varied o and N. For instance, when « is 3
(which is approximate to what we measured in the benchmark) and assume a 1KB stack cache (i.e.
N=10) can satisfy information for stack region. According to Figure 3.12, we need roughly a 1MB
heap cache in order to satisfy the needed address information in heap region. Note that the y-axis in
the graph uses a log scale. Thus when « increases linearly, the ECR actually grows exponentially in
N. That is, the effective cache size expands exponentially even if the entropy increases only linearly.

Combined Figure 3.11 and Figure 3.12, we get a picture of the relationship between information
content with respect to their expected cache capacities. As the results show, to achieve the same
effect, the heap region needs an exponentially larger storage capacity than the stack and global static
data regions.

3.4 Behavior of Cache Line Writes

We explore the characteristics of cache line writes in this section. Cache line writes change
the architectural state of memory image and require extra logic to maintain memory consistency.
Two write policies are popularly employed in modern microprocessor architectures for the general
memory types — writeback and write-through. There are also other memory types available, e.g.
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uncacheable, speculative write-combining or write protected [32] designed for special data manipu-
lation. A write-through cache simply writes through the entire memory subsystem upon a data write
to maintain a consistent memory state. It could throttle the memory bus, as it generates too much
bus traffic, if memory bandwidth is limited. Instead of updating the entire memory hierarchy every
time a cache line write occurs, a writeback cache designed to alleviate excessive traffic by associating
a dirty bit to each cache line. Whenever a data write occurs to a memory location found in the
cache, the dirty bit is set. This dirty cache line will not be propagated down to the lower level
memory hierarchy until it is replaced due to a conflict miss or a context switch. Due to its updating
mechanism, the lower level memory will not always contain a consistent state, therefore, a snooping
protocol needs to be implemented when other agents on the system, e.g. a shared-memory machine,
need a copy of this dirty data.

The goal of the analysis here is to investigate the characteristics of “liveliness®” of a dirty cache
line. We examined the probability of rewriting a dirty line in a set-associative cache when it was
in a given state (MRU through LRU) for the SPEC95 benchmark and four applications from the
X benchmark suite. The probability, Prc_g4irty(¢), is defined in the following. Given an N-way set-
associative cache in which there are N cache lines for each cache set. Assume a Least Recently Used
(LRU) replacement policy — is employed in the cache. Conceptually, we can correspond a usage
state in terms of “recency” to a particular cache line in each set. For instance, the cache line that
is just accessed will be identified as the Most Recently Used (MRU) line. And the line used to be
in MRU state is then dribbled one state down to the state right next to MRU, or “MRU-1” state
for short. We denote the number of entrances of a dirty cache line [ that enters a particular usage
state, ¢, as ®¢(¢). The probability of rewriting a dirty line for a particular state ¢ is then computed
in the following formula.

_ B -1) S, %) - L
Y Be(0) Y Be(0)

Using a four-way set-associative data cache for the experiment, our results indicate that cache
lines that have been marked dirty and reach the LRU state are very unlikely to be written to again
before they are evicted. As shown in Figure 3.13 and Figure 3.14, we show the probability of a line
that was marked dirty being written to again as it moves from the MRU state to the LRU state for
both L1 and L2 caches. The data cache hierarchy consists of a four-way 16KB L1 data cache and a
four-way 512KB unified L2 cache. The line size of these caches is 32 bytes. The graph on the top
of Figure 3.13, for example, shows that in the L1 cache the average probability (the solid line) of a
dirty line in the LRU state being re-written is 0.15, while the similar probability for a dirty line in
the MRU state is 0.95. The X benchmark in Figure 3.14 demonstrates an even more obvious trend.
The probabilities of re-dirtying lines in the LRU state are even much lower in the L2 cache — in
fact, close to 0 as shown in the graphs on the bottom of Figure 3.13 and Figure 3.14. It suggests
that a dirty line that enters the LRU state is seemingly “dead”, i.e. unlikely to be updated again,
from the viewpoint of memory consistency with respect to the rest of the memory hierarchy.

These figures indicate there are some programs (such as fpppp and suZcor) that have a fairly
high probability of writing to dirty lines after they have entered the LRU state, however. In order
to further evaluate these cases, we looked at the ratio of the number of times a dirty line in the
LRU state is written to, normalized to the number of times a dirty line in the MRU state is written
to. The results are presented in Figure 3.15, which shows that while the probabilities may be high,
the actual number of these occurrences is negligible compared to the rewriting that occurs when a
line is in other states (MRU, MRU-1, etc.). This property can be well exploited and lead to a more
efficient cache replacement policy design, which we will discuss in details in Chapter 6.

Pre—dirty (C)

3By liveliness, we mean the probability of a cache line to be accessed after it is brought into the cache.
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3.5 Chapter Summary

In this chapter, we performed a thorough analysis that characterizes the behavior of data memory
references. In the beginning of this chapter, we discussed the concept of virtual memory partitioning
by high level programming languages applied to instruction set architectures. We then showed that
the stack data convey much less information content than the other major regions, global static data
and heap data, in modern application software. We also showed that a larger data cache design is
primarily targeted at the more unpredictable heap data while the heap data do occupy the majority
of space in the data caches. This leads to a less cost-effective utilization of the cache resource. In the
second part of this chapter, we investigated the cache line write behavior and found that dirty cache
lines demonstrate an interesting property that can be further exploited for potential improvement
in the write policies employed by modern microprocessors.

In the following chapters, we study, analyze, and propose viable technologies that exploit these
particular memory reference characteristics to improve processor architectures with respect to energy
consumption, performance and memory bandwidth.
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CHAPTER 4
LOW ENERGY REGION-BASED CACHELETS

As the feature size of IC process continues to shrink following Moore’s Law, manufacturing cost
per transistor is decreasing dramatically. While more sophisticated microarchitectural features are
being integrated into future generation high performance processors to improve performance, power
density (measured in capacitance per unit die area) is increasing, making it necessary to supply
large currents and making it more difficult to dissipate heat from the chip [87]. Reducing power
requirements has not been the highest priority goal in developing microprocessors targeted at desktop
or high-end server market. However, as notebook computers, hand-held computing, mobile and
personal telecommunication devices are getting more popular, power is no longer a secondary goal
in the process of microprocessor design. As embedded processors gain overall market share, processor
designers are targeting more resources to meet high performance requirements while simultaneously
reducing power consumption. Researchers from different disciplines including circuits, logic, devices,
architectures and even operating systems as well as compilers, are investigating new low-power
technologies.

Power dissipation in the memory subsystem constitutes a major portion of the overall power
dissipation in these embedded processors [11][45][63][82]. Advances in instruction compression algo-
rithms [78], mixed mode instruction encoding, or compressed instruction encoding such as the ARM
Thumb architecture extensions [97] have reduced the power consumption of each instruction fetched
and delivered in the instruction cache, but these techniques cannot reduce the power dissipated in
the data cache(s).

Several architectural level techniques have been proposed to reduce power consumption in data
caches [13][47][66][107][108]. Generally, these techniques achieve power reduction by partitioning the
data cache into smaller components. Each data reference accesses a smaller memory structure to
achieve power reduction if the desired data are located in the smaller structure. This partitioning
can reduce the power required to perform a data access, but the same partitioning generally increases
average access latency, caused by an increased miss rate, leading to longer execution time.

Most high-performance processors already employ a split first-level cache structure to partition
the instruction code and data into distinct caches. Based on our design philosophy of segregating
memory regions described previously, we propose a further partitioning of the data cache into stack,
global static and heap regions in this chapter. Region-based Cachelets can effectively reduce power by
re-directing the stack and global static data accesses into smaller separate cache structures. Region-
based Cachelets can achieve this power reduction without increasing average memory latency and
execution time. This is due to the high temporal and spatial locality exhibited by stack and global
static data references as discussed in Chapter 3. We examine several region-based cachelets designs
and quantify their advantages with respect to performance and power efficiency in this chapter.

26



CACHE
FRAME

RS BITLINE
o WORD LINE
Q
=
g
o
ok
Q
TAG DATA ARRAY
(L] ARRAY | |o@ oe (X
YY) Column Decod! —eeoe eeee  ColumnMux

snseanp ®0e® p p YY) p eeoe

TAG ‘

ADDR—‘ Comparator Logic | -
HIT SIGNAL DATA OUTPUT
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4.1 Cache Structures and Power Dissipation

4.1.1 Overview of Cache Structures

Cache size continues to expand in each generation of modern microprocessor design. Because of
its effectiveness in improving memory performance and its regularity and density, today’s cache space
constitutes a significant portion of a microprocessor die budget. A typical cache structure consists
of the following primary elements — address tag arrays, data arrays, row and column decoders,
sense amplifiers and comparison logic for matching address tags. The cache power consumption
can be modeled as a high level function of the following parameters: the size of tag arrays, the
size of read/write ports, the length of wordlines and bitlines, the sizes of the decoders and sense
amplifiers. Figure 4.1 illustrates a common cache structure used in contemporary general purpose
microprocessors for instructions and data storage. For each cache access, the decoder decodes the
reference address and then enables the appropriate row. Only the corresponding decoded row of
the wordlines in the address tags and data arrays will be driven. Data from the memory cells of
the enabled wordline will be sent across the dual bitlines (bitline and bitline) to the multiplexers
and the requested data will be filtered out through the bitlines to the sense amplifiers. Each sense
amplifier detects the bitline changes and amplifies the data signal accordingly. If there is a match
in address tag, then its corresponding cache line stored in the data arrays will be sent to output,
otherwise, a cache miss occurs and data will be retrieved from the next level of memory hierarchy.

4.1.2 Power Models

Total power consumption of CMQOS circuits can be primarily attributed to the following three
sources: static leakage dissipation, dynamic short-circuit dissipation and dynamic switching dissipa-
tion as summarized in the equations below.

Ptotal = Ijleakage + Psc + Pswitching
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The first component in these equations, leakage power — a static power dissipation, is the
product of the device leakage current and the supply voltage. Even though there is no direct path
between power (Vy4) and ground (V;;), there is tiny leakage current flowing through each device. The
leakage current is due to the reverse-biased leakage between the substrate and the diffusion regions
of a CMOS device, where parasitic diodes are formed. The leakage current is mainly determined by
fabrication technology. As deep-submicron CMOS process technology advances and supply voltage
is reduced, leakage power dissipation is ever worsening because sub-threshold leakage current is
increased when transistors threshold voltage is reduced. Recently, researchers [65][89] have proposed
novel techniques at the architectural level to cut off supply voltage Vgq through resizing cache
structures for leakage power reduction.

The second component, short-circuit power dissipation, occurs during the brief period when both
the NMOS-transistor and the PMOS-transistor are simultaneously active, generating a current pulse
from supply (Vyq) to ground (V). This brief period is correlated to the transition time of an input
signal. A longer rise or fall time of the input signal results in a longer active short-circuit path.

The switching power dissipated dynamically is required to change capacitor state — charging
or discharging capacitors when state changes from logical 0 to 1 or vice versa. This is the largest
component of the total chip power consumption in modern digital CMOS circuits. The elements
of the dynamic power equation include the average switching probability «, the capacitive load
(CL), the supply voltage (Vaq), and the clock frequency (f.x). Except for clock buffers, the a value
typically is much smaller than one. Note that the power dissipation is proportional to the square of
supply voltage. Generally, designers can effectively reduce dynamic power consumption by reducing
the supply voltage although this exacerbates the leakage power consumption as mentioned above.
Reducing load capacitance or switching frequency can reduce dynamic power dissipation as well.

In the following sections, we will concentrate on the dynamic power consumption of cache struc-
tures by assuming that the static leakage power and short-circuit transient power dissipation can be
completely ignored.

4.1.3 Power Modeling in Cache Structures

Consider a conventional six-transistor CMOS SRAM cell as shown in Figure 4.2 as one bit for
each cached datum. Unlike the pseudo-NMOS implementation, the SRAM cell does not consume
standby power, except for leakage current, when no read/write operations occur; when a 1 is stored
in the cell, only the transistors encompassed by the dashed boxes are active during static time. Since
there exists no direct path that conducts current from V4 to Vg, only leakage power is dissipated.
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At the beginning of a read operation, both bitlines are precharged to Vz4. Then the read operation
is started by asserting the wordline that enables the corresponding NMOS pass transistors — T1
and T2. If a one is stored, then the bitline will be discharged through T2 and N2. During the course
of a write operation, the bitline and bitline are charged to the desired values, then the wordline is
asserted to activate T1 and T2 for writing data into the cell.

As outlined in Section 4.1.1, the cache power sources are primarily originated from decoders,
wordline drive and bitline discharge for both tag and data arrays, and sense amplifiers. We use the
Wattch tool [18] that adopts model parameters such as transistor sizes defined in CACTI 2.0 [92].
The power modeling for each wordline and each bitline are similar. The entire single wordline
capacitance is a sum of the diffusion capacitance of the wordline driver from the decoder, the gate
capacitance of the pass transistors across each memory cell and the metal wire capacitance. The
bitline capacitance is computed analogously. The following equations describe the components of
these capacitive loads.

Cwordline = Cdifffwordline_dri'ver + Cgatefpass_Nt * num_bitlines + Cmetal * wordline_len

Chittine = Cdif f—precharge + Caif f—pass_Nt * num_wordlines + Cpetqr * bitline_len

To estimate the power of sense amplifiers, a model proposed in [122] was used. The typical sense
amplifier is an inverter with the input that connects to the bitline. The equation below shows the
power modeling for each sense amplifier.

Via

PSA,inv = ? * Igsat where Ijsq = 0.5mA

We assume that 0.35um process technology parameters are used in this study. Under this as-
sumption the leakage current power can be ignored [87]. The P;. component is typically small and
there exists design and fabrication technologies [24] to minimize the short-circuit current, Is.. The
dominant component of the total power dissipation is Pswitching, i-€., transitions that charge or dis-
charge the load capacitance [59][90]. Generally, smaller cache structures induce less dynamic power
because of the shortening of wordlines and bitlines that contain less wire capacitance. It also could
have a smaller decoder and a smaller number of sense amplifiers.

4.2 Locality of Data Cache Regions

Although the region-based caching technique generally works for high-performance processors,
embedded processors used in mobile devices are more power-conscious due to limited battery life.
Therefore, we focus our implementation for embedded processors and use the Mediabench bench-
mark suite for our experiments in this chapter. To recapitulate the results shown in Section 3.2.1,
applications from Mediabench contain an average of 24% of instructions accessing memory. Stack
references average 40% of all memory references, while global static data references and heap refer-
ences average about 30% each of the total memory references.

To understand the access locality of a cache line brought into the L1 cache, we calculated the
number of cache line hits prior to a line eviction. We refer to the total number of access hits prior
to cache line eviction as the life span of a cache line. Figure 4.3 illustrates the average life span
of a cache line in each data region. In this experiment, all the data regions compete in a single
monolithic L1 data cache. Simulations were performed for cache sizes from 256B to 64KB with
fully associative cache (represented by FA with solid lines) and direct-mapped cache (represented
by DM with dashed lines.) The y-axis plots the cache line life span on a log scale. For most cache
configurations and applications, the stack cache lines show the greatest life span, the heap cache
lines have the shortest lifespan, and the global static cache lines fall between. For example, for a
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Figure 4.3: Average Life Span of Cache Lines by Regions for Mediabench

fully associative 4KB L1 cache, stack cache lines has an average life span of 166 — i.e., each line was
re-accessed an average of 165 times prior to eviction. In contrast, heap cache lines show an average
life span of only 9.5.

Figure 4.4 shows the miss ratios for a spectrum of cache sizes from 256B to 64KB assume that
a dedicated cache is allocated for each individual memory region. These data show that the stack
data consistently demonstrate the best cache locality for a given cache size. Furthermore, the miss
rate approaches 1% for a very small (2KB) stack cache. The heap data show the worst locality
with a miss rate decreasing linearly as the cache size doubles, reaching 5% at a 64KB heap-cache.
It also exhibits an observation that large cache designs are primarily effective for heap data only.
As expected, the miss rate of global static references falls between the stack and heap approaching
a 1% miss rate at a relatively small (4KB) global-static-cache configuration. These experiments
show that by partitioning the cache structure into three components — a small stack cache, a small
global static cache and a larger cache for heap and others — a majority of memory references access
small cache structures (40% stack cache, 30% global static cache) while retaining a high hit rate;
since the caches are small, they consume less power; since the hit rates are high, they provide good
performance with low access latency.

4.3 Region-based Cachelets

Recent energy reduction techniques proposed in architectural level cache designs can be classified
into two primary schemes, vertical partitioning and horizontal partitioning. The basic idea of these
partitioning techniques is to reduce power dissipation by referencing a smaller storage structure. For
the vertical partitioning as shown in the left hand side block diagram of Figure 4.5, which employs a
multi-level cache hierarchy, an extra level of storage structure is added nearest to the processor. This
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extra level storage can be a line buffer [47][107] or a small filter cache [66]. These extended structures
capture short-term data locality and would consume less dynamic power when the requested data
can be found in the small buffer or cache. However, the hit rate for this small structure is often
relatively low and each miss requires another L1 data cache access after this miss is determined; this
increases the effective latency of an L1 access since the L1 access request is delayed.

An alternative to vertical partitioning is to perform a horizontal cache partitioning. Horizontal
partitioning as shown in the right hand side of Figure 4.5 involves slicing each cache set into smaller
segments (e.g., cache sub-banking [47][108]). The processor accesses (and powers up) only the line
segment that is being referenced (requiring additional early address decode circuitry), saving power
by not driving data paths in the cache that are not referenced. This approach is orthogonal to
vertical partitioning.

Region-based Cachelets, our proposal in this chapter, is yet another horizontal partitioning design
method that can reduce power dissipation of data caches more effectively by exploiting the nature
of memory allocation conventions and memory reference characteristics. The basic idea of this
approach is to partition data references based on semantically defined memory regions into distinct
cachelets. Data exhibiting high degree of utilization and locality, e.g. stack data or global static
data as discussed in Section 4.2, can be filtered out from the regular cache. Figure 4.6 sketches
one implementation of a region-based cachelets design in block diagram. In this example, two
horizontally partitioned region-based caches are added alongside of the regular L1 cache — one for
stack data and one for global static data. All heap and other memory references are sent to the L1
cache as normal. All cache miss fill requests and evictions are directed to the next-level caches or
DRAM memory. The region cache is activated (drawing power) only when a memory reference is
made to its respective memory region. Note that the stack and global static region cachelets, based
on the requirements of target applications in the embedded processor, can be built much smaller
than the L1 cache.

The region-based cachelets design provides several benefits. First, line conflicts are eliminated
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among semantic regions since different region accesses are routed to different structures. This makes
it more feasible to implement each cache with lower associativity; particularly the stack cache since
the active region of the stack is generally a single contiguous section at the top of stack [75]. A direct
mapped stack-cache generally has no more conflict misses than a fully associative stack cache [75].
Second, building smaller separate caches provides more flexibility in increasing overall data storage
than enlarging a single cache. For instance, to enlarge a 32KB direct-mapped cache, one needs to
either double the cache size to 64KB or opt for a possibly higher latency multi-way cache, e.g. a
5-way 40KB cache. Finally, as mentioned earlier, a smaller cache dissipates less dynamic power
when accessed. Since about 70% of the references hit in the stack and global static data regions, the
overall data cache power consumption can be significantly reduced when the sizes of those caches are
made small (but large enough to retain a high hit ratio). We will quantify the performance impact
in our analysis in Section 4.5.

This chapter does not intend to investigate the implementation details for the region-based
cachelets, yet we will discuss some of these implications. Since there are multiple caches at each
level of memory hierarchy within our implementation (the first level cache in our study), it could
add extra complexity in the cache snooping protocols for supporting a shared-memory multipro-
cessor system. The first design option is to choose between virtual address cachelets and physical
address cachelets. A physical cache implementation makes the design of cache snooping protocols
less complicated. It maintains cache coherency between different processes using physical memory
addresses to avoid address aliasing issues. Many commercial microprocessors implemented physical
caches. An alternative is to design a virtual cache, which can eliminate the TLB translation latency
if the access is a cache hit. Without a process ID number associated with each cache line, however, a
virtual cache is required to be entirely flushed every time a context switch occurs because of aliasing
issues. Nevertheless, the region demultiplexing is based on virtual address space in our region-based
cachelets scheme. To enable a physical cache design, the address demultiplexing (to determine which
cachelets to go to) should be determined prior to an address translation. In such a design, either
each TLB entry should possess ID bits to identify which physical cache the current cache access
should be routed to, or each region implements their own TLB.

Another implementation issue is how do we determine which particular region a virtual address
falls into. The least expensive way is to hardwire the virtual address into some approximate par-
titioning in the address demultiplexing hardware if a private virtual memory is supported. Since
the virtual address partitioning of each region for most of the ISA design is relatively distant from
each other as shown in Figure 3.1, therefore, we could mask out the lower bits of a virtual address
to segregate the semantic address space. A more accurate partitioning would rely on information
provided by the operating system for each process it invokes. This requires a few specialized con-
trol registers that store the base address of each semantic region, then the processor partitions the
address streams based on the contents of these system level registers.

4.4 Simulation Framework

4.4.1 Machine Models and Simulators

In this study, Wattch is used to evaluate relative performance and power dissipation for different
processor design configurations by integrating the region-based caching mechanism into Wattch. The
power modeling of this study was previously discussed in Section 4.1.2.

Our baseline machine model resembles the Intel StrongARM SA-110 microprocessor [82]. The
Intel StrongARM SA series have been widely adopted in set-top boxes, Internet terminals and PDA
devices such as the Compaq iPAQ Pocket PC [30]. The microarchitecture of our baseline machine
model is a single-issue in-order processor with a conventional five-stage pipeline. The processor
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contains a unified 32KB on-chip level-one cache. The size and associativity of the L1 cache and its
corresponding access latency were varied according to the access timing information gathered from
CACTI 2.0 [92]. In order to perform a fair comparison in both performance and power dissipation,
a four-way 512KB level-2 cache is incorporated for both the baseline machine and the region-based
cachelets machine!. The caches are blocking caches that will stall instruction execution followed by
any cache miss. All the caches are single-ported.

The Wattch tool estimates power at the architectural level by storing the event occurrences of
each functional unit during simulations. We assume that a simple clock gating [45] technique is
applied to each cache module; therefore, each cache is activated only when an access is requested
— zero power dissipation otherwise. The device capacitances used in Wattch are similar to those
published in [117]. The power consumption models of each cache consider typical components of a
cache array structure including tag arrays, address decoder, wordline drive, bitline drive, and sense
amplifiers as we had discussed in Section 4.1.3.

4.4.2 Energy-Delay Product Metric

In [48], Gonzales and Horowitz argue that the widely used metric, energy, measured in Watt/MIPS
or Watt/SPEC, is not an ideal metric for evaluating the efficiency of a machine design. By simply
reducing supply voltage or load capacitance, energy can be reduced at the expense of increasing cir-
cuit delay. For such a design, a lower energy processor would also have lower performance. Instead
of using the energy metric, they advocate using the energy-delay product (EDP), calculated by
Watt/SPEC?, as the metric for an efficient system design. The EDP considers both performance
and energy simultaneously in a design. To achieve an energy efficient design without compromising
performance, a design should attempt to minimize the EDP. If a processor trades off performance
for energy, then its EDP will be unlikely to decrease.

Our results show the EDP of a given machine relative to that of the baseline machine model as
the comparison metric (in addition to performance and power). The following equations describe
how we compare the EDPs of two machines. For a target machine A, a better design will reduce
its EDP ratio with respect to that of a base machine. In other words, the goal of an energy-delay

efficient system design should minimize the EDP Ratio, i.e. %.
Watt
E= = D
IPS W x Delay
EDP = ExD =W x (Delay)?
EDPA WA * (DelayA)2 _ WA 1

EDPg ~ Wpg * (Delayg)? ~ Wz * (Speedup%)2

Py Power Reductzon%

ED
EDP Ratio = =
aro EDPg (S’peedup%)2

4.5 Simulation Results and Analysis

The Mediabench benchmark suite [72] was used in this study. Section 2.2.2 contains a detailed
description of Mediabench. All the simulations were run to completion except for mpeg2decode and
gs that exit after 600 million instructions to reduce simulation time.

We present our simulation results and analyze them in this section. First we evaluate one region-
based configuration, comparing that configuration with alternative conventional cache configura-

IDRAM memory power is not modeled in the Wattch toolset, an L2 is simulated as a common backing storage for
all machine models. We evaluate dynamic power consumption for all levels of cache hierarchy.
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Figure 4.7: Performance Comparison of Machines with Region-based Cachelets

tions. Then we more fully explore the design space for different region-based caches configurations.
Finally we evaluate a compound design by incorporating a filter cache into our region-based cachelets.

4.5.1 Comparisons with Baseline Design

In this set of experiments, we compare the power dissipation and performance of region-based
cachelets with a 4KB direct-mapped stack cache, a 4KB direct-mapped global static cache and a
32KB conventional L1 cache. Each cache has a single cycle access latency. This design is compared
to three baseline machine designs in these experiments. The first baseline cache uses a 32KB direct-
mapped L1 cache with single cycle access latency. The second baseline cache has a 4-way 32KB L1
cache. The third baseline cache expands the cache size to 40KB by increasing the associativity to
five ways. Both multi-way caches have a two-cycle latency. As mentioned earlier, we used the timing
information gathered from CACTI 2.0 [92] to determine cache access time for each cache configura-
tion. Both 4-way and 5-way 32KB caches had access timing exceeding the 7ns target necessary to
achieve single cycle access on our target architecture (they were 11ns and 12ns respectively). The
purpose of using a 5-way 40KB cache is to match up the cache capacity of our region-based cachelets
in order to perform an apple-to-apple comparison. As mentioned in Section 4.4.1, we add a 512KB
L2 cache for all configurations as a common backing storage.

Figure 4.7 shows the performance comparison of our region-based cachelets design with regular
cache designs. For the Mediabench applications, the region-based cachelets design performs almost
on par or slightly faster than the regular cache designs. It reduces performance between 4% to 7%
in mesa and rasta when compared to the 4-way and 5-way cache designs. For the same L1 size, it is
simply because stack and global static data increase much locality moving from the 4KB cache to

35



cjpeg djpeg mpeg2 mpeg2 rawcaurawdaug72leng721dePgdpencpgpdec pegwit pegwit 9S mesatmesa.omesa. rasta epic unepic Avg
encodedecodedio  dio  code code ©0de ode  encodedecode exgen sdemo mipma
3

‘ B S4k-G4k-32kL1 vs. 32k-DM [ S4k-G4k-32KL1 vs. 32k-4way [l S4k-G4k-32KL1 vs. 40k-5way

Figure 4.8: Power Dissipation Comparison of Machines with Region-based Cachelets

the 32KB cache. Performance increases relative to all baseline cache design for cjpeg, djpeg and epic.
For the 32KB configurations this can be due to the increased overall cache size. There is a relative
performance improvement of about 3% for these applications with respect to the 40KB cache as
well. This speed-up primarily comes from reducing the access time to one cycle and secondarily
from reducing set conflicts among different data regions.

Figure 4.8 demonstrates the power dissipation of data references in all caches. The average
relative power dissipation of the region based cache is significantly reduced to 56%, 45%, and 37%
of the 32KB DM, 32KB 4-way and 40KB 5-way designs respectively. The major power reduction
occurs for stack and global static references that were re-routed to the smaller stack and global static
cachelets. Power savings are significantly lower for unepic, epic, mpeg2encode and djpeg. This is due
to the unusually high occurrences of heap accesses shown earlier in Figure 3.3.

Combining the results in Figure 4.7 and Figure 4.8, the Energy-Delay Product Ratios of the
region-based cachelets design versus the baseline machines are plotted in Figure 4.9. This plot
is normalized to the EDP of the baseline designs; lower EDP ratios occur when the region-based
cachelets scheme is the better cache design — the lower the EDP, the better the design. The average
EDP ratio of the region-based cachelets is 0.54 compared to a 32KB direct-mapped baseline cache,
0.45 compared to a 32KB 4-way L1 baseline cache, and 0.37 compared to the alternate 40KB 5-way
L1 cache design.

These experiments indicate that a region-based cachelets design consisting of a 4KB stack cache,
a 4KB global static cache and a 32KB L1 cache will achieve the same execution performance as a
40KB, 5-way cache while achieving a much more energy efficient implementation.
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Figure 4.9: Energy-Delay Product Comparison of Machines with Region-based Cachelets

4.5.2 Exploiting Design Space of Region-based Cachelets

In this section, a spectrum of region-based cachelets design choices is investigated. In all com-
parisons, we use the 40KB, 5-way cache presented in Section 4.5.1 as the baseline for comparison.
We examine seven different region-based cachelets configurations in Figure 4.10, varying the sizes
of the stack and global static regions. Each cache configuration uses a 32KB, direct-mapped L1
cache (represented as dm), except for the leftmost bar which uses a 32KB, 4-way conventional L1
cache (represented as 4w in the symbol). We use the following naming conventions in the figure.
The SmGn symbols represent the size of region-based cachelets: an mKB Stack cache and an nKB
Global static cache; when G is absent, there is no global-static region cache and global static data
are routed to the L1 cache. For example, the rightmost configuration S2G2-dmL1 consists of a 2KB
stack cache and a 4KB global static cache and a 32KB, direct mapped L1 cache.

Figure 4.10 shows the average performance speedup, power reduction and energy-delay product
ratio for Mediabench. Table 4.1 lists the energy-delay product ratio for each application in the
benchmark (used to calculate the average). The 2KB stack cache and 2KB global static cache
(S2G2-dmL1) demonstrates the best design in EDP ratio. It consumes only one third of the power
in a 5-way 40KB counterpart while achieving 99% of the execution performance. Only three of
the applications have EDP ratios above 0.50 while 7 of the 19 applications have EDP ratios of less
than 0.20. This shows that the overall performance and energy efficiency of region-based cachelets
is significantly better than the design alternatives studied. Region-base caching reduces the power
dissipation by routing data references to small, special purpose cache structures. High hit rates
are maintained because the routing algorithm exploits known characteristics of high-level language
programs. These hit rate translate into high performance execution, while retaining the power
dissipation advantage.
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Figure 4.10: Average Performance, Power and EDP for Different Region-based Cachelets Machines
(Baseline: 5-way 40KB L1)

EDP [ S8-4w-L1_| S8-dmL1 | S4-dmL1 | S52-dmL1_| 54G4-dmL1 | 52G4-dmLl | 52G2-dmL1 ]
cipeg 0.553 0.448 0.381 0.337 0.348 0.304 0.298
djpeg 0.717 0.530 0.517 0.483 0.495 0.477 0.475
mpeg2encode 0.738 0.583 0.561 0.548 0.538 0.526 0.523
mpeg2decode 0.661 0.509 0.467 0.443 0.262 0.237 0.188
rawcaudio 0.815 0.570 0.570 0.569 0.213 0.212 0.143
rawdaudio 0.815 0.580 0.580 0.579 0.235 0.235 0.165
g72lencode 0.551 0.611 0.523 0.470 0.214 0.167 0.129
g721decode 0.550 0.508 0.426 0.376 0.223 0.176 0.139
pgpencode 0.702 0.512 0.482 0.471 0.223 0.205 0.150
pgpdecode 0.674 0.499 0.462 0.441 0.186 0.165 0.105
pegwitencode 0.564 0.501 0.420 0.348 0.391 0.331 0.388
pegwitdecode 0.549 0.471 0.390 0.344 0.352 0.305 0.415
g8 0.484 0.484 0.384 0.316 0.299 0.233 0.237
mesa.texgen 0.547 0.681 0.599 0.588 0.575 0.564 0.559
mesa.osdemo 0.582 0.645 0.553 0.500 0.507 0.455 0.446
mesa. mipmap 0.499 0.444 0.432 0.454 0.358 0.376 0.365
rasta 0.611 0.700 0.612 0.571 0.519 0.478 0.470
epic 0.774 0.576 0.561 0.552 0.560 0.551 0.551
unepic 0.809 0.707 0.697 0.692 0.693 0.687 0.653
Average 0.642 0.552 0.504 0.476 0.374 0.347 0.332

Table 4.1: Energy-Delay Product for Mediabench with Different Region-based Cachelets
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Figure 4.11: Combining Filter Cache with Region-based Cachelets

4.5.3 Combining a Filter Cache and Region-based Cachelets

This region-based cachelets technique proposed in this chapter needs not be a stand-alone tech-
nique. In practice, it can be applied along with other proposed low-energy techniques, e.g. filter
cache [66], to further reduce energy consumption. In this section, we will investigate the design
impact, in terms of performance and power, when a filter cache is combined with our region-based
cachelets design.

As discussed in Section 4.3, the filter cache is one variation of vertical partitioned cache scheme.
The filter cache is a small cache structure inserted in-between the processor and the first level cache
in order to filter out some memory references that demonstrate high access locality. In these original
study by Kin et al. [66], they extensively studied a 128 byte and a 256 byte filter cache with a
variety of line sizes and associativities. Since the filter cache itself introduces one extra level into
the existing memory hierarchy, the access latency is increased whenever a filter cache miss occurs;
meanwhile, power consumption is also exacerbated due to the extra cycling of the filter cache.

As illustrated in Figure 4.11, the filter cache scheme can be analyzed by inserting an extra small
cache or line buffer in-between the processor and our region-based cachelets. For each data memory
access, the filter cache is accessed concurrently with the address de-multiplexing. If the desired data
cache line is found in the filter cache, we can save the trip to the larger size region-based cachelets.
Otherwise, we continue the access in the region-based cachelets. The filter cache is a unified cache,
namely, each cache line can accommodate all kinds of data regardless of their semantic regions.

In the following experiments, we assume the filter cache has a unit cycle access latency. The filter
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Figure 4.12: Region-based Cachelets versus a Combined Filter Cache with Region-based Cachelets

cache is a direct-mapped cache with a 32-byte cache line size. As studied in [66], fully-associative
filter caches actually consume more power than the cases with filter caches. Our preliminary study
using a fully-associative cache agree their observation. We use a region-based cachelets machine
with the same configuration S/G4-dmL1 as discussed in Section 4.3 for our baseline machine model.
Figure 4.12 shows the block diagrams of our baseline region-based cachelets machine and the same
machine with a vertically partitioned filter cache inserted.

Figure 4.13 shows the performance impact of a cache design with a combined filter cache and
region-base cachelets. The bar chart shows the performance speedups of machine models with various
filter cache sizes, from left to right — 128 bytes to 8KBytes, compared to an S4G4-dmL1 baseline
machine. Since smaller filter caches cannot satisfy the entire working set size, we would expect
performance slowdown rather than speedup in many cases, in exchange for the power reduction. For
all the cases, the performance reaches more than 90% of the baseline machine. For example, with
a tiny 128-byte direct-mapped filter cache, we reach an average 94% of the baseline performance.
With larger filter caches, the performance gap is reduced. With a large filter cache, the system
could outperform the baseline in some cases because the stack or global static data working set can
fit into the larger filter cache (8KB) well while their individual specialized cachelets (4KB stack +
4KB global static cachelets) cannot satisfy. The benchmark program mesa.mipmap is one of the
examples, which actually shows 3% speedup over the baseline model with an 8KBytes unified filter
cache.

Figure 4.14 illustrates the simulated power reduction by incorporating a filter cache. An inter-
esting observation is that the power was reduced when we increased the filter cache size up to 4KB.
When a 1KB or 2KB filter cache was used in the experiments, the average power consumption is
minimized. Beyond this sweet spot, the power consumption trend is reversed. There are some cases
such as pegwitencode that show worse power dissipation when a 4KB filter cache is used, mainly due
to additional accesses to the region-based cachelets caused by filter cache misses. Combining the
performance and power figures, we plot the energy-delay product bars in Figure 4.15. Given the
S4G4-dmL1 region-based cachelets design, a 2KB filter cache appears to be best design configuration
despite trading off an additional 1% performance degradation.

Notice that there is no best design configuration for all. The best design is associated with the
characteristics of target applications. For an embedded processor design that focuses on a specific
application market segment, a true design win requires an in-depth analysis of the application. An
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Figure 4.13: Performance of a Combined Filter Cache with Region-based Cachelets (Baseline: S4k-
G4k-32K with a 512KB L2 = 1.0)

optimal design is then chosen to suit the needs of both performance and power reduction.

4.5.4 Design Options with a Filter Cache
4.5.4.1 Unified Filter Caches

More analyses were performed in order to evaluate various scenarios for region-based cachelets
when a filter cache is present. In Section 4.5.3, we have shown that a filter cache can be inserted
on top of a region-based cachelets design to further improve energy consumption. In this section,
we evaluate two different data cache architectures, that implement a unified filter cache. Below
the filter cache, one adopts a conventional monolithic five-way 40KB L1 data cache, the same one
described in Section 4.5.2, while the other one uses an S4G4-dmL1 region-based cachelets design.
The motivation is to understand the benefits of region-based cachelets over a conventional design,
when both contain a filter cache. Figure 4.16 shows the block diagrams of our comparison. The
left hand side of the figure depicts a conventional cache with a filter cache and the right hand side
depicts region-based cachelets with a filter cache.

Figure 4.17 illustrates the attainable speedups obtained by using region-based cachelets as
opposed to a conventional monolithic data cache when a unified filter cache is applied to both. In
this figure, (FC+RBC) represents a memory hierarchy that is composed of a filter cache on top of
a region-based cachelets design. FC simply represents a conventional monolithic cache with a filter
cache. The bars represent eight different direct-mapped filter caches sized from 128 bytes to 8KB. In
average, the region-based cachelets improve performance insignificantly, at most 3.2%, when the size
of the filter cache is smaller. There are some outliers, such as mesa.texgen or rasta, which actually
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Figure 4.14: Power Reduction of a Combined Filter Cache with Region-based Cachelets (Baseline:
S4k-G4k-32K with a 512KB L2 = 1.0)

show performance degradation in the range of 3% to 9%. The major cause, as discussed above, is
due to the 4KB capacities of the stack and global static caches that are unable to accommodate the
entire working set sizes of these applications which fit nicely into a 40KB monolithic data cache,
nevertheless. When the filter cache is large, the region-based cachelets scheme has lower performance
than a conventional cache design. As the 0" level cache increases, the cache organizations in the 1%¢
level cache play a less significant role in the overall performance. As a result, the speedups continue
to decrease as the filter cache is gradually enlarged. When the speedup drops below one, a majority
of the frequently used data can be captured by the filter cache while data working set fits into a
larger monolithic cache better than specialized yet smaller region-based cachelets.

Figure 4.18 compares relative power consumption of a cache architecture with a conventional
cache design and region-based cachelets, both with a filter cache. A region-based cachelets design
clearly demonstrates the usefulness of smaller filter caches in terms of additional power reduction
through filtering a majority of cache references into smaller cachelet structures. This advantage,
however, diminishes when the size of the filter cache is about 1KB in some of our experiments. By
and large, different region-based cachelets configurations show roughly 20% to 50% power reduction
in addition to what can be obtained from a filter cache implementation when the size of the filter
cache is reasonably small. When the size of the filter cache is equal to or more than 4KB, the region-
based cachelets are less effective than a conventional monolithic cache. This is caused by additional
L2 cache power consumption in region-based cachelets when the stack and global cachelets cannot
accommodate their region data. Consider both performance and power reduction, Figure 4.19
evaluates the energy-delay products of distinct design points. It shows that a filter cache with
region-based cachelets is a better design for most cases when the filter cache is smaller than 4KB.
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Figure 4.15: Energy-Delay Product of a Combined Filter Cache with Region-based Cachelets (Base-

line: S4k-G4k-32K with a 512KB L2 = 1.0)
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Figure 4.16: Filtered L1 Cache versus Filtered Region-based Cachelets
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Figure 4.17: Performance Speedup of a Filter Cache with Region-based Cachelets versus a Filter
Cache with a Conventional Cache

4.5.4.2 Dedicating Filter Caches to Semantic Regions

As shown in Figure 3.4 in Section 3.2.2, the majority of the cache space appears to be occupied
by stack data. When the size of a unified filter cache approaches or is greater than the size of a
region-based stack cachelet, the filter cache could be ineffective because what is missed in the filter
cache is very likely to be missed in the next level stack cachelet. In such a cache organization, the
filter cache is less useful for filtering stack data. If we leave the stack cachelet as is and dedicate
the filter cache to the larger L1 cache (mainly for heap data), we might be able to achieve a more
effective filtering effect to reduce power consumption. In this section, we investigate the design
opportunities for dedicating the filter cache to a particular region.

Figure 4.20, Figure 4.21 and Figure 4.22 evaluate the performance speedup, power reduction and
energy-delay product for such designs. The numbers were averaged for the entire Mediabench and
normalized to the baseline case, the leftmost bar. The baseline, represented by Filter LI in these
charts, is a filter cache with a five-way 40KB monolithic conventional cache. Along with the RBC
— Unified Filter, they are the same cache configurations presented in Section 4.5.4.1. We exploit
three different region filter caches, each of them is exclusively dedicated to one semantic region,
including RBC — Heap Filter for heap data, RBC — Stack Filter for stack data, and RBC —
Global Filter for global data. Seven filter cache sizes varied from 128 bytes to 8KB were used in
these experiments. The latencies of data cache accesses that bypass the dedicated filter cache, i.e.
accessing a different region, can be reduced. However, it consumes more power than a unified filter
cache with region-based cachelets as shown in Figure 4.21.

When the size of the filter cache increases up to 4KB or 8KB, equal to or greater than the sizes of
the stack and global cachelets (4KB in these cases), a dedicated filter cache to heap data appears to
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Figure 4.18: Power Comparison of a Filter Cache with and without Region-based Cachelets

be a better design as shown in Figure 4.22. In these cases, the stack and global cachelets themselves
behave like filter caches, thus it seems redundant to have a unified filter cache in front of the stack
and global cachelets. Instead, if we dedicate the filter cache to heap data only, we can achieve the
maximum power reduction as shown in Figure 4.21.

For the energy-delay products, when the filter cache is less than 2KB, a unified filter cache RBC
— Unified Filter appears to be the best design among the others except for the 128-byte filter cache.
While the filter cache approaches 4KB or larger, the region-based cachelets with a dedicated heap
filter cache (RBC — Heap Filter) apparently shows the best design.

4.6 Related Work

Low-power IC design techniques can be classified into several levels of design space from system
level, architecture, logic, to transistor level. Frenkil in [45] presented an overview of research activities
at each level. We briefly overview architecture level techniques for low-power cache design.

Power dissipation is generally proportional to the size of the SRAM array structure. Researchers
and embedded processor architects have been studying designs employing smaller structures for the
majority of the cache accesses to reduce power dissipation.

Early machines such as the HP3000 Series II [17] has an integrated stack cache as an extension
to main memory. Since the machine does not have a data cache, the stack cache functions as a
tiny direct-mapped cache with FIFO replacement policy for stack references. The CRISP [15][41]
processor developed at Bell Labs adopted a complete memory-to-memory instruction set architec-
ture and simple addressing modes to avoid the overheads of procedure calls. The design offloads the
burden of register allocation on the top of the stack from the compiler to the hardware by incorpo-
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Figure 4.19: Energy-Delay Product Comparison of a Filter Cache with and without Region-based
Cachelets

rating a 32-entry stack cache. The stack cache is the processor’s only data cache. More recently,
researchers [28][75] have proposed similar methods that incorporate a large stack-cache memory
structure to alleviate the cost of multi-ported cache designs. Their goal was to improve performance
of wide issue superscalar processors — not to reduce power dissipation.

Line buffers (or block buffering) and sub-banking [47][107] have been proposed to reduce power.
To exploit spatial locality and reduce power, line buffers hold most recently accessed cache lines for
potential hits by subsequent accesses. The cache is not exercised when a cache access hits in the
line buffers. Kin et al. described a similar technique [66] by inserting a very small filter cache as the
first-level (LO) cache to the CPU. The filter cache design approach sacrifices cache performance in
exchange of power-saving as the filter cache has poorer data locality. In Kin’s study, by employing
direct-mapped 256-byte filter I-cache and filter D-cache, the power consumption is reduced by 58%
while reducing performance by 21%.

Sub-banking is similar to column multiplexing [119] known to RAM designers for reducing the
number of sense amps. Only the sub-banks that contain the requested data are accessed. As a result,
power is reduced by eliminating unnecessary accesses. The first microprocessor in the StrongARM
family [82], the SA-110, employs a sub-banking mechanism by enabling only 4 ways of its 32-way
cache for each cache access. The processor also incorporates a cache sub-block castout mechanism
to minimize data going out to memory, thereby reducing unnecessary power consumption.

Intel’s StrongARM SA-1110 processor [58], based on the SA-110 core, implements a mini-cache in
addition to the main data cache for storing streaming data which demonstrate little or no temporal
locality. Data cacheability is controlled through control registers. This design is a multi-lateral
cache design approach [49][61][93], but it actually increases dynamic power since both mini-cache
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Figure 4.22: Energy-Delay Product Comparison of Dedicated Region Filter Caches

and main cache are probed in parallel. Bellas et al. [13] proposed a dynamic instruction caching
scheme to determining what to be cached inside a mini LO-cache as an extension to the idea of
instruction filter cache. By restricting the use of the mini-cache to only most frequently executed
blocks, the total number of mini-cache accesses is reduced at the same time the mini-cache hits are
increased.

Albonesi in [3] proposed a horizontally partitioned cache design that can disable a subset of cache
set lines in a set-associative cache via ISA and microarchitectural support when a full cache is not
critical to overall performance. This concept is called “Performance On-Demand” coined by George
Cai at Intel Corp. The idea is to turn on the die area needed to satisfy the performance goal of a
running application. Compiler and profiling tools can be used to determine when and how many set
items can be disabled for power-savings.

More recently, Huang at el. [56] combined our proposal with a pseudo set-associative cache design
to further reduce power consumption in data caches.

4.7 Chapter Summary

In this chapter, we have proposed a new Region-based Cachelets design that can effectively reduce
the power dissipation of a data cache organization while retaining the execution performance of a
conventional cache design. This is accomplished by partitioning data references based on seman-
tically defined memory regions into distinct caches. Stack references and global static references,
which exhibit a high degree of temporal and spatial locality, are routed to specialized (and small)
cache structures. Since 70% of the references hit in the stack and global static data region, the
overall data cache power consumption can be significantly reduced. Since 4KB stack and global
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static caches achieve a 99% hit rate, execution performance is not degraded. Additionally, by par-
titioning the cache into regions, conflicts are eliminated between regions making it more feasible to
implement each cache with lower associativity. Building smaller segregated cachelets also provides
more flexibility in increasing overall data storage than enlarging a single monolithic cache since
cache designs do not need to double in size or increase associativity to grow. Our results show that
a region-based cachelets design can reach an average power dissipation reduction of between 50%
and 70% compared to more traditional designs.

The power can be further reduced if we apply existing techniques such as filter caches or sub-
banking, or if smaller cachelet line sizes are used. A quantitative analysis of the filter cache effect
was also presented in this chapter. Using our region-based cachelets scheme with an additional
unified filter cache, we found that we can further reduce power consumption by as much as 40%
while having very little impact on the overall performance. Furthermore, we analyzed how the
region-based cachelets can enhance a memory system design with a filter cache, in terms of EDP
efficiency. As we expected, the region-based cachelets design with a 128-byte filter cache can reach
approximately 2 times design efficiency in EDP.

The region-based cachelets design also has the potential to reduce power in multi-ported caches
for high performance microprocessors. For a multiple issue processor that issues multiple memory
instructions in the same cycle, region-based cachelets design offers an alternative that allows building
smaller power-economic region caches in lieu of a monolithic (power-hungry) multi-ported cache.
Quantitative analysis of this applications is suggested in Chapter 7.
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CHAPTER 5
HIGH-PERFORMANCE STACK VALUE FILE

In order to achieve ever higher performance in microprocessors, we continue to see an increase in
complexity of the microarchitectural designs. To help manage this complexity and achieve designs
that function in more restrictive time constraints, processor architects have relied more heavily on
a technique of subdividing general structures into multiple, more specialized structures, which can
be implemented more effectively. Examples include predicting indirect branches using a dedicated
history buffer [25] and speculatively processing loads with good value locality [80]. As discussed
in Section 3.1, memory accesses can be partitioned into address regions including the generated
instruction code, literal pool, static data, dynamic stack and heap regions. This partitioning can
then be exploited to reorganize the cache structure to improve performance. Separate instruction and
data caches are found in almost all processors, and recently we have seen architectures proposed that
include stack and non-stack caches [27][28], as well as temporal and non-temporal caches [49][62][93].
Each of these designs uses a conventional cache organization and achieves improved performance by
enabling parallel accesses to two cache structures and/or reducing contention in cache line allocation.

In this chapter, we focus on a high-performance implementation by optimizing the performance
of the stack memory references. We propose a hardware structure called a Stack Value File (SVF),
which is used to exploit the unique characteristics of stack references. The SVF is a non-architected
register file containing the data near the top of stack (TOS), which is normally held in memory or
the data cache(s). All references to these locations are diverted to the SVF instead of the L1 data
cache.

5.1 Stack Reference Characteristics

Stack references account for an appreciable portion of all memory references as discussed in Chap-
ter 3, and their unique characteristics allow them to be handled more effectively than general memory
references. In the subsequent discussion, we will demonstrate that stack references are a worthy tar-
get for optimization. Since the technique described in this chapter focuses on high-performance
processor segment, therefore, the Compaq Alpha architecture and the SPECint2000 benchmark are
used in our experiments throughout this chapter.

Memory accesses fall into several different categories, according to the region of memory they
access and the access method used. The Compaq Alpha processor allocates a system-defined amount
of space allocated to the stack, which grows down towards virtual address 0 from a mid-range address.
The TOS pointer dynamically maintains the size of the stack, which forms a lower dynamic boundary
on address references to the stack. The middle address range beyond the stack, which is allocated
during compilation, includes the read-only data region (.rdata), the code region (.text), and the
global data region (.data). Memory is dynamically allocated by the program from the heap, which
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Figure 5.1: Run-time Memory Access Distribution by Access Methods for SPECint2000

grows upward from the top of the middle address range. This partitioning is depicted in Figure 3.1.

For the Compaq Alpha Processor, the stack may be accessed by several means: via the stack
pointer ($sp), the frame pointer ($fp), or through general-purpose registers ($gpr).

To understand the breakdown of memory references by regions and access method, in addition
to the simple memory region distribution shown in Figure 3.2, a more detailed classification based
on the distributions of access methods is shown in Figure 5.1. Each bar in Figure 5.1 is normalized
to the total number of memory instructions. For these benchmarks, an average of 42% of the
instructions executed access memory. Stack references account for an average of 56% of all memory
accesses, while global data references account for only about 21% and a majority of the remaining
accesses are to the heap. The $sp-relative addressing mode is the dominant access method to the
stack, accounting for 82% of all accesses to the stack, or 46% of total memory accesses.

Since stack references are so common and $sp-relative addressing mode is the dominant access
method to the stack, a closer examination of the characteristics of $sp-relative accesses is in order.

$sp-relative accesses can be easily identified during instruction decode. Thus they can be treated
specially by diverting them to different pipelines or functional units. Removing stack references
from the stream of references to the L1 cache reduces the demand for L1 cache bandwidth. It also
potentially reduces the required size and associativity of a conventional L1 cache. Processing stack
references in parallel with conventional L1 cache references increases effective memory bandwidth
and allows for the exploitation of more instruction-level parallelism. This has been demonstrated for
stack machine architectures in the early CRISP processor [14] and more recently for conventional
architectures with a local variable decoupled pipeline [28].

51



The data above shows that the overwhelming majority of accesses are via $sp-relative addressing
except for 252.eon which has a large number of accesses via $gpr. Thus while accesses to locations in a
special stack structure using methods other than $sp-relative addressing (e.g. with pointer accesses)
must be handled, they can incur the regular cache access latency without causing a significant
performance penalty.

Since $sp-relative addressing is simple and fast, the additional pipeline stage often used for
complex address calculations can be avoided, enabling a shorter access latency. This early address
calculation is easily performed for those references using $sp-relative addressing by using the tech-
niques described in [8] and [12].

Stack adjustments carry with them semantic assumptions regarding liveness that can be exploited
to significantly reduce total memory bandwidth. A large fraction of the transactions between a stack
structure or first-level cache and the second-level cache or main memory can be eliminated with
this additional semantic information. The references that can be eliminated are fetches on write
for cache lines that are being written to newly-allocated stack space (i.e., any data that might be
fetched is uninitialized), and writebacks of dirty lines that are in the region of memory that has been
deallocated from the stack. These references have no semantic impact, and can be eliminated without
repercussions for well-behaved programs. A well-behaved program should not access locations below
the TOS, where memory contents are undefined by legal programming language semantics.

Stack references can be renamed and treated like registers. With the right design, this reduces
store-forwarding costs, as described in Section 5.3. Stack references are easier to rename for two
reasons. First, the association of memory references with locations is simple and fast: the least
significant bits of the address generated by adding the stack pointer and offset are used to directly
index into the SVF. No associative lookups are required. Second, the choice of which references to
rename is simple, namely the top N locations on the stack. No prediction of locality is required.
In addition, the implemented register renaming logic for an out-of-order microarchitecture can be
reused for stack reference renaming; thus minimum extra hardware cost is required.

There is clearly a strong potential for performance gain by exploiting these characteristics. The
next section details some additional characteristics that suggest the stack value file (SVF) imple-
mentation.

5.2 Motivation for Stack Value File Design

A structure for storing stack data could take several forms, among them register windows, a
stack cache or a stack value file. Register windows [114] explicitly make one microarchitectural
implementation part of the instruction set architecture. This limits flexibility and adds a design
constraint for future implementations. A decoupled stack cache [27][28] partitions memory streams
by predicting reference regions, and retrieving data either from a stack or non-stack cache according
to the prediction. It does not exploit the contiguous nature of stack locations, the relative stability
of the top of stack, nor the semantics associated with stack adjustments.

The Stack Value File (SVF) holds the N locations closest to the top of stack (TOS) in a structure
separate from the first-level cache. Space is allocated for these locations and no others; references
to the stack outside this region are directed to a traditional cache or memory. As the TOS is
adjusted, locations outside the range of the N locations farthermost from the TOS are written (or
dribbled [101]) to the next level in the memory hierarchy if they are dirty. As will be demonstrated
later, although the dribbling traffic is extremely small in most of the cases, it is the dominant element
of the memory traffic between the SVF and the next level memory hierarchy (L1 cache) since an
SVF of an appropriate size efficiently handles most references itself and also eliminates fetch on write
cache line loads.
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5.2.1 Contiguity

The first notable feature is that stack memory region is accessed contiguously which is exploited
by the SVF scheme. This approach has three advantages relative to a cache. First, stack data can
be conveniently stored in a relatively simple, fast structure with a limited die area and less power
dissipation. Because it holds all of a contiguous range, it is directly addressable, and can be banked
using low-order address bits with good capacity balance. Second, since locations are exclusively
contiguous, no tags are required. Figure 5.2 shows the cache footprint of the 197.parser benchmark
from the SPECint2000. Given a data cache with 1024 sets (x-axis), the number of references to
a particular cache set was accumulated and plotted on the y-axis. The footprint of stack data
measured in number of accesses to each cache set is denoted by a cross-marked solid thick line, the
footprint of global static data with a dotted line, and the footprint of heap data with scattered
triangles. Note that the y-axis was plotted on a log scale. As shown in the figure, the stack data
were accessed heavily only between set 782 to set 888 and contain no footprint for almost all the
other cache sets. In contrast, the heap data were evenly accessed across the entire 1024 cache sets.
The global static data show the most irregular reference footprint. This observation reveals that
the stack data show very high reference locality and imply the feature of contiguity in the reference
sequences. The footprint plots for the entire SPECint2000 benchmark can be found in Appendix C.
Most of them demonstrate similar behavior as the 197.parser benchmark. The only exception is
176.gcc, whose stack footprint is as spread out as the heap footprint. Even so, as we are going to
show in our later analysis, the data traffic between SVF and L1 cache are tolerable because many
of these data are either dead or not reused when the program returns from function invocations.

The third advantage of the SVF design over a conventional cache is that those locations which
are known to be invalid or dead because of a stack adjustment are easily identified. This advantage
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Figure 5.3: Stack Depth Variations

is more fully explained in Section 5.5.3.2.

5.2.2 Stack Depth Variations and Locality

The top of stack is adjusted at least twice for each procedure invocation (function call and return
stack adjustments) and perhaps more often. Upon each adjustment, the set of locations stored in
the stack or data cache structures can change. Changing this set of locations has three implications.
Newly-allocated locations may need to be fetched from memory. Displaced locations may need to be
written back. Finally, adjustments may need to be made as to how those locations are referenced.
With the SVF design, none of these three implications has much performance impact, as explained
here and shown quantitatively in Section 5.5.

As the stack grows, new space is allocated, which is initially invalid. If the size of the SVF is
smaller than the size of the stack!, the valid data closest to the stack base that is displaced from
the SVF must be dribbled back to memory. As the stack shrinks, the data past the new TOS are
disposed from the SVF and can no longer be accessed, according to program semantics, they are

IThe size of the stack is the difference between the base of the stack region and the TOS.
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dead and need not be written back to memory. Section 5.3.4 has further discussion on this point.

If the size of the SVF is smaller than the size of the stack, the locations that become part of
the SVF region as the stack shrinks are initially undefined, and may need to be read from memory
(dribbling in) if a load is performed before a store to any of these locations. There are two design
alternatives: references to the SVF can stall while this dribbling is done en masse, or that region of
the SVF can be marked invalid upon dribbling in, necessitating a fetch on write load only if/when
the datum is read before written; again stores would not require a fetch on write load. The second
approach is used in our design.

Thus dribbling for dirty writebacks and required reads only occurs if the stack size is larger than
the SVF. A burst of traffic only occurs for writing back dirty data. Just as in dirty writeback,
dribbling overhead can be hidden in the background as the processor continues to execute. Stanley
and Wedig [106] investigated various schemes to hide the dribbling latency, e.g. the Barometer
algorithm. Dribbling is only a performance issue if the TOS is changing quickly and the SVF is
small relative to the working set.

Data were collected for SPECint2000 benchmarks to show the variations in stack depth over the
lifetime of a program. The TOS address, relative to the stack base address, was logged each time
the stack pointer is updated. The figures in Figure 5.3 show sampled graphs? that map stack depth
variation over time. The x-axis is time, starting at the beginning of the program. The y-axis plots
the stack depth, starting from zero. The basic data size in the SVF is 64 bits of data, and this is
the unit of the y-axis. So 1000 units corresponds to 8KB.

There are two observations to be made from these data. First, an SVF of 1000 units is larger
than the maximum stack size for most of the applications. Even though it seems that 256.bzip2 has
some variations larger than 1000 units, we show later that these variations incur very little dirty
data dribbling. This is because dirty stack data does not tend to be used across function calls.
Thus no major amount of memory dribbling will be triggered. Second, the stack depth is quite
stable after the initialization phase. This holds for almost all of the SPECint2000 benchmarks. For
example in 186.crafty, the most representative active stack region is [200, 600]. Thus most of the
stack references fall within a reasonably compact memory space, 400 units (a little under 4KB) in
this case. Thus the valid values that may be dribbled in and out of a small SVF will still have good
locality in the next level cache. Furthermore, if the working set is small enough and close to the
TOS, the working set will stay in the SVF.

Stack references also tend to be reasonably close to the top of the stack. Figure 5.4 shows
the cumulative distribution within a function of offsets of references into stack region with the x-
axis plotted on a log scale. Across all of the SPECint2000 benchmarks, the average distance from
TOS ranges from 2.5 (256.bzip2) to 380 bytes (176.gcc), and over 99% of all references (except for
176.gcc) are within 8KB of the TOS. Thus spatial locality with respect to the TOS is excellent. No
references are beyond the top of the stack for these benchmarks. The graphs illustrate that most
stack references are in one contiguous space (between 0 and 300 bytes offset from TOS), indicating
that there is no need for a mechanism flexible enough to maintain a non-contiguous working set.

The conclusion to be drawn from these data is that an SVF that is 8KB or less will still capture
the locality well enough to eliminate most dribbling. The amount of dribbling may be large if the
variation in stack depth is large, but when this happens, a decoupled stack cache will also perform
poorly if the number of distinct locations accessed per stack adjustment is also large.

The data presented in this subsection and later, in Section 5.5, suggests that potential losses
due to managing only spatial locality with respect to the TOS, relative to managing only temporal
locality with a temporal cache, are minimal if the SVF is adequately sized.

In summary, the stack reference characteristics that the SVF exploits include the following:

2To ensure representativeness, the sampling is based on the changes of the stack pointer rather than on time period.
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Figure 5.4: Offset Locality within Functions

Stack references have extremely good temporal and spatial locality. Furthermore, the active
portion of the cache is almost® always in a single continuous region at the top of the stack.
This contiguity means that partitioning a cache into multiple blocks, each with its own tag, is
unnecessary; the SVF can be organized as a simple register file structure that is dynamically
mapped to the contiguous region at the top of the stack. The access hit rate for this contiguous
region will approximate that of a stack cache design of the same size.

The first reference to each word in a new region of the stack (i.e., a new activation record) is
almost always a store. This means that any demand-driven line allocation in a conventional
cache is likely to bring in many words that will be overwritten on their first reference. This
wastes bus bandwidth by bringing in dead data values. Our SVF organization eliminates this
useless traffic by organizing the data words into a single register file with a valid bit associated
with each word. Store misses need not reference memory and the rare instance of a load miss
simply brings a single word from higher levels of the memory system (i.e. the L1 cache). This
significantly reduces the read traffic incurred by stack reference misses in conventional caches.

Data from deallocated stack frames do not have to be written back to memory when deal-
located. Identifying invalid dirty data in the SVF reduces the writeback traffic incurred by
conventional caches.

Most stack references use an $sp-relative addressing mode. The simple addition/subtraction
of a stack displacement can be done early in the pipeline, thereby reducing access latency
for stack references. Furthermore, by directly translating the least significant bits of the full

3Prefetch instructions can read stack memory before a store occurs.
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Figure 5.5: Microarchitecture Extension with a Stack Value File Implementation

address into an SVF index, full address calculation and data tag comparison is eliminated.
This reduces the circuit design complexity.

In addition to these points, if references to a stack structure become nearly as cheap as registers,
then there is less need to have more architectural registers. Instead of imposing the design constraint
of a larger number of architectural registers on all future designs, the compiler can allocate the
frequently-referenced variables that do not fit in architectural registers near the top of the stack, and
implementations may vary with respect to the number of stack locations they treat more efficiently.
However, we do not propose a new stack machine architecture here; we in fact propose a new
microarchitectural component, specialized for the unique characteristics of stack references on current
processor architectures, e.g. the Compaq Alpha processor in this study.

5.3 Stack Value File Design

The stack value file is specifically tailored to optimize stack references. This section provides an
overview of its main features. The SVF is a register file large enough to hold those stack locations
near the TOS. Arrays with thousands of registers have become reasonable to build today. Because
the SVF stores locations that would otherwise be in the first-level cache, and allows that cache to
be used more effectively, it is reasonable to borrow some of the first-level cache’s area. The SVF
can be more area efficient because it needs almost no tag space and can be direct-mapped instead
of associative. It may also alleviate the need for dual-porting the first-level cache.

The SVF is architecturally invisible, leaving the designer with the freedom to choose an appro-
priate level of support for stack references without the constraints of a large architected register file.
References to cacheable locations allocated in the address range covered by the SVF are diverted
from the first-level cache as described in Section 5.3.1, thus reducing its bandwidth, capacity and
associativity demands. $sp-relative references are recognized early enough to avoid the added la-
tency that general address calculations require. SVF references are renamed like general-purpose
registers through the register alias table, further reducing delays and effectively implementing data
forwarding. Figure 5.5 shows our re-architected out-of-order pipeline. Other references to locations
in the SVF are detected using a bound check. Such references are diverted from the first level cache
at a modest performance penalty, as described in Section 5.3.2.

The SVF is a circular buffer, with memory locations mapped to SVF registers according to the
lowest-order address bits. Changes to the stack pointer are detected, and lead to data movement
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to and from the first-level cache as necessary. Status bits are associated with entries in the SVF to
identify dirty data that needs to be pushed onto the stack. Valid and dirty bits minimize or delay
traffic when a TOS adjustment and an SVF overflow or underflow makes it necessary to dribble out
to or in from memory. The following subsections describe these new microarchitectural features in
greater depth.

5.3.1 Morphing Stack-Pointer Based References

An extended pre-decode circuit in fetch stage is added to identify stack pointer based memory
references and to determine their immediate offset values. A special adder in the decode stage
enables fast address calculation using this predecoded information. Prior studies [9][8] have already
demonstrated similar viable techniques.

In our design, a pipeline interlock incorporated in the decode stage can stall instruction decoding
if the stack pointer update requires registers other than itself, or complex operations, e.g. add sp,
sp, r5. These are not common, however. Since most of the $sp updates are simply adjustments with
an immediate constant, we can perform these computations in the decode stage early by keeping
a speculative $sp register copy in the decode stage. All the following $sp-based references fetch
$sp content from this speculative copy to index their SVF register ID. If the branch is correctly
speculated, execution continues. However, if the branch is mispredicted, then the speculative $sp
copy will be recovered with the value from the architectural $sp before the pipeline restarts at the
correct branch path. All other $sp updates require a reference to other general purpose registers
(except for zero register $r31 in Alpha). In those cases, the interlock stalls decoding to prevent
following instructions from reading a stale TOS address.

Once the memory address with +IMM($sp) addressing mode (immediate offset from stack
pointer) is computed in the decode stage, the address is checked against the range of stack mem-
ory currently held in the SVF. If a hit is detected, the instruction is morphed into a register-move
operation and dispatched to the reservation station. The low-order bits of the address are used as
the register ID to index into the SVF. These architecturally-transparent register IDs can be con-
sidered as an extension of general-purpose register IDs. The hardware register renamer can rename
each active SVF register into a corresponding entry in the physical registers of the reorder buffer.
After the dispatch stage, all the morphed $sp load/store instructions will have been mapped into
register space. Thus dependencies on these SVF registers are treated just like any regular register
dependency.

5.3.2 Stack Memory Reference Disambiguation

Since only memory references indexed by stack pointer are deposited into the SVF, stack data
references through other means such as the frame pointer or general purpose registers must be
disambiguated and redirected into the SVF for data consistency.

For each stack-pointer based reference morphed into the register move form, two micro-operations
(uops) are generated after instruction decoding. One uop is the converted register move, while the
other one carrying the early resolved stack address is enqueued into the Load/Store Queue (LSQ).
The uop in the LSQ is used for disambiguation purposes before the morphed references are committed
to the SVF. If any later load instruction collides with these uops in the LSQ, regular store forwarding
will be performed.

All memory instructions that reference the stack memory region through registers other than
the stack pointer have their addresses checked against the current stack range in the SVF. The
load/store operation is then re-routed to SVF if a match is detected.

There is one particular circumstance in which a simple re-routing operation cannot correctly
maintain data dependency. This happens because of the relative timing of when references are
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il I da al, 16(sp) il I da al, 16(sp)

i2 bsr ra, funcl i2 bsr ra, funcl
i3 | da sp, -16(sp) i3 | da sp, -16(sp)
i4 stq al, 8(sp) i4 stq al, 8(sp)
i5 1dg tO, 8(sp) i5 ldg t0, 8(sp)
i6 stq vO, 0(t0) i6  stq v0, 0(t0)
i7 lda sp, 16(sp) i7 lda sp, 16(sp)
i8 ret i8 ret

i9 Ida t0, 16(sp)
i9 ldg vO0, 16(sp) i10 ldg vO, 0(tO0)

Figure 5.6: Load Squashing Scenario and its Optimization

determined to access the SVF. When a store through a general-purpose register is followed by a
colliding load through stack pointer, the load can retrieve a stale value from the SVF, as follows.
The store is executed late: it does not access the SVF until the execution stage because it uses
a different addressing mode. The load, though it follows the store in program order, can execute
before the store, since $sp-relative loads execute early, in the decode stage.

This condition is detected in the LSQ when the store executes. A pipeline squash, similar to the
recovery from a memory ordering violation, is invoked to avoid a chain of incorrect data dependent
instructions. This problem can be avoided by introducing a redundant dependence that forces the
load to be executed late. The $sp-relative load is broken into two instructions. The first, designed
to go through the execute stage, performs the address calculation ($sp plus offset). The second,
dependent on the first, performs the load itself, at a time which is guaranteed to be after the store.

Nevertheless, this squash can be eliminated by inserting a redundant dependence with one ad-
ditional instruction before the dependent load. The code on the left-hand side in Figure 5.6 shows
the scenario that leads to a load squashing. Instruction i1 computes the address and assigns it to
register al. Then a1l is stored onto the new stack frame and vO0 is later stored to that address as
shown in i6. After the function returns and the old stack frame is restored, the load (i9) reloads
the value through $sp into v0. The aliased memory dependency between i6 and i9 causes i9 to
be squashed. An optimized version code to prevent the squashing from happening is to insert one
additional instruction before the load as shown in the right-hand side of the figure. In this new code,
i9 is inserted as an address calculation instruction. The memory dependency between 110 and i6
is now resolved in the LSQ if i6 is still in-flight without taking on the squashing penalty.

5.3.3 SVF Status Bits

Each SVF register contains two status bits. The dirty bit identifies the subset of all locations
between the new and old TOS that need to be dribbled out upon a TOS adjustment to maintain
data coherence. The dirty bit is set when its corresponding SVF register is written, and cleared when
the data is written back. The valid bit indicates whether locations exposed by a TOS adjustment
need to be read. The valid bit is set when data is written in the SVF, either upon a write from the
processor core or a fill from memory. It is cleared for locations between the new and old TOS when
the TOS is adjusted (both shrinking and growing). If an SVF load accesses an invalid register, a
dribble-in is triggered.

These status bits improve performance for the SVF design in several ways. First, the dirty bits
avoid writing back clean data. Second, the valid bits avoid a burst of unnecessary reads when the
stack shrinks. Locations are read only when needed, like a cache. Third, valid and dirty bits can be
used to aid in snooping in a multi-agent (e.g. multiprocessor) system.
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The granularity of these status bits is most naturally the smallest data type that is frequently
used. For the Alpha architecture, this is 64 bits. If the granularity is larger than this, there may be
more traffic to memory, as was just alluded to. Larger granularity can also increase the degree of
false sharing, but this is not a significant issue for stack locations.

At first glance a caching scheme may seem more advantageous than a contiguous scheme on
context switches, but this is not necessary to be an issue. The use of a stack cache does not
necessarily eliminate writebacks of dirty data on a context switch. Any new process is likely to
displace much of the data in their stack cache. Valid bits make the SVF perform similar to a stack
cache on a context switch in that only dirty words, not entire dirty lines are written back.

5.3.4 Accesses Outside Defined Scope

Eliminating writeback transactions for locations that are past the TOS and presumed dead
can boost performance. While accessing locations past the TOS is illegal by semantic convention,
assuming that this can never happen is unsafe. So such optimizations can be under the control of a
mode bit that is set upon the loading of a well-behaved program.

The convention of not writing beyond the TOS holds for well-behaved high-level language pro-
grams, since a later subroutine call could overwrite these data. For those operating systems that do
not use a separate system stack, an interrupt service routine could also overwrite these data. How-
ever, it is possible to write a source-level or an assembly program which violates this convention.
One way to end up with a reference past the TOS is by taking the address of a location on the
stack and using it outside the scope of the procedure that allocated space for that location. This
should normally be considered a bug; it is dangerous at best. The SVF can access these locations,
nonetheless, the contents of these locations are undefined.

5.3.5 Management of Performance Liabilities

The SVF performs well in most cases, as is supported by the data above. There are three cases
where the SVF may not perform well, and we propose means for dealing with each of these.

The first case is context switches. This will be addressed in Section 5.5.3.3.

A second case is excessive changes in the TOS. If dribbling becomes excessive, i.e. where the
ratio of TOS movement in one direction to the number of references is too high, the SVF can be
locked. This can be monitored with fairly simple hardware. Note that with the use of valid and
dirty bits the read and writeback traffic is a function of the number of references, and not only the
number and distance of adjustments.

A third case is operating systems calls and interrupts serviced on a system stack. For this case,
there is a high probability that the SVF entries that are written back will be reloaded. Transitions
among different privilege levels are generally detectable in hardware, e.g. by a change between
the user and system stack pointers in the Motorola 68k family, or by accesses to the task segment
structures in the IA32 family. A change to a higher privilege level can be noted and can cause the
SVF to be locked. When reverting to the user privilege level, the SVF can be unlocked.

In general, excessive dribbling is detectable and the SVF can be temporarily disabled, if necessary,
without disrupting the rest of the pipeline. Performance then reverts to being no worse than it would
be in a conventional microarchitecture.

5.4 Experimental Configuration

The SPECint2000 programs are used in this study. The binaries were compiled using the Compagq
Alpha compiler with appropriate optimizations enabled. All the simulation results presented below
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| Components | 4-wide | 8-wide | 16-wide |

Decode width 4 8 16
Issue width 4 8 16
Commit width 4 8 16
IFQ size 16 32 64
RUU size 64 128 256
LSQ size 32 64 128
IL1 cache 8-way 256KB | 8-way 256KB | 8-way 256KB
DL1 cache 4-way 64KB | 4-way 64KB | 4-way 64KB
IL1 hit 1 cpu clk 1 cpu clk 1 cpu clk
DL1 hit 3 cpu clks 3 cpu clks 3 cpu clks
Unified L2 4-way 512KB | 4-way 512KB | 4-way 512KB
L2 hit 16 cpu clks 16 cpu clks 16 cpu clks
Mem latency 60 cpu clks 60 cpu clks 60 cpu clks
CPU-Mem clk ratio 6:1 6:1 6:1
Store forwarding 3 clks 3 clks 3 clks
Int/FP ALU 16 16 16
Int/FP Mult 4 4 4

Table 5.1: Processor Models.

ran up to 600 million instructions. Section 2.2.1 contains detailed description for each benchmark
application.

The simulators used in this research were derived from the SimpleScalar tool suite version 3.0 [19].
Refer to Section 2.1 for basic information of the SimpleScalar tool set. We re-architected the pipeline
structure to incorporate our stack value file design.

The machine models used in our experiments are summarized in Table 5.1. It is worth noting
that the store forwarding latency used in all of our experiments is 3 cycles. As a result, the L1 cache
hit latency is also 3 cycles*. However, the throughput of the cache hit can be a single cycle since L1
cache accesses are fully pipelined.

In order to demonstrate the performance potential of our scheme and to reduce the performance
interference from the front-end, we use a fairly large and fast first-level instruction cache as well as
a perfect branch predictor, unless elaborated.

5.5 Performance Evaluation and Design Trade-Offs

In this section, we provide data to show how the characteristics of stack references can be
effectively exploited with a stack value file to alleviate first-level cache bandwidth, reduce latency
for stack memory references, reduce the memory traffic for the memory subsystem, and eventually
improve execution performance.

5.5.1 Improving Cache Bandwidth, Latency and ILP

The primary benefits of treating stack references separately from all other memory references are
the opportunities the SVF provides for:

e exploiting more instruction-level parallelism with the existing physical registers in the RUU
and additional SVF ports for stack references

4The store forwarding latency matches our measurement of the actual latency on the Intel Pentium III processor,
including cache latency and store forwarding delay in the pipeline.
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Figure 5.7: Speedup Potentials of Morphing All Stack Accesses to Register Moves (single-ported
cache)

o disambiguating stack references through existing register alias table
o eliminating the stack references on the data cache ports

The latency of the stack memory references can be reduced if the SVF entries can be accessed
like registers. The gains from these improvements are quantified in Figure 5.7 and Figure 5.8. These
figures demonstrate the potential performance gains from implementing an SVF with infinite SVF
ports for various generations of processors, assuming all the stack references can be morphed into
register-to-SVF moves. For example in Figure 5.8, the first three bars show average speedups of
1.11, 1.19, and 1.31 for 4-wide, 8wide and 16-wide machines respectively, with a dual-ported first
level data cache and a perfect branch predictor.

The 4-, 8 and 16-wide speedups are all relative to a baseline with a perfect branch predictor.
The last column shows 16-wide speedups with a gshare branch predictor [81], relative to a baseline
with gshare predictor. The average speedup for a configuration with a dual-ported cache is 1.25.
Some benchmark cases show a greater speedup with gshare. In these cases, SVF’s latency-shortening
benefits allow branches to be resolved early, reducing the branch misprediction penalty. However,
the more realistic branch prediction of gshare reduces the effective basic block size, reducing the
potential stack parallelism and leading to a smaller average gain than for the perfect prediction
case.
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Figure 5.8: Speedup Potentials of Morphing All Stack Accesses to Register Moves (dual-ported
cache)

5.5.2 Hierarchical Performance Analysis

To understand the performance gain in a quantitative manner, Figure 5.9 shows hierarchical
performance improvements under different constraints for a 16-wide machine. Starting from the
baseline machine model described in Table 5.1, we relax the machine constraints for each bar in the
figure.

First, the first level data cache size is doubled (from 64KB to 128KB) without increasing the
access latency. As shown in Figure 5.9, the speedups from enlarging L1 size for all the SPECint2000
benchmarks are negligible. This leads to the following conjectures. First, improving overall per-
formance for SPECint2000 benchmark by adding more L1 data cache space is less cost-effective.
Second, L1 miss latencies are tolerated well in an out-of-order machine.

In the next configuration, we remove address computation instructions for all stack references
(denoted as no_addr_cal _op in the graph), thereby eliminating their dependencies. This dependency
reduction benefits some benchmarks such as 256.bzip2, which improves by 11%. Since our processor
model supports out-of-order execution with a 256-entry RUU, the address calculation could be easily
hidden by other independent instructions, and the overall speedup is only 3%. This observation
concurs with the results reported in [9] where their zero-cycle load technique posted significant gains
only for in-order machines.

Most of the performance boost comes from the implementation of the stack value file, posting
an incremental improvement of 28%. We show the speedups with a single-ported SVF as well as
a dual-ported SVF. A dual-ported SVF on a 16-wide machine (which gives an incremental gain of
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Figure 5.9: Hierarchical Performance Analysis (dual-ported cache)

27%) performs almost on par with a 16-ported SVF for most of the SPECint2000 benchmarks. This
suggests that a limited number of ports covers most of the potential gain, except for 252.eon. This
benchmark seems to have many more clustered stack references that lie on the critical path of the
performance, consequently, a single ported SVF machine actually achieves less performance than the
baseline mode. A larger number of SVF ports accommodates this bursty stack reference parallelism.

5.5.3 SVF vs. Stack Cache

5.5.3.1 Performance

A related approach, the decoupled stack cache [28], is compared against our SVF scheme along
with the baseline microarchitecture. The stack cache is implemented as a direct-mapped cache and
has the same capacity (8KB) as our stack value file (1024 entries x 8 bytes). Figure 5.10 shows the
comparison of the SVF, stack cache and baseline approach with different port combinations. The
(R+S) symbol represents the configuration with “R” regular L1 cache ports and “S” SVF or stack
cache ports. The (4+0) configuration uses a longer data cache hit latency (4 cycles instead of 3
cycles) than (2+8S)’s because of the larger number of ports. The performance numbers for the SVF
scheme were generated by the complete implementation described in Section 5.3.

The baseline (4+0) might be expected to outperform the (2+2) because the four universal L1
data cache ports in (440) can service four concurrent memory references, no matter which memory
regions these references are going to, whereas two memory references out of the (2+2) must be from
stack, otherwise the ports are left unused. However, in several cases, the SVF scheme outperforms
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Figure 5.10: Comparison of Different Cache Implementations

the more flexible configuration, yielding a 4% improvement in overall. One reason is the longer
latency in (440). The other is that input data of instructions on the critical path can be directly
read from the physical registers in the RUU, indexed through the register alias table. Even though
the store-forwarding mechanism exists in a conventional microarchitecture, yet it will take some
cycles (3 in our case) to poll for a hit in the LSQ.

There is one anomaly for 253.perlbmk, where the stack cache (242) runs a little bit slower than
the baseline (240). We found that the stack cache misses dominate the critical path whereas these
data fit into L1 better for the baseline architecture.

Building a four-ported full-size L1 cache is more expensive than building an extra dual-ported
smaller SVF or stack cache on top of a dual-ported L1. This is due to the expansion of the wordlines
and bitlines in the cache structure [44]. In addition to the die area, the SVF can be more energy-
efficient than a stack cache because of power savings in the cache tag arrays and the lower memory
traffic. Quantifying this impact is suggested in Chapter 7.

Figure 5.10 also shows that the (2+2) SVF implementation outperforms the (2+2) stack cache
scheme with one exception, 252.eon. In this benchmark, we found that a large number of load
squashes occurs due to stores through $gpr followed by loads through $sp where these references
map to the same stack addresses. As discussed in Section 5.3.2, these squashing activities can be
eliminated using a different code generator tailored to the SVF implementation. By applying this
optimization, represented by the no_squash bars, we can greatly improve the performance of the
252.eon, making it outperform the stack cache scheme by over 30%. Without the no_squash code
optimization, the SVF outperforms the stack cache by roughly 14%, and with the no_squash feature
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Figure 5.11: Breakdown of SVF Reference Types

the average is 9%.

Figure 5.11 shows the breakdown of the SVF references. The fast SVF loads and stores are
the references that were directly morphed in the front-end pipeline. The re-routed SVF references
are SVF references but through registers other than $sp and got rerouted after their addresses are
calculated. In average, around 86% of stack references can be directly morphed into register moves
in the front-end, while 14% of them are re-routed into the SVF.

A stack cache has a potential advantage in that it may be able to capture a larger working set
(i-e., locations farther from TOS) than the SVF if spatial locality is poor. Since the SVF exploits
temporal locality only when frequently accessed data are near the top of the stack while the stack
cache can exploit temporal locality across the entire stack. However, Figure 5.3 and Figure 5.4
show that this does not happen for SPECint2000.

5.5.3.2 Memory Traffic

The main performance difference between the SVF and a stack cache arises from the exploitation
of the semantic information inherent in adjustments to the stack pointer. Because the region of
memory contained in the SVF is guaranteed to be contiguous, some assumptions can be made that
cannot be made for a stack cache:

1. Allocations: A new allocation made as the stack grows downward for a SVF implies that the
data must be invalid. No such assumption can be made for a stack cache, since the data may
have already been written and replaced. Thus a stack cache must read the rest of the line
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size 2KB
Quad-Words In Quad-Words Out

Benchmark Stack § | SVF Stack § | SVF
bzip2.graphic 1350700 | 28159 493604 70971
bzip2.program 770608 | 19515 289096 64253
crafty.ref 45811024 45 6634372 435
eon.cook 85730448 63 | 37119416 131136
eon.kajiya 33019440 71 | 23431164 | 3375088
gap.ref 193148 4575 175880 5056
gec.cp-decl 17523908 3833 | 11472364 | 1162725
gce.integrate 30826224 5195 | 20421952 | 1275410
gzip.graphic 296 7 176 0
gzip.log 296 7 176 0
gzip.program 324 8 200 0
mcf.inp 220 6 40 0
parser.ref 76980 105 76108 2661
twolf.ref 2989324 13 2762292 7644
vortex.ref 988 7 712 240
perlbmk.scrabbl 99116 2242 89508 57524
vpr.ref 1432 17 1104 140

Table 5.2: Memory Traffic for Stack Cache and SVF schemes (2KB)

size 4KB
Quad-Words In Quad-Words Out

Benchmark Stack § | SVF Stack §$ | SVF
bzip2.graphic 452848 | 28138 101124 96358
bzip2.program 434992 | 19492 109684 90758
crafty.ref 572 45 72 0
eon.cook 677452 56 16180 172
eon.kajiya 12512884 63 | 11544940 172
gap.ref 130148 4453 125564 5984
gee.cp-decl 13323984 974 8756656 | 1282023
gec.integrate 27329584 3706 | 18086172 | 2138591
gzip.graphic 144 7 0 0
gzip.log 144 0 0 0
gzip.program 148 8 0 0
mcf.inp 204 6 0 0
parser.ref 592 0 80 0
twolf.ref 652 13 188 0
vortex.ref 488 7 44 0
perlbmk.scrabbl 89948 2243 81112 57580
vpr.ref 652 17 152 0

Table 5.3: Memory Traffic for Stack Cache and SVF schemes (4KB)
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size 8KB
Quad-Words In Quad-Words Out

Benchmark Stack § | SVF Stack § | SVF
bzip2.graphic 744 6 0 501
bzip2.program 756 6 0 474
crafty.ref 556 45 0 0
eon.cook 1568 56 532 38
eon.kajiya 905544 63 446440 38
gap.ref 118232 454 116344 0
gcc.cp-decl 6783056 | 1016 5274116 | 1053545
gcc.integrate 22657988 | 2739 | 15272932 | 2671678
gzip.graphic 144 7 0 0
gzip.log 144 7 0 0
gzip.program 148 8 0 0
mcf.inp 204 6 0 0
parser.ref 592 105 0 0
twolf.ref 564 13 0 0
vortex.ref 480 7 0 0
perlbmk.scrabbl 79312 14 78812 0
vpr.ref 644 17 0 0

Table 5.4: Memory Traffic for Stack Cache and SVF schemes (8KB)

before data can be written.

2. Dirty Replacements: When locations are replaced as the stack shrinks for the SVF, they are
semantically guaranteed to be dead, and need not be written back. No such assumption can
be made for a stack cache, and the line must be written back.

Table 5.2, Table 5.3, and Table 5.4 summarize the in (read) and out (write) memory traffic
incurred for our SVF design and for a decoupled stack cache design, for different SVF and cache sizes.
The stack cache’s memory traffic corresponds to the 3C misses (compulsory, capacity, and conflict
misses) [52], along with dirty writebacks, which generate traffic between the stack cache and the L2.
The SVF’s dribbling traffic to the L1 only occurs on demand, for dirty and live data. For instance
in 256.bzip2 with a 2KB stack cache, about 1.35 million quad-words were allocated into the stack
cache and 0.49 million quad-words were evicted due to dirty replacements. In contrast, the SVF
dribbled in only 28,159 quad-words and dribbled out 70,791 quad-words. In most of the scenarios, the
SVF dramatically reduces traffic by orders of magnitude. As aforementioned, the traffic is reduced
because the SVF transfers dirty data in a finer granularity and requires no demand load on write
misses. In addition, the SVF does not write the deallocated stack frame out to memory as data on
deallocated stack frame are semantically dead. There are some SVF cases that generate dribbling-in
traffic with no dribbling-out writes beforehand because the Compaq Alpha compiler code generator
generates data prefetching instruction automatically, e.g. 1dqu r31, 0(sp).® These instructions
bring cache lines in by loading undefined values into the read-only register. Therefore, data could
be dribbled in even though they were never defined in the code.

5.5.3.3 Context Switches

Upon a context switch, there is likely to be an increase in memory traffic, for either a stack cache
or the SVF because both have to write back dirty data.

5Note that the r31 in Alpha ISA is defined as a zero register.
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|| Benchmark | Stack Cache | Stack Value File ||

256.bzip2 83 33
186.crafty 1040 201
252.eon 7053 740
254.gap 830 64
176.gcc 4235 188
164.gzip 3 1
181.mcf 477 153
197.parser 1253 66
300.twolf 727 248
255.vortex 7 2
253.perlbmk 571 134
175.vpr 800 87

Table 5.5: Memory Traffic on Context Switches

On the context switch both SVF and a stack cache contain data for the current process. Thus
the new process will replace the current process data in the stack cache or stack value file with its
new data. Since both stack cache and stack value file are small, a large percentage of their locations
will likely be replaced soon after the context switch. This would cause then significant writeback
traffic soon after the context switched occurred.

However overall SVF to L1 traffic on the context switch is lower than stack cache to L2 traffic.
This occurs because the SVF invalidates deallocated stack frames, so they are never written back to
L1 cache. In addition, the SVF maintains dirty bits on a per word basis while the stack cache uses
per block dirty bits. Since almost all words are accessed first by a store instruction, many words are
dirty and therefore almost all cache lines are dirty. Unaccessed words need not be stored by the SVF
whereas they must be stored as a member of a dirty block in the stack cache. Table 5.5 quantifies
the traffic for both stack cache and stack value file in bytes averaged over the total number of context
switches with a context switch period of 400000 instructions. For instance, writeback traffic for the
stack cache in the case of 252.eon is 7K per context switch on average, which is about 10 times more
than in the case of a stack value file. Table 5.5 illustrates that writeback traffic for the stack value
file is 3 to 20 times smaller then the writeback traffic for the stack cache.

5.5.4 Interlock Stall Overheads

As described in  Section 5.3.1, our SVF design employs an interlock mechanism to avoid the
inconsistency issue of the stack pointer value when it is being updated through complex operations
or using registers other than $sp. This overhead is quantified in our simulations and it is observed
that the impact is fairly insignificant. For the configuration with one cache port and one SVF
port, this overhead is almost 0% for most of the SPECint2000 benchmark except for 176.gcc. The
overheads are 1.3% and 0.9% for the training input (cp-decl.i) and the reference input (integrate.i),
respectively.

5.5.5 Memory and SVF Ports

The speedups measured for the complete SVF implementation versus a baseline machine are
illustrated in Figure 5.12. The execution speedup measured for both single-ported and dual-ported
data caches are shown. The average performance improvement for adding a single-ported SVF
to a single-ported data cache is 50%. Although most current processors incorporate dual-ported
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Figure 5.12: Performance Improvements over Baseline Microarchitecture

data cache designs, however, from a low-cost/low-power processor or embedded processor design
perspective, it is appealing to build a large single-ported data cache with a small double-ported
stack value file to reduce both cost and power dissipation, and in the meantime also improve overall
performance.

When the SVF is dual ported, improvement climbs to 65%. For most of the benchmarks, perfor-
mance is saturated when two SVF ports are supported, except for 252.eon which continues to improve
its performance as the number of SVF ports are increased. Improvements are lower for cache designs
supporting dual-ported first level data caches since port contention is reduced; however, adding an
SVF will still yield significant additional improvement. For a reasonable configuration with a dual-
ported SVF added to a dual-ported data cache, performance improves by average of 24% over a
conventional microarchitecture, the largest performance improvement is 84% for 252.eon.

5.6 Related Work

Techniques for fast procedure calls [70] were broadly studied in the 1980’s when CISC machines
dominated all market segments. The overheads of saving and restoring the register file associated
with each procedure call were rather significant [43]. Many prior commercial and research micro-
processors had tried to address this issue at extra hardware cost.

The HP3000 Series II [17], a stack-oriented architecture designed by Hewlett-Packard in the late
70’s, used a 4-entry top-of-stack (TOS) cache as an extension to stack memory. Data on the TOS
are passed onto the TOS registers for processing. A push or pull is performed whenever an overflow
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or underflow occurs. Since this machine does not have a data cache, the stack cache functions as
a tiny direct-mapped cache with FIFO replacement policy for stack references. Data in this study
showed that a 4-entry stack cache was more than sufficient for applications of the day.

Following the RISC philosophy, the CRISP [14][15][41] and Hobbit [6] processors, developed at
Bell Labs adopted a complete memory-to-memory instruction set architecture with few addressing
modes to avoid the overheads of procedure calls. The design offloads the burden of register allocation
on the top of the stack from the compiler to the hardware by incorporating a small stack cache (32
entries). The processors index the stack cache on-the-fly using the low-order bits of the referenced
address. The stack cache is the processors’ only data cache.

Register windows [7][83][85][114] or the register stack engine (RSE) [33] are used in some of
today’s high-performance microprocessors to eliminate procedure call and return overheads. Extra
instructions may be needed, e.g. save and restore in SPARC-V9 or alloc in IA-64. This general
approach is part of the architecture, not just the implementation.

There have been several proposals for early address resolution to improve memory instruction
latencies. These techniques enable our SVF design by providing a mechanism for early address
resolution. Austin, Pnevmatikatos and Sohi [8] introduced a fast address resolution scheme by
predicting effective addresses early in the pipeline. They found that with simple compiler and
linker support, the prediction accuracy ranges from 62 to 99%. In [9], Austin and Sohi proposed
and evaluated pipeline designs to support zero-cycle loads. Although the speedups are encouraging
for in-order processors, the speedups for latency-tolerant out-of-order processors are generally less
than 10%. In [12], Intel researchers proposed a technique dubbed register tracking for early memory
address resolution for operations of the form reg+imm in the front-end pipeline. They demonstrated
that this technique reduces load-to-use latencies to the data cache by experimenting a deep pipeline
that contains 8 stages between decode and execution.

The number of cache ports becomes more crucial as the processor’s issue width gets wider with
more aggressive and accurate multiple branch prediction mechanisms. In more recent work [28], Cho,
Yew and Lee proposed a data-decoupled architecture that partitions memory reference streams into
two different substreams and feeds them through decoupled memory pipelines for execution. In this
scheme, they studied the performance impact of decoupling local variables allocated on the run-time
stack. They concluded that a small 2KB local variable cache (LVC) achieves a 99% hit rate for
most of the SPEC95 benchmark programs and as a result, leaves more headroom for increasing data
cache bandwidth. In their follow-up work [27], they introduced the notion of access region locality
and proposed an access region prediction table (ARPT) in the fetch stage to predict which region an
instruction is referencing. In the decode stage, the memory operation is directed into the predicted
region pipeline for future processing.

Tyson and Austin [111] devised a mechanism that performs memory renaming dynamically to
reduce memory traffic. A memory dependency predictor is used to predict the relationship of a
producer (stores) and a consumer (loads). The predictor uses this information to index a non-
architected value file for loads. They employ a confidence mechanism to control the prediction.
Their simulation shows 16% performance improvement on average.

Rivers et al. [94] identified limitations of existing multi-ported cache designs and proposed a
Locality-Based Interleaved Cache (LBIC) that multi-ports a line buffer instead of the entire cache
bank to exploit the spatial locality of a cache line while reducing the cost of building a true multi-
ported cache.

5.7 Chapter Summary

In this work, we perform a detailed analysis of stack reference behavior identifying several unique
characteristics regarding how the stack is accessed. These characteristics led us to propose a new
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microarchitectural enhancement, the stack value file (SVF), designed to optimize the stack references
induced by high-level language conventions.
The contributions of this research are threefold:

1. We identified several characteristics of stack references that differ from general data references.
These include: a single contiguous access region (eliminating the need for tags), a much higher
percentage of first reference store operations (making per word valid bits attractive), frame
deallocations invalidate dirty data above the new TOS (making writebacks unnecessary), and
most references use a single $sp-relative address mode (making fast address calculation feasi-
ble).

2. We proposed a new microarchitectural structure, the SVF, to exploit those characteristics and
show how it can be integrated into existing processor pipelines to improve cache access latency
and reduce memory traffic requirements.

3. We evaluated our scheme, comparing it to a previous cache-oriented approaches to partitioning
stack references. These results show that an SVF can obtain a 24% average performance im-
provement for conventional microarchitectures, while significantly reducing memory overhead
traffic over data-decoupled stack/non-stack caches.

Furthermore, our microarchitecture design transforms stack pointer-based memory accesses into
register-to-register moves. This increases exploitable instruction-level parallelism by adding ports,
off-loading bandwidth from the first-level data cache, and reducing the latency of the access. For a
16-wide machine, this increases performance for an SVF of infinite size and ports by an average of
31% for the SPECint2000 benchmarks.

Overall, these performance results make the stack value file an attractive design option, boosting
performance without significant increases in area or complexity. The die area allocated to the SVF
can be reallocated from space that otherwise would have gone to a larger first-level cache. The SVF
is direct-mapped, can be single-ported, and can easily be banked. It uses no tag area like its cache
counterpart.

The additional complexity for the SVF is quite limited. $sp-relative stack references are identified
easily; thus their special handling does not add much complexity. References to the stack without an
$sp-relative addressing mode are infrequent, so added recovery cost is reasonably amortized. Cache
tag space is eliminated in preference to a per word valid bit, resulting in little or no additional data
storage overhead relative to a stack cache implementation. For more deeply pipelined processors,
the value of early address computation is increased and our technique should deliver increasing
performance gains.
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CHAPTER 6

EFFICIENT BANDWIDTH UTILIZATION USING AN
EAGER WRITEBACK CACHE

Caches are very effective at reducing memory bus traffic by intercepting and handling most of the
read and write requests generated by the processor. Support for writes (stores) tends to be simple
— on a store the data item is either written into both the cache and through the cache hierarchy to
the memory (referred to as a write-through policy), or it is written into the cache exclusively and
the data item is written out to memory only when the cache line is evicted (known as a writeback
policy.)

Caches employing a write-through policy generate memory traffic every time a store occurs in
the program. Since it would largely defeat the purpose of having a cache if the processor had to
block on each store until the write completed, write-through caches use a structure known as a store
buffer or write buffer[103] to buffer writes to memory. Whenever a write occurs, the data item is
written into both the cache and this structure, allowing the processor to continue executing without
blocking (until the store buffer becomes full). The store buffer will send its contents to memory as
soon as the bus is idle.

Writeback caches, on the other hand, generate memory traffic much less frequently. When a
store occurs in a writeback cache the data value is written into the corresponding line in the cache,
which is then marked dirty. Writes to memory occur only when a line marked dirty is evicted from
the cache (usually due to a cache miss) in order to make room for the incoming data item.

Whenever there are many consecutive misses (caused by context switches, or working set changes,
or by algorithms in certain graphics applications, for example) the writeback cache can find itself
blocked waiting for a dirty line to be written to memory. This is the same problem faced by the
write-through cache, and can be dealt with in much the same manner by adding a writeback buffer.
However, there are certain classes of programs which suffer from memory delay penalties that even a
large writeback buffer cannot eliminate. For example, many newer applications (e.g. 3D graphics or
multimedia) have enormous incoming data streams. In these programs, the stream of incoming data
items can cause many conflict cache misses and trigger the eviction of many dirty lines. This dirty
writeback traffic must compete for available memory bandwidth with the arriving data, and often
impedes the delivery of the data to the cache. For programs where overall performance is bound by
memory bandwidth, this competition for bandwidth can have a substantial negative impact.

In this chapter we propose a modification of the writeback policy which spreads out memory
activity by selectively writing some dirty lines to memory whenever the bus is free, instead of
waiting until those lines in the cache are replaced. This early writing of dirty lines to the memory
system reduces the potential impact of bursty reference streams, and can effectively re-distribute
and balance the memory bandwidth and improve system performance.
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Figure 6.1: Architectural Block Diagram of non-blocking caches.

6.1 Caches and Memory Subsystem

Caches that employ a writeback policy reduce memory traffic by delaying the transfer of data to
memory as long as possible. Most modern microprocessors using a writeback cache policy incorporate
a writeback (or cast-out) buffer, which is used as temporary storage space for holding dirty cache
lines while the data request that caused the eviction is serviced. Upon eviction, a dirty cache line
is deposited into the writeback buffer, which usually has the highest bus scheduling priority among
all types of non-read bus transactions. Once the writeback buffer fills up, subsequent dirty line
replacements cannot take place. As a result, their corresponding data demand fetch operations
cannot be committed into the cache, and the processor pipeline stalls waiting for the dependent
data.

It is possible to alleviate this problem somewhat by extending cache hardware. Non-blocking
caches which use a set of miss status holding registers (MSHRS) to manage several outstanding
cache misses have been proposed by Kroft [67]. When a cache miss occurs in a non-blocking cache,
it is allocated an empty MSHR entry. Once the MSHR entry is allocated, processor execution can
continue. If none of the MSHRs are available (i.e. a structural hazard [52] exists due to resource
conflicts), the processor has to block until an MSHR entry becomes free.

By adding data fields to the MSHRs, it would be possible to use them to temporarily store
returning cache lines. This would allow fetched data to be immediately forwarded to the appropriate
destination registers, and help overcome the situation where the cache cannot be written to because
the writeback buffer is full. However, this scenario delays MSHR deallocation and can lead to
processor stalls on a cache miss because of there being no free MSHRs. Figure 6.1 illustrates a
non-blocking cache organization.

In addition, in a modern computer system memory bandwidth is not exclusively dedicated to the
host processor. There are often multiple agents on the bus (such as graphics accelerators or multiple
processors) issuing requests to memory over a short period of time. A typical system architecture
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Figure 6.2: A PC system architecture with AGP.

of a contemporary PC system is illustrated in Figure 6.2.

In a contemporary PC platform with an Accelerated Graphics Port (AGP) interface [29] running a
graphics-centric application, for example, the graphics accelerator shares system memory bandwidth
with the host processor by constantly retrieving graphics commands and texture maps from the
system memory. As shown in Figure 6.2, the same system memory serves as the instruction and
data repository for both the processor and graphics accelerator.

In a common 3D graphics application, for instance, the processor reads instructions and triangle
vertices, processes and then stores them with rendering state commands back into AGP memory
space. The graphics accelerator then reads these commands out of AGP memory for rasterization.
In addition to the command traffic, the graphics accelerator also reads a large amount of texture
data (which constitutes the major portion of AGP traffic on the bus). These textures are mapped
onto polygon surfaces to increase the visual realism of computer-generated images. In the future,
with richer content 3D graphics applications or graphics accelerators with enhanced quality features
such as bi-linear/tri-linear interpolation, AGP command and data bandwidth demands for graphics
accelerators will undoubtedly be even greater than they are now.

Current cache designs have difficulty in efficiently managing the flow of data in and out of the
cache hierarchy in these data intensive applications. Buffering techniques, including write buffers
and MSHRs can help, but do not alleviate the problems of clustering bus traffic caused by writeback
data. In the next section we introduce a new technique designed to distribute the writes of dirty
blocks to times when the bus is idle.

6.2 Eager Writeback

6.2.1 Overview

To address the performance drawbacks of a conventional writeback policy, we are proposing a
new technique called Fager Writeback. The fundamental idea behind Eager Writeback is to write
dirty cache lines to the next level of the memory hierarchy and clear their dirty bits earlier than
in a conventional writeback cache design, in order to better distribute bandwidth utilization and
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alleviate memory bus congestion. If dirty cache lines are written to memory when the bus is less
congested, then there will be fewer dirty lines that require eviction during peak memory activity.

In essence, we are speculating that certain dirty lines will not be written into again before
eviction and thus there is no need to wait until eviction time to perform the cache line write. An
Eager Writeback will never impact the correctness of the architectural state even if the operation that
triggers it was wrongly speculated - if our speculation is incorrect and we write too often, we approach
the limiting case of write-through cache behavior. If we do not speculate often enough, we approach
writeback cache behavior. However, in neither case do we violate any correctness constraints. In
the worst case, incorrect speculation may lead to excessive memory traffic, by consistently writing
and cleaning lines in the cache that are then quickly marked dirty again.

In order to select the best “trigger” to cause an eager writeback, we examined the probability
of rewriting a dirty line in a set-associative cache when it was in a given state (somewhere between
MRU and LRU) for the SPEC95 benchmarks and four applications from the X benchmark suite.

As discussed in Section 3.4, our results indicate that cache lines that have been marked dirty
and reach the LRU (Least Recently Used) state in a 4-way set-associative cache are rarely written
to again before they are evicted. To recapitulate the data, Figure 3.13 and Figure 3.14 show
the probability that a line that was marked dirty is written to again as it moves from the MRU
(Most Recently Used) state to the LRU state for both L1 and L2 caches. The graph on the top in
Figure 3.13, for example, shows that in the L1 cache the average probability of a dirty line in the
LRU state being re-written is 0.15, while the similar probability for a dirty line in the MRU state is
0.95. The probabilities of re-dirtying lines in the LRU state are even lower in the L2 cache - in fact,
close to 0 as shown in the graphs on the bottom of Figure 3.13 and Figure 3.14.

These figures indicate there are some programs (such as fpppp and suZcor) that have a fairly
high probability of writing to dirty lines after they have entered the LRU state. In order to further
evaluate this, we looked at the ratio of the number of times that a dirty line in the LRU state is
written to normalized to the number of times that a dirty line in the MRU state is written to. The
results were presented in Figure 3.15 in Section 3.4, which shows that while the probabilities may
be high, the actual number of these occurrences is negligible compared to the rewriting that occurs
when a line is in other states (MRU, MRU-1, etc.). These trends held across a wide range of cache
configurations, and imply that once a line enters the LRU state it becomes a prime candidate for
Eager Writeback, since there is a very low occurrence of it being re-written (and thus marked dirty
again).

6.2.2 Design Issues in Eager Writeback Caches

There can be many different approaches to deciding when to trigger an Eager Writeback. As
shown in the previous section, one obvious candidate is to use the transition of a dirty line into the
LRU state as a trigger point for an Eager Writeback. For example, when a cache set is being accessed
and its corresponding LRU bit is being updated, the line can be checked to see if it is marked dirty.
If it is, then a dirty writeback can be scheduled, and the dirty bit can be reset. Note that the line
is not cast out from the cache, thus the line can be found in the cache without performance loss if
subsequent loads or stores access it. However, if a store instruction does write into such a line and
make it dirty again, the line will simply be written back to memory again in the future and generate
more memory traffic. Figure 6.3 shows the extra bandwidth incurred for SPEC95 as a function of
which state of the LRU stack is used as the Eager Writeback trigger. It is shown that only about
1% extra memory traffic is incurred if the LRU state is selected as the trigger. In addition, when
the MRU state is used as the Eager Writeback trigger, it degenerates to the write-through policy.

If the writeback buffer is full at this point, two approaches can be considered; (a) simply abort
the Eager Writeback; the actual dirty writeback will take place later when the line is evicted, or
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I Processor Architectural Parameters Specifications I

Core frequency 1 GHz
1st Level I-Cache 2-way, 256 sets, 32B line
1st Level D-Cache 4-way, 128 sets, 32B line
2nd Level Cache Unified, 4-way, 4096 sets, 32B line
I- and D-TLBs 2-way, 128 sets, 32B line size
Backside bus 500 MHz (i.e. half-speed L2), 64bit wide
Frontside bus 200 MHz, 64bit wide
Memory model Rambus DRAM model (1.6GBytes/sec peak)
Branch predictor 2-level gshare adaptive, 10-bit history
Instr. fetch/decode/issue/commit width 8/8/8/8
Load/Store Queue size 32
Register update unit size 64
Memory port size 2
INT/FP ALU size 1/1
INT/FP MULT/DIV size 1/1

Table 6.1: Summary of the Baseline Processor Model.

(b) perform the eager writeback when an entry in the writeback buffer becomes free. This provides
the ability to perform eager writeback anytime between when a line is marked LRU and when it is
evicted.

To provide this capability using a minimum of hardware, we chose to simulate an Eager Queue
which holds attempted eager writebacks that were unable to acquire writeback buffer entries. When-
ever an entry in the writeback buffer becomes available, the Eager Queue checks the cache set on
the top of the queue to see if the dirty bit of the LRU line in the indexed set is set. If it is, the line
is moved into the writeback buffer.

An alternate implementation considered during this research was Autonomous Eager Writeback.
This implementation used a small independent state machine which autonomously polled each cache
set in round-robin fashion and checked the dirty bit of its LRU line, initiating eager writeback on
these dirty lines when the writeback buffer was not full. Whether eager queues or the autonomous
state machine is more feasible is highly dependent on the processor and cache organization. For this
study we present results for the more conservative approach which used eager queues.

6.3 Simulation Framework

Our simulation environment was based on the SimpleScalar tool set version 2.0. Refer to Sec-
tion 2.1 for basic information of the simulator. The microarchitectural parameters used in our
baseline processor model are shown in Table 6.1. Table 6.2 lists the latencies of each functional
unit modeled in the simulation. A non-blocking cache structure, writeback buffer and eager queue
associated with each cache level were added to the simulator for this study. The number of entries
in each buffer was re-configurable from 1 to 256, and varied from simulation to simulation.

A pseudo-Rambus DRAM model was used in the external memory system. This single-channel
RDRAM with 64 dependent banks can address up to 2GB of system memory. In the model, 32
independent banks can be accessed simultaneously (contiguous banks share the same sense amplifier
for driving data out of the RAM cells). Row control packets, column control packets and data
packets can be pipelined and use separate busses. RDRAM address re-mapping[35] was modeled
to reduce the rate of bank interference. The peak bandwidth that can be reached in our RDRAM
model is 1.6GB/sec.

A simplified uncacheable write-combinable memory [32] was implemented for the purpose of
correctly simulating our benchmark behavior. Whenever a data write to an uncacheable region
results in an L1 cache miss, the write operation will immediately request access to the bus and drive
data out to the system memory directly (skipping a next-level cache look-up). Only cache line writes
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[[ Processor Architectural Parameters | Cycles in Processor Clock I

1st Level I- and D-Cache 3 cycles, pipelineability = every 1 cycle
2nd Level Cache 18 cycles, pipelineability = every 10 cycles
I- and D-TLBs 2 cycles, pipelineability = every 1 cycle
Backside bus arbitration 4 cycles
Frontside bus arbitration 10 cycles
RDRAM Trcd, RAS-to-CAS 20 cycles
RDRAM Tcac, CAS-to-data return 20 cycles
RDRAM Trp, Row Precharge 20 cycles
INT ALU latency/thruput 1/1
INT multiplier latency/thruput 3/1
INT divider latency/thruput 20 /19
FP ALU latency/thruput 2/1
FP multiplier latency/thruput 4/1
FP divider latency/thruput 12 / 12

Table 6.2: Latency Table (in core cycles) of the Baseline Processor.

are modeled — partial cache line updates are treated as full cache line writes in the simulator.

For modeling multiple agents on the memory bus, a memory traffic injector was also implemented.
This injector allowed us to imitate the extra bandwidth consumed by other bus agents by configurable
periodic injection of data streams onto the memory bus.

In order to evaluate the effectiveness of the Eager Writeback technique, we ran extensive simu-
lations on the SPEC benchmark suite and two kernels representative of graphics applications. By
concentrating the analysis on small, representative kernels, we can illustrate the potential benefits
of our scheme in far greater detail than can be achieved running an entire application. The first of
these kernels is a small 3D geometry processing kernel [91] [121] (mini-geometry), which is present in
most triangle-based rasterization algorithms. Two different graphics rendering configurations were
simulated, one which was very simple (i.e. ambient light with no external light sources), and one
which included multiple diffuse light sources. The ambient light configuration reduces the compu-
tational requirements of the algorithm in order to maximize frame rate at the expense of picture
realism.! The multiple light source configuration increases the computational demands, thereby re-
ducing the relative impact of bus utilization as the processor spends more time processing between
data element requests.

The second kernel represents a very general streaming data algorithm which processes large data
sets. This kernel processes a large array of data (both reading and writing the data in the array),
experiencing frequent cache misses as well as dirty writebacks.

The detailed discussion of these benchmarks were described in Section 2.2.

6.4 Simulation Results and Analysis

The simulation results are presented and analyzed in this section. For each kernel studied, we
present two different data sets, one with no memory contention from other potential bus agents, and
one with artificially injected memory traffic.

6.4.1 Spec95 Benchmarks

Table 6.3 shows the simulation results for the SPEC95 benchmark suite using 3 configurations
— Baseline, Eager and Free Writeback. The Baseline case uses a single entry writeback buffer, while
Free Writeback models a system in which dirty writebacks do not generate any memory traffic on
the bus (thus it serves as an upper bound on performance.)

Looking at the table it is apparent that there is little performance gain possible for the programs

I This would be preferred in the DOOM application when processor performance is lacking.
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sim_cycle || Baseline | Eager [ Free Writeback |
I |

benchmark cycles cycles [ speedup | cycles [ speedup |
go 4106741898 4106316586 1.000 4105050891 1.000
gee 1425690611 1423578223 1.001 1419981686 1.004
1i 401639628 401635232 1.000 401481752 1.000
ijpeg 2125521487 2123322070 1.001 2117908634 1.004
perl 3705579465 3701065936 1.001 3683430936 1.006
tomcatv 5436594306 5436670500 1.000 5436456381 1.000
su2cor 4625207540 4625248569 1.000 4625117247 1.000
mgrid 2138832527 2132120132 1.003 2061823555 1.037
fpppp 8404705112 8410760399 0.999 8404047239 1.000
waveb 2221747518 2208702430 1.006 2179225372 1.020

Table 6.3: Performance of SPEC95 Benchmarks. (WB buffer = 1, EQ = 4)

Il Bascline_| Eager (EQ=0) [ Eager (EQ=4) [ Eager (EQ=256) [ Free Writeback ]
Write Buffer size || oycles | cycles | speedup | cycles | speedup | cycles | speedup | cycles | speedup |
1 (No light) 25364637 23876911 1.062 21838002 1.162 21837952 1.162 21798206 1.164
4 (No light) 25320139 21820627 1.160 21820566 1.160 21820566 1.160 21798206 1.162
256 (No light) 25320139 21820566 1.160 21820566 1.160 21820566 1.160 21798206 1.162
1 (3 diff. lites) 30643341 29200004 1.049 27176616 1.128 27176333 1.128 27134147 1.129
4 (3 diff. lites) 30643153 27158044 1.128 27158049 1.128 27158044 1.128 27134147 1.129
256 (3 diff. lites) 30643153 27158044 1.128 27158044 1.128 27158044 1.128 27134147 1.129

Table 6.4: Simulated cycles of 3D Geometry Pipeline.

in this suite, since the difference in the cycle count between the baseline case and the upper bound is
negligible. This is not surprising, since it is well-known that the SPEC95 benchmark suite does not
exercise the memory system aggressively. The SPEC95 suite is not a good candidate for memory
system performance studies primarily due to its small working set size. For the rest of this study we
will focus on the benchmarks that more aggressively exercise the memory system, and are arguably
more representative of future workloads.

6.4.2 Analysis of 3D Geometry Pipeline
6.4.2.1 Without Injected Memory Traffic

Table 6.4 contains the number of mini-geometry kernel execution cycles for a variety of memory
configurations. In this table, each row represents a different combination of writeback Buffer size
and lighting conditions, while the columns contain different writeback strategy cycle counts. The
first column, Baseline, contains the cycle count using a conventional writeback policy. The next 6
columns contain the results for 3 different variations of the Fager Writeback scheme and the speed-
up of each scheme over the baseline case, with each scheme identified by the size of its Eager Queue
(EQ). The simplest design choice is EQ=0, in which Eager Writebacks are dismissed if the writeback
buffer is full. The other two cases can queue up attempted eager writebacks within Eager Queues
of specified sizes. The rightmost column contains the Free Writeback case, which as stated earlier
is the upper bound to available performance.

There are several things of interest to note in this table. Perhaps most significantly, it can be seen
that increasing the depth of the writeback buffer has virtually no impact on the performance of the
Baseline case. In fact, going from 1 to 256 entries in the writeback buffer only improves performance
by 0.17%. This is because a large number of dirty writebacks are competing for bandwidth with the
demand fetches, and the bus congestion can not be alleviated by a deeper writeback buffer.

On the other hand, adding Eager Writeback increases the performance of the system by 4.9% to
16.2% (depending on the light sources and the depth of the Eager Queue). For the simplest case
of no Eager Queue and a single entry writeback buffer, the speedup ranges from 6.2% (for no light
source) to 4.9% (with 3 light sources). This speedup is smaller than for the other cases, because
many eager writebacks are dropped due to the lack of space in the writeback buffer. When the

80



RUU Full cycles Eager (BEQ=0)
Write Buffer size cycles | improved

H I Fager (BEQ=256)
[ 1 (No light) T 8404023 | 6678659 30.5%

i [

i [

i [

cycles | improved cycles | improved

I Pree Writcback

[
4452265 47.0% | 4409553 17 5%

I

[

I

Eager (EQ=1)
cycles | improved
4452469 47.0%
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[ 4 (No Tight) 8375679 4439397 47.00% | |
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4344799 4344670 45.92% 4344653 45.92% 4313710 46.31%

Table 6.5: Resource Hazard Improvement of 3D Geometry Pipeline.

number of writeback buffer entries is increased (or the Eager Queue size is increased), the speedup
achieved approaches the upper bound.

The “bandwidth shifting” effect is quite apparent in Figure 6.4 and Figure 6.5. These two figures
present the utilization profile of memory bandwidth requested by the processor using the Baseline
(Figure 6.4) and Eager Writeback (Figure 6.5) configurations, running the mini-geometry kernel.
The y-axis plots the instantaneous bandwidth? versus the execution timeline on the x-axis.

The 12 broad spikes that saturate the peak RDRAM bandwidth in Figure 6.5 occur within the
driver loop, where command output is being written into the write-combining graphics memory
while eager writebacks of dirty lines are concurrently taking place. Since within the driver loop
there is still some computation occurring, the bandwidth is not fully utilized, and eager writeback
writes can use the available idle slots and maximize bandwidth. Conversely, in the baseline case,
the same writebacks occur within the geometry computation loop. Thus these requests compete for
the bus with the return of the data requested by vertex loads, and thus slow down the processing.
Maximizing the utilization of the bandwidth during the driver loop leads to a lower and sparser
average memory bandwidth in Eager Writeback than in the Baseline case outside the driver loop.?

The overall performance improvement is obviously gained from the shifting of dirty writeback
traffic to where this traffic does not impede the return of any critical data. This can be seen
in Figure 6.6, which presents an execution profile of the benchmark. In this figure the sequence
of vertex data load requests appears on the y-axis, and the cycle upon which the corresponding
data item returns is plotted on the x-axis. As execution begins, the profiles of Baseline and Eager
Writeback are completely overlapped, because data is returning at the same time for both schemes.
Beginning at around 2.6 million cycles, these two curves start to deviate from one another, and
continue to diverge as execution time increases. The speedup due to Eager Writeback as measured
is around 16%.

By looking carefully at this figure it is possible to distinguish the geometry computation loop
from the device driver loop. The segments with shorter but steeper slopes are where the driver
loop is executing. The steeper slope occurs because the requested data, OutV[], was returned faster
(since the loop read the output vertices generated in the transformation and lighting stages from
the L2 cache directly, rather than from memory).

Table 6.5 shows how Eager Writeback affects the performance bottleneck in the Register Update
Unit (RUU) of the processor. The layout of this table is similar to Table 6.4, and contains the
number of cycles the processor is stalled due to the RUU being full.

As the table shows, Eager Writeback is able to remove a substantial number of stall cycles due
to a full RUU and keep the execution pipeline running smoother. These stalls are reduced because
in conventional writeback schemes dirty writebacks are competing with demand fetches for available
bandwidth, causing delays in data arrival and in the filling of the reservation stations in the RUU.
The eager writebacks shift the dirty writes to an earlier time, freeing up the available bandwidth to
handle only data reads and reducing the pressure on the RUU.

2This was calculated by sampling the data phase on the memory bus every 2000 core clocks, e.g. if 1600 bytes are
seen on the bus in 2000 core cycle period, its instantaneous bandwidth is 800MB/sec for a 1GHz processor.

31t should be emphasized that the total traffic required by a system using Eager Writeback is not reduced, rather
it is re-distributed by the early eviction of dirty cache lines.
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Figure 6.4: Memory Bandwidth Profile by Baseline Writeback for 3D Geometry Pipeline (No light)
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Figure 6.6: Load Response Time for Input Vertex in 3D Geometry Pipeline

bandwidth sim cycles RUU Full cycles

injection (no light) Baseline | Eager | speed-up Baseline | Eager | improved
0 GB/sec 25364637 | 21838002 | 1.16 8404023 | 4452469 | 47.0%
high 0.4GB/sec 27323771 25434535 1.07 10529817 8448695 19.76%
high 0.8GB/sec 33567580 33775835 0.99 16760998 17024045 -1.6%
high 1.2GB/sec 60699573 59162773 1.03 44206642 42864369 3.0%
low 0.4GB/sec 32539684 28636072 1.14 15604083 11364679 27.2%
low 0.8GB/sec 47365936 42559653 1.11 30356564 25269290 16.8%
low 1.2GB/sec 87400980 83426435 1.05 70248220 66015191 6.0%

Table 6.6: Memory Traffic Injection to 3D Geometry Pipeline. (Eager Queue = 4)

6.4.2.2 With Injected Memory Traffic

In order to evaluate the effectiveness of Eager Writeback in a real system, we implemented a
memory traffic injector which we used to model other bus agents requesting the memory bus and
consuming memory bandwidth. For this benchmark study, we injected three different external
bandwidths onto the bus using two different injection frequencies during the simulations. The
external bandwidths chosen were 400MB/sec, 800MB/sec and 1.2GB/sec. For each bandwidth
configuration, data was injected at a high frequency and a low frequency. For the high frequency
injection, 160, 320, and 480 bytes data were injected every 400 processor clock cycles; for the low
frequency injection, 1280, 2560, and 3840 bytes data were injected every 3200 processor clock cycles.
Data were injected onto the bus in blocks - for example, in the 800MB high frequency case, every
400 cycles the injector took over the bus and held it until it had completed transferring 320 Bytes
of data. The injections are uniformly distributed throughout the simulation.

The results for simulations of the mini-geometry kernel using no light sources are shown in
Table 6.6. The top line of the table is the base case with no injected memory traffic, while the other
entries are for the different injected bandwidths at the different frequencies. In this table we can see
that (as expected) memory traffic injection causes additional stall cycles in the RUU. In addition, as
the amount of injected bus traffic increases, the opportunity to do Eager Writeback decreases and
the RUU stalls increase dramatically.
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Baseline Fager (EQ=0) Fager (BQ=1) Fager (EQ=256) Free Writeback

Write Buffer size cycles cycles | speedup cycles | speedup cycles | speedup cycles | speedup
WB buf = 1 10230328 | 9054559 1.130 | 9053851 1.130 | 9053851 1.130 | 9045154 1.131
WB buf = 4 10067331 9052957 1.112 | 9052057 1.112 | 9052957 1.112 | 9045154 1.113

Table 6.7: Simulated cycles of Streaming Kernel.

The table also shows that Eager Writeback provides virtually no speedup when a bandwidth
of 0.8GB/sec is injected at the higher frequency, while the same bandwidth injected at a lower
frequency allows a speedup of 11%. By examining the dirty writeback bandwidth utilization profile
of this scenario ( Figure 6.7 and Figure 6.8), one can see that many eager writebacks (i.e. the
spikes) are prevented from occurring by the higher frequency injection. The advantages of Eager
Writeback are lost and it performs almost on a par with the baseline scenario, due to more frequent
bus contention.

6.4.3 Streaming Kernel

The mini-geometry kernel highlighted the problem of implicit dirty writebacks causing loss of
performance due to delays in receiving data. Finite memory peak bandwidth is another serious
performance issue, which is exposed by the Streaming kernel.

6.4.3.1 Without Injected Memory Traffic

Table 6.7 contains the results of simulation runs of the Streaming kernel, presented in the same
format used in Table 6.4. For this benchmark, an eager queue of length 0 (EQ=0) is enough to
approximate the optimal case of no dirty writeback traffic at all. Further size increases of the EQ
provide only marginal performance gains.

Looking at the memory bandwidth utilization profiles for this kernel (Figure 6.9 and Figure 6.10),
we see three spikes that appear repeatedly in both writeback schemes (because the outer loop contains
three iterations). The spikes are much wider in the Baseline case, however, indicating the program
is spending more execution cycles in these phases. Examining the algorithm, it is clear these spikes
are related to the time during the third inner loop where incoming arrayg[] data items collide and
share memory bandwidth with the induced dirty writebacks of array4[]. Because the finite memory
bandwidth (1.6 GB/sec in this study) must be shared between both memory accesses,? the rate of
demand fetches for arrayp[] in the third inner loop is (theoretically) cut in half and thus the overall
performance degrades.

Figure 6.9 also shows three bandwidth grooves where memory bus bandwidth has dropped to
zero. This corresponds to the second inner loops, where all data references hit in the cache. To
take the advantage of this available resource, Eager Writeback fills these bus idle states with early
evictions of dirty data cache lines as shown in Figure 6.10. By shifting these bandwidth requests to
idle cycles, the memory bandwidth during the course of the third inner loop can be fully dedicated
to the demand fetches of arrayp[], speeding up the cache fill requests.

As was done for the mini-geometry kernel, we examined how Eager Writeback interacted with
internal processor resources when running this benchmark. Table 6.8 shows that the Load/Store
Queue is used heavily by this benchmark, and that Eager Writeback can remove more than half of
the stalls due to a full Load/Store Queue. As the LSQ is kept less full, instructions are able to leave
the IFQ faster and as a result cycles lost due to a full IFQ are reduced substantially.

4Read and write turnarounds between demand fetch and dirty writeback streams also prevent peak memory
bandwidth from being achieved.
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Figure 6.7: Dirty WB L2-to-Mem Bandwidth with 320B/400clks Injection (Eager) for Geometry
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Figure 6.8: Dirty WB L2-to-Mem Bandwidth with 2560B/3200clks Injection (Eager) for Geometry

baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
Bottlenecks cycles cycles imprv cycles imprv cycles imprv cycles imprv
TFQ Full 5770175 | 4594401 | 20.38% | 4594631 | 20.37% | 4594631 | 20.37% | 4587638 | 20.49%
RUU Full 4274868 | 4260784 0.33% | 4260703 0.33% | 4260703 0.33% | 4258811 0.38%
LSQ Full 1978596 864867 | 56.29% 866341 | 56.21% 866341 | 56.21% 862880 | 56.39%

Table 6.8: Resource Constraint Improvement of Streaming Kernel. (Writeback buffer = 1)
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Figure 6.9: Memory Bandwidth Distribution by Baseline Writeback for Streaming Kernel
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Figure 6.10: Memory Bandwidth Distribution by Fager Writeback for Streaming Kernel
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bandwidth simulated cycles TFQ Full cycles LSQ Full cycles
injection Baseline | Eager | speedup Baseline | Eager | imprv | Baseline |  Eager imprv
0 MB/sec 10230328 | 0053851 | 1.13 5770175 | 4594631 | 20.4% 1078596 | 866341 | 56.2%
high 0.4GB/sec 11807448 10039848 1.18 7340618 5576536 | 24.0% 2903145 1205358 58.5%
high 0.8GB/sec 15025957 | 12389159 1.21 10540877 7908077 | 25.0% 4428473 1882587 57.5%
high 1.2GB/sec 24250835 | 21412735 1.13 10717746 16880300 14.4% 8300036 | 5480188 | 34.05%
Tow 0.4GB/sec 12379290 10991058 1.13 7008538 6521201 17.5% 2030932 1417595 30.2%
Tow 0.8GB/sec 16593748 15115348 1.10 12101456 10622058 12.2% 4264205 | 2818313 33.9%
Tow 1.2GB/sec 20048835 | 27135235 1.07 | 24495295 22585042 7.8% 8903039 7007451 21.3%

Table 6.9: Memory Traffic Injection to Streaming Kernel. (Eager Queue = 4)

6.4.3.2 With Injected Memory Traffic

We also repeated the experiments involving injecting memory traffic onto the bus for this bench-
mark program. The results are shown in Table 6.9, and indicate that higher frequency injection
seems to have a greater impact on the Baseline case than on the Eager Writeback case. The number
of simulated cycles for the Baseline case using high frequency injection increases faster than for the
Eager Writeback case, while the increase stays roughly the same for both schemes while injecting
lower frequency traffic.

The reason the cycle count climbs faster for the Baseline case than for the Eager Writeback
case can be understood by analyzing Figure 6.11. This figure contains an execution profile of the
Streaming benchmark and plots the arrival time for each load instruction. From left to right, the four
curves represent Eager Writeback with no extra bus injection, Baseline with no extra bus injection,
Eager Writeback with higher frequency injection, and Baseline with higher frequency injection. Each
curve can be divided into 3 repeated patterns, which bear the following three piecewise line segments:
flat (zero increment), steep rise, and slowdown knee. These 3 line segments correspond to the three
inner loops in the benchmark.

The first loop contains only data stores, so the load instruction count stays flat as execution
time continues. The steep vertical climb corresponds to the second inner loop, which has a high
number of cache hits (a large number of loads completing in a short period of time). Finally, the
third segment represents the behavior of the third loop, which loads another array that misses in
both the L1 and L2 caches.

This third segment, shown as a knee in the curve, is the key to the performance deviation between
Baseline and Eager Writeback. Figure 6.12 shows a close-up view of part of Figure 6.11, focusing on
the knees of the curves. The slopes (tanf)) of these knees are the key - the flatter the slope, the longer
it will take to complete. Comparing the slope changes between Baseline and Eager Writeback, it is
obvious that the slope of the Baseline segment is much shallower than that of the Eager Writeback
segment. This means that for the same number of loads in the third loop, the execution time of the
Baseline case was more sensitive to and severely delayed by other transactions, which in this case
are composed of the dirty writebacks induced by the loads and the periodic injection of memory
traffic. For the Eager Writeback case, the dirty writebacks were mostly completed in the second
loop, so the slope of the knee is steeper and the third loop can be completed more swiftly than its
Baseline counterpart.

Repeating the same experiment using lower frequency injection (as plotted in Figure 6.13 and
Figure 6.14) reveals that the slope of the knees of the curve are much more similar to one another.
As a result, roughly the same number of penalty cycles were added to both Baseline and Eager
Writeback, and the speedups due to Eager Writebacks are smaller in Table 6.9. These results
suggest higher frequency memory interference can degrade baseline case performance more in a
bandwidth-limited code.
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Figure 6.11: Load Response Time for Data Reads in Streaming Kernel (Higher Frequency Injection)
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Load Instruction Sequence for Input Vertices
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Figure 6.13: Load Response Time for Data Reads in Streaming Kernel (Lower Frequency Injection)
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6.5 Related Work

Traditionally, the bandwidth issues are often alleviated by providing a higher bandwidth mem-
ory system. Today’s memory subsystem not only needs to deliver data bandwidth requests by the
processors in a timely fashion, but also needs to provide enough bandwidth for a graphics processor
as discussed in Section 6.1. Memory bandwidth can be increased by increasing bus frequency, in-
creasing the bus width, or installing multiple indepedent memory agents to handle memory requests.
Contemporary memory technologies such as Double Data Rate (DDR) DRAM, SLDRAM [57] or
Direct Rambus DRAM [35] provide some solutions to enable a high bandwidth system. For exam-
ple, a single channel 266MHz DDR-DRAM with 8-byte data bus can provde a maximum 2.1GB/sec
bandwidth from main memory.

The Advanced Graphics Port (AGP) [29] initiated for multimedia PC platforms provides a new
interface to enhance the data bandwidth delivered to the graphics accelerators, primarily useful for
content-rich 3D graphics applications. It relieves the congestion of PCI bus by adding a dedicated
high-speed bus between the graphics accelerator and chipset. The latest AGP8x specification is
aimed at providing a peak bandidth of 2.1GB/sec.

Self-invalidation techniques are used to eliminate the latency of invalidation and acknowledge
messages for a directory-based multiprocessor system. A processor can invalidate its own cache
copy before other processors make a conflicting access. The principle of self-invalidation is similar
to our eager writeback approach. Lebeck and Wood [71] proposed a hardware approach to perform
dynamic self-invalidation. Based on the sharing pattern history, a directory controller can predict a
cache line for self-invalidation and send the message to the corresponding processor node. Lai and
Falsafi [68] proposed Last-Touch Predictors that identify cache lines in a shared memory system
that can be speculatively self-invalidated.

6.6 Chapter Summary

Systems employing writeback caches have to contend with the following two issues: (1) Dirty
writebacks contend with demand fetches for bandwidth and can impede the delivery of data, and (2)
Finite memory bandwidth shared between demand fetches and implicit dirty writebacks limit the
performance of memory bound programs. These performance issues are important to a large and
growing class of programs — those that consume large amounts of memory bandwidth and generate
many data stores.

In this chapter we have presented Eager Writeback, a new technique for dealing with these issues
which can effectively improve overall system performance by filling or shifting the writing of dirty
cache lines from on-demand to times when the memory bus is not fully utilized or in idle state.
This time-shifting is accomplished by identifying and speculatively writing (”cleaning”) dirty lines
whenever the bus is free. We have shown that for a wide variety of programs, once a dirty cache
line has entered the LRU state it is rarely written to again. We use this fact to identify the lines
that should be speculatively written (although this information could be of interest to many other
intelligent cache management techniques as well).

We have shown that applying this technique can alleviate bandwidth congestion and improve
performance for two benchmarks that are representative of graphics (data intensive) or streaming
types of applications. We have shown that when conventional writebacks compete with memory loads
and defer the delivery of data, the Eager Writeback technique is able to remove the competition
by evicting dirty data earlier. We have also shown that when the available memory bandwidth
limits overall performance, Eager Writeback can alleviate this situation by utilizing earlier idle bus
cycles. Eager Writeback can be implemented in a number of ways - for example, as an additional
programmable memory type on top of the existing memory types provided by a processor to speed
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up bandwidth-hungry applications, e.g. 3D graphics or content-rich applications.

Further investigation of this Eager Writeback mechanism will include the effects this approach has
on other system performance issues. For example, Eager writeback can potentially reduce context
switching time overhead by flushing dirty lines in advance of the context switch. In addition, Eager
Writeback can push modified data closer to the globally observable memory level earlier to reduce
coherence miss latency, and as a result, respond to other processors’ requests faster. The same
analysis performed in this chapter can similarly be applied to write-update and write-invalidate
protocols in a shared memory system to reduce their coherence traffic.
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CHAPTER 7
CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Thesis Summary

In this dissertation we focus on data cache architecture optimizations with respect to three
major issues in modern processor designs: energy efficiency, performance and memory bandwidth
utilization. We analyzed data memory reference streams for a variety of applications and found
several ways to exploit their reference characteristics. By categorizing these characteristics, we
proposed three novel techniques to address these design issues. The following sections summarize
our contributions in this dissertation.

7.1.1 Memory Reference Characterization

First, we characterized data memory reference streams based on virtual memory space parti-
tioning by high-level programming languages. The partitioning segregates memory accesses into
semantically distinct regions including stack, global static, heap and read-only data. We also ex-
ploited the information content inherent in cache line frame addresses. Based on information theory,
we found that the entropy of stack data references is roughly one third of the entropy of heap data
references, about half of that of global static data references. In addition, our analysis indicates that
processor architects seemingly design ever larger caches in an attempt to accommodate heap data,
although it exhibits the most unpredictable and intractable reference behavior.

Then we analyzed cache line write behavior and found that dirty cache lines, once they leave
the MRU state, are seldom written again before they are replaced in the caches. This interesting
property is utilized by our new Eager Writeback policy which is capable of re-distributing memory
traffic, and thereby balances memory bandwidth.

7.1.2 Region-based Cachelets

Using the characteristics of memory references that we identified, we proposed to direct distinct
memory reference streams into distinct cache structures, which we called Region-Based Cachelets.
We allocate an exclusive cache for each semantic region. More than 70% of the memory references
in heap and global static regions can be redirected into their individual much smaller cachelet
structures, thereby reducing dynamic power dissipation. Due to the high reference locality of stack
and global static data, the region-based cachelets design does not degrade performance relative
to a conventional cache design, and in some cases it even improves performance by eliminating
conflict misses among memory regions. This new partitioned memory organization is suitable for
embedded processors in which processor architects can tweak the most energy-delay efficient cache
configurations for their target applications.
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We also quantitatively investigated the synergistic benefits of combining the region-based cachelets
design with a prior proposed filter cache design. We found that the power dissipation can be further
reduced by as much as 40% with a minimum impact (less than 8%) on the overall performance.

7.1.3 Stack Value File Design

An in-depth analysis of stack reference characteristics and its stack pointer-relative addressing
mode was performed. The stack memory references through this simple addressing mode are iden-
tified in the pre-decode stage and fed into an extended unit which computes the offset relative to
the top of stack (TOS). Then these memory instructions are morphed into register to register move
operations inside the out-of-order execution core. This reduces the load-to-use latency associated
with each memory instruction. Instead of committing the computed results into memory, the pro-
cessor commits them into the Stack Value File (SVF), an architectural register file transparent to
compilers and programmers. In theory, all the stack addresses can be accessed relative to the TOS
pointer through the compiler’s help. We found that 86% of the stack references in Compaq Alpha
binaries belong to this instruction class.

In this study, we identified several characteristics of stack references that differ from other data
references. Typically, stack references exhibit contiguity which enables us to eliminate the need for
storing every address tag. Therefore, these data can be allocated into a register file like structure
rather than a cache for fast accesses. The initial references are store operations (except for prefetch
instructions), thus we can save memory traffic by writing directly into the SVF without accessing
the cache data. When the activation records are deallocated, dirty data can be discarded as they
are no longer valid, thus saving dirty writeback traffic. The morphing scheme also implicitly enables
memory renaming for stack references via the existing register renaming circuits. The overall perfor-
mance can be improved by an average of 24% for conventional microarchitectures with a dual-ported
L1 cache, while providing the added benefit of reducing memory overhead traffic.

7.1.4 Eager Writeback Cache

According to the characteristics of cache line writes, a new cache write policy called Eager
Writeback is presented. Eager Writeback, a modified mechanism to maintain memory consistency
whose behavior falls somewhere between a writeback cache and a write-through cache, is able to
improve overall system performance by speculatively shifting the writing of dirty cache lines from
on-demand to times when the memory bus is less congested. The implementation of Eager Writeback
is inexpensive. Basically we trigger dirty writeback upon the point when a dirty cache line enters
the Least Recently Used (LRU) state. Once the writeback of the LRU dirty line is acknowledged,
the dirty bit of this corresponding line is cleaned.

This new technique avoids conflicts between writeback traffic and demand fetch traffic, thereby
reducing the potential delay of demanded data due to the bandwidth limitation. The Eager Write-
back is shown to be very effective for 3D geometry pipelines and memory streaming applications.
These applications possess a property which brings in a large working set (introduces demand misses)
and pollutes these data working set (generates dirty data writebacks). Dirty writebacks usually have
a higher priority for accessing the memory bus and can conflict with critical demand misses, thus
degrading system performance. The Eager Writeback mechanism, however was shown to be capable
of balancing memory bandwidth and alleviating this performance degradation. Eager Writeback can
be implemented as an additional programmable memory type on top of the existing memory types
provided by the processors.
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7.2 Future Directions

7.2.1 Cache Port Design

The concept of Region-based Caching can have more benefits yet to be explored. In this disser-
tation, we have studied its energy-delay efficiency for in-order single issue embedded processors used
in mobile PDA-like devices. It can also be beneficial for high performance superscalar or multi-issue
VLIW processors. For these processors, multiple memory operations can be issued simultaneously.
The Region-based Cachelets provide an alternative solution for multi-porting the cache structure.
In our proposal, a Region-based Cachelets system itself is partitioned into three discrete caches, one
for each semantic region. Additionally, multi-porting a monolithic large cache can be expensive. It
quadruples the cache die size when the cache size is doubled because the wordlines and bitlines of
a cache need to be doubled in order to enable two simultaneous access requests. One can study
the combination of memory instructions based on access regions for a multi-ported cache design.
Moreover, it can be less costly in terms of die size area to build multi-ported region-based cachelets
than a multi-ported monolithic cache.

7.2.2 Energy Consumption in the Stack Value File

We demonstrated the effectiveness of the Stack Value File in increasing memory level parallelism
and system performance. One interesting potential gain we did not explore is the energy saving.
As we mentioned earlier, the SVF only needs to keep the current TOS base address register instead
of a full blown tag array for each SVF entry. Compared to a conventional cache design, the SVF
can further reduce power consumption whenever a stack memory reference occurs. To address and
quantify the energy saving of an SVF implementation will make the SVF design more appealing.

7.2.3 Heap Object Management

In the characteristics analysis of memory reference, heap data references show the maximum
entropy among the memory regions. It is also a known fact that dynamic storage allocation is
responsible for poor memory performance. As object-oriented languages, such as C++, Java, or
Microsoft’s C#, become more popular in application software development, heap objects are al-
located much more frequently [21], and effective heap data management becomes imperative for
performance improvement. Prior studies [4][5][10] [42] showed heap-allocated data are likely to die
young. This property is used as the foundation of the generational garbage collector. Recent com-
piler research is emphasizing the cache locality for the garbage collection algorithms [116]. Through
the synergy of compiler and microarchitecture cooperation, one could devise a more effective heap
data management and replacement policy to improve cache locality and efficiency.
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