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Abstract

This report is intended to present the Fiduccia
Mattheyses (FM) heuristic for hypergraph bipartition-
ing as a method for solving large Boolean Satisfiability
(SAT) problems. We hope to extend the success of the
FM heuristic in the partitioning domain to satisfiabil-
ity. This report outlines how a SAT problem can be
viewed as a partitioning problem, which argues for the
applicability of FM. Further, we present the software
architecture and implementation of our SAT solver, in-
spired by a previous highly successful implementation
of FM for hypergraph bipartitioning. We also briefly
discuss experimental results that justify our belief that
the FM heuristic shows promise in the satisfiability do-
main.

1 Introduction

1.1 Boolean Satisfiability

A Boolean satisfiability (SAT) problem is defined as
follows. Given a set of variables x1, x>...x,, each with
a {0/1} value and a set of clauses Cy,C5...C,,, where
each clause consists of logical-or (v) connected vari-
ables, and a Boolean formula in conjunctive normal

form (CNF):
CiACoA...ACy

find an assignment of values to the variables such
that the formula is true, or show that there is no such
assignment,.

SAT was the first problem shown to be NP-complete
[1] and requires worst-case exponential complexity to
find a satisfying assignment, or to prove one does not
exist.

1.2 Satisfiability Solvers

A great deal of research effort has been devoted to de-
veloping fast and efficient satisfiability solvers, because
SAT has a wide range of applications including VLSI
routing, planning and scheduling problems, and equiv-
alence checking for formal verification.

SAT solvers fall into two domains, complete and in-
complete (exact and inexact). Complete algorithms
explore the entire search space, therefore, if a solution
exists, they are guaranteed to find it. Incomplete al-
gorithms typically use heuristics to avoid exploring the
entire search space. This allows them to perform faster
than complete solvers, but they are not guaranteed to
find a solution and therefore cannot cannot prove un-
satisfiability. Complete solvers, while able to prove un-
satisfiability, have exponential worst case complexity.

1.3 The Fiduccia Mattheyses heuristic
for hypergraph bipartitioning

The Fiduccia Mattheyses (FM) heuristic was devel-
oped for hypergraph bipartitioning [2], which is the
problem of dividing a hypergraph into two partitions
while minimizing the number of hyperedges that are
"cut”. A hyperedge is cut when not all its vertices
lie in the same partition. The FM heuristic uses a
greedy local search procedure with hill-climbing and
backtracking techniques, explained in detail in Section
3, and has been very effective in solving large partition-
ing problems. While its empirical success has not been
fully substantiated by theoretical analyses, there is a
vast amount of evidence that that in the partitioning
domain this type of hill-climbing is very competitive
with other types. In this work, we discuss our efforts
to extend the heuristic to the satisfiability domain.
Leading-edge exact SAT solvers employ constructive



algorithms, i.e., they attempt to construct a solution
piece by piece and are not able to offer a complete
solution until the end. The FM algorithm, like most
inexact algorithms, is iterative, i.e., it starts with a
‘tentative solution’ and attempts to improve it through
a series of small changes. The best solution seen so
far is available at any time. The two approaches differ
because SAT is a constraint satisfaction problem, while
min-cut partitioning is an optimization problem.

For its decision making process, FM uses a greedy
local search. The search space is the set of variable
assignments that differ form the current assignment by
exactly one variable. The heuristic picks the assign-
ment that offers the greatest improvement in solution
quality over the current assignment in terms of the
objective function, and changes the variable in ques-
tion. Greedy local search has been successfully em-
ployed in other inexact SAT solvers in the past, most
notably GSAT and WalkSAT. However, differences ex-
ist between the FM algorithm and those used by GSAT
and WalkSAT, particularly with regard to hill-climbing
techniques. These are discussed in detail in Section 3.

1.4 SAT and Max-SAT

The problem of satisfiability (SAT) asks whether or not
an assignment to the problem variables can be found
such that each clause in the problem evaluates to true.
The Max-SAT optimization problem, however, asks to
identify a variable assignment that satisfies the greatest
possible number of clauses. The constraint-satisfaction
version of SAT is a special case of Max-SAT, since all
clauses can be satisfied at once. From the Max-SAT
perspective, unsatisfiable SAT instances are of greater
interest. Existing SAT solvers normally just return a
negative answer for unsatisfiable problems, and pro-
vide no information about the solution. A Max-SAT
solver will return its best-seen solution and point out
a small set of clauses responsible for unsatisfiability. If
such clauses are removed, the modified instance will
be satisfiable. This feature is useful in several CAD
applications that rely on solving instances of SAT.

The FM heuristic uses a backtracking technique that
allows it to recover the best solution encountered in its
progress even though it may have made subsequent up-
hill moves. Therefore, if it is required to terminate after
a certain period of time, it will provide the best solu-
tion seen before exiting. This backtracking technique is
useful for Max-SAT problems, where the solver could
satisfy a relatively large number of clauses in a very
short time.

The remainder of this document is organized as fol-
lows. In section 2, we explain the working of the FM

heuristic in detail, and discuss guidelines for its imple-
mentation. In section 3, we outline other local search
procedures for SAT and illustrate differences between
these procedures and the FM heuristic. In section 4, we
explain how FM is applied to SAT problems and dis-
cuss some implementation issues with an illustrative
example. In section 5, we briefly discuss our imple-
mentation. In section 6, we conclude the report with
some remarks on the possible utility and applications
of FM.

2 The Fiduccia Mattheyses
Heuristic for Hypergraph
Bipartitioning

2.1 Algorithm Description

The FM heuristic for bipartitioning circuit hyper-
graphs is an iterative improvement algorithm. FM
starts with a possibly random solution and changes
the solution by a sequence of moves which are orga-
nized as passes. At the beginning of a pass, all vertices
are free to move (unlocked) and each possible move
is labeled with the immediate change in total cost it
would cause; this is called the gain of the move. Solu-
tion cost is measured by the number of hyperedges cut
in a partitioning solution. Positive gains reduce solu-
tion cost, while negative gains increase it. Iteratively,
a move with highest (but not necessarily positive) gain
is selected and executed, which may result in a lower,
higher, or unchanged solution cost. The moved ver-
tex is locked, i.e. is not allowed to move again during
that pass. Since moving of a vertex can change gains
of adjacent vertices, all affected gains are updated. Se-
lection and execution of a best-gain move, followed by
gain update, are repeated until every vertex is locked.
After every vertex has moved exactly once, we get a
partitioning solution symmetric to the the one at the
beginning of the pass, thus having the same cost. Then,
the best solution seen during the pass is adopted as the
starting solution of the next pass. The algorithm ter-
minates when a pass fails to improve solution quality.

2.1.1 Hill Climbing in FM

Hill climbing in FM is achieved by forbidding move
repetition, and executing all non-repeating moves in a
pass. Since moves are ordered according to gain, the
heuristic executes a negative-gain move in the absence
of a move with positive or zero gain. This type of
hill-climbing has been shown empirically to be very



successful for partitioning (see [3] for results of FM in
partitioning).

2.2 Software Architecture

Kahng et al [3] describe a seven-component software
architecture that serves as a guideline for the imple-
mentation of "move based” heuristics for hypergraph
partitioning (the FM heuristic is move based). The
architecture contains the following components.

Partitioning Interface: Formally describes the in-
put and output to partitioners without mentioning in-
ternal structure and implementation details.

Initial Solution Generator: Generates a starting
solution (usually random) that satisfies problem con-
straints.

Incremental Cost Evaluator: Evaluates cost for
a given partitioning, and updates the cost value when
the partitioning is changed by applying moves.

Legality Checker: Verifies whether a partitioning
satisfies a problem constraint.

Gain Container: A general container for moves,
which should support quick updates of the gain for a
move, and fast retrieval of a move with the highest
gain.

Move Manager: Responsible for choosing and ap-
plying one move at a time, undoing moves on re-
quest, incrementally computing change in gains due
to a move, and updating the gain container.

Pass based Partitioner: Solves partitioning prob-
lems by applying incrementally improving passes to ini-
tial solutions.

The UCLA Physical Design Tools Release [8] in-
cludes an FM partitioner that uses the software ar-
chitecture describe above.

2.3 Gain Update in Partitioning

This section explains how gains are evaluated and up-
dated in bipartitioning. For bipartitioning, the state of
a hyperedge (whether cut or uncut) depends strictly on
the number of vertices in each partition. If a hyperedge
has a non-zero number of vertices in each partition, it
is cut. In [3], the number of vertices in each partition
for a given hyperedge is recorded as a "tally” for that
hyperedge. A tally for some edge e has the form {a,b}
where a is the number of vertices of e in partition 0,
and b is the number of vertices of e in partition 1.
Vertex gain is calculated based on the tallies for each
edge the vertex lies in. For example, consider a vertex
in partition 0, with 3 edges incident on it. The gain
of this vertex is the resulting difference in cost if the
vertex were moved to partition 1. For the purpose

of this example, assume that the tallies for the three
edges incident on this vertex are {1,6}, {4,4} and {6,0}
respectively.

We analyze the effect of moving the vertex to parti-
tion 1 for each of the three edges.

Edge 1: The edge is already cut, and only one ver-
tex (the one under consideration) lies in partition 0.
By moving this vertex to partition 1, the edge will be
uncut, so there is an increase in gain of 1 for the vertex
with respect to the first edge.

Edge 2: This edge is already cut, moving the vertex
to partition 1 does not alter the status of the edge in
any way, so there is no change in gain with respect to
this edge.

Edge 3: The edge was uncut (all vertices in parti-
tion 0), and moving the vertex to partition 1 will cut
the edge, so there is a decrease in gain with respect to
this edge.

Therefore, the total gain of the vertex is (1 + 0 +
-1)=0.

Assuming the move is made, and the vertex locked,
it is now necessary to update the gains of all unlocked
vertices on the three edges. For the purpose of this
example, we assume that no other vertex was locked
on any of the three edges.

Edge 1: This edge is now uncut in partition 1, so
moving any unlocked vertex to partition 0 will cut it.
The gains of all unlocked vertices in this edge will de-
crease by 1 with respect to this edge.

Edge 2: This edge will remain cut if any one vertex
is moved to another partition, so there is no change in
gain for any unlocked vertex with respect to this edge.

Edge 3: This edge is now cut, and only one vertex
(which is locked) lies in partition 1. For all the remain-
ing vertices in partition 0, the edge will stay cut even if
another vertex is moved to partition 1. However, since
the edge was previously uncut, these vertices would
have earlier had a negative gain (as penalty for cut-
ting the edge). Now that the edge is cut, there is no
penalty to be paid for moving these vertices, so their
gains increase by 1 with respect to the edge.

3 Local Search in SAT

Algorithms using local search have been applied to SAT
before, notably the GSAT algorithm introduced by Sel-
man et al [4] in 1992. GSAT performs a greedy local
search for a satisfying assignment of a set of proposi-
tional clauses. The procedure starts with a randomly
generated truth assignment, and then changes (”flips”)
the assignment of the variable that leads to the largest
increase in the total number of satisfied clauses. Such



flips are repeated until either a satisfying assignment is
found or a preset maximum number of flips is reached.
The process is repeated as needed upto a preset maxi-
mum number of tries. During any try, GSAT explores
the set of assignments that differ from the current one
by only one variable.

The local search strategy used by GSAT was suc-
cessful for some classes of problems (notably hard ran-
domly generated formulas) (see [4] for detailed results),
but lacked hill climbing ability and was sometimes
prevented from finding a satisfying assignment, even
when one existed, by local minima in the search space.
To improve performance, the ability to perform ”side-
ways” moves (that produce no change in the objec-
tive function, but change the variable assignment) was
added to GSAT, and later, hill-climbing strategies such
as simulated annealing and random walk were added
to the GSAT algorithm (see [6], [7], [5]).

GSAT with random walk (WSAT or WalkSAT) im-
proved greatly on the performance of basic GSAT for
large structured problems such as planning and cir-
cuit synthesis. The algorithm used by WalkSAT is de-
scribed below.

With probability p, pick a variable occurring in some
unsatisfied clause and change its truth assignment
With probability (1-p), follow the standard GSAT

scheme,

i.e. pick randomly from the list of variables that gives

the largest decrease in the total number of unsatisfied

clauses.

GSAT and WalkSAT both perform a local search
that is similar to the one performed by FM. The dif-
ference between the algorithms lies in the hill climb-
ing strategy. FM moves every variable in every pass,
only the order of the moves change depending on the
gains. Hill climbing is performed as part of the pass in
the event that only negative gain moves are possible.
There is no randomization, except in the initial assign-
ment. GSAT, on the other hand, allows only positive
gain moves, and in WalkSAT, moves are selected ran-
domly. It is not necessary to move every variable in
GSAT and WalkSAT and some variables may never be
flipped in the search for a solution.

4 Implementation of FM for
SAT

4.1 A Motivating Example

The following example is used to illustrate gain calcu-
lation for a simple 3-clause SAT problem.

(@VbV)A(@VI VAWV e

Let us assume an initial assignment of 0 to all vari-
ables. With this assignment, two clauses are satisfied.
The cost for each variable is the number of unsatisfied
clauses in which the variable occurs. At this point, the
cost for each variable is 1. (since each variable is in all
the clauses). We now analyze the change in gain when
each variable is moved to the other partition. Gain is
the difference in cost after the variable is moved.

Gain = (Cost before move) — (Cost after move)

For variable a:
Gain=1-1=0

For variable b:
Gain=1-0=1

For variable c:
Gain=1-0=1

From this calculation, we see that b and c are the
highest gain variables. One of them is moved (assigned
a value 1), locked, and the change in gain for the other
two variables is now computed. In this case, picking
either one leads to a satisfying assignment, so the al-
gorithm stops.

4.2 The FMSAT Solver

Our work on the FMSAT solver is based strongly on
the software architecture described in [3], and follows
the seven-component approach. In this section, we de-
scribe the FMSAT solver and discuss implementation
issues for some of its components.

In a SAT problem, solution quality is measured by
the number of clauses that are satisfied under the given
variable assignment. The solver starts with an initial
variable assignment and iteratively performs passes to
improve the solution quality. At the beginning of each
pass, all variables are free to move” (moving a vari-
able is assigning it a value complementary to its current
value). As in partitioning, Each move is labeled by the
immediate change in solution quality it would cause;
this is called the gain of the move. A positive-gain
move reduces the number of violated clauses, while a
negative-gain move increases it. The highest-gain move
available is selected and executed, the moved variable
is locked, and all variables that are present in the same
clauses as the moved variable have their gains updated.
This process is continued until all variables are locked.
Then, the best solution seen during the pass is adopted
as the starting solution for the next pass. The algo-
rithm terminates under either of two conditions:



1. It fails to improve solution quality (does not
increase the number of satisfied clauses)
2. It results in a cost of 0, i.e. all clauses are satisfied

4.3 Clause Evaluation in FMSAT

The cost evaluator in FMSAT is required to evaluate
whether a clause is satisfied or not, under the current
variable assignment. This is done by comparing the as-
signed values of the variables in the clause to their po-
larities in the problem description. Each clause main-
tains a description of itself, in terms of its constituent
variables and their designated polarities. In the eval-
uation process, variable values are compared against
polarities. If at least one constituent variable has been
assigned a value consistent with its designated polarity,
the clause evaluates to true.

4.4 Gain Update in FMSAT

In this section, we explain how gains are computed and
updated in the FM SAT solver.

After every move (variable assignment), we are re-
quired to perform the following actions:

1. Change the evaluations (true/false) of all clauses in
which the variable occurs to reflect the new
assignment.

2. Update the gains of all other variables in the
clauses in which the variable occurs to reflect the
changed clause evaluation.

To describe gain update, consider two variables, v!
and v2, and assume that v! and v2 occur together in
exactly one clause. Assume that we need to update
the gain for v2 if v1 is moved. To do this, we need to
consider the effect of moving v2 on the clause before
and after v1 is moved.

Moving a variable in a clause can result in one of
three ”clause transitions”:

1. True -> False: This occurs when the vari-
able is the only variable in the clause whose
value its consistent with its designated polar-
ity. Changing the value results in the clause
evaluating to false.

2. False -> True: No variable in the clause
has an assignment consistent with the desig-
nated polarity. As soon as one variable’s value
is changed, the clause evaluates to true.

3. True -> True: At least one variable other
than the variable being moved has an assign-
ment consistent with its designated polarity.
In this case, the clause remains true regard-
less of the value of the moved variable.

The table illustrates the possible changes in gain for
v2 for different clause transitions when v1 is moved.

Clause Transition on Moving v2 | Change in
Before Moving vl | After Moving vl | Gain of v2
T->F T->T 1
F->T T->T 1
T->T F->T 1
T->T T->F -1
T->T T->T 0

Table 1: Change in gain after moving variable

5 Implementation

The FMSAT solver was modeled on the software
architecture described in [3] and written in the C++
programming language.  The solver contains the
following major components.

Initial solution generator
Cost Evaluator

Gain Container

Move Manager
Pass-Based Solver

The components perform the same functions as those
described in Section 2, however, the ”tallies” used by
the cost evaluator are slightly different from the tallies
used in partitioning, and are explained in detail later
in this section.

Standard Template Library (STL) container classes
and algorithms are used extensively in almost all ma-
jor data structures and component classes. The pass
based solver uses a description of the problem that is
maintained in a separate class, the problem description
contains lists of the constituent variables and clauses.
Each variable maintains a list of all the clauses it oc-
curs in, and each clause maintains a description of it-
self with the identification numbers and polarities of
its constituent variables. Maintaining this information
locally within clauses and variables allows for more ef-
ficient gain updates.

Clause Tallies in FMSAT

The cost evaluator is required to evaluate the change
in the objective function as the result of a move. To do
this, it needs to have a method for checking whether
a clause is violated or not. The move manager is also
needs this information for performing gain updates. In

5.1



SAT, as in partitioning, this is done efficiently using
a "tally” for each clause. For SAT, a tally is of the
form { a , b} where a is the number of variables in the
clause that are assigned with the same polarity as their
designated polarity in the clause description, and b is
the number of variables that are assigned a polarity op-
posite to their designated polarity. Using this format,
a clause is violated if ¢ = 0, and is satisfied for any
positive value of a. Clause tallies are updated after a
move for all clauses containing the moved variable.

From the above description of the solver and the re-
duction of SAT to partitioning, it is clear that we can
apply this heuristic to SAT problems, with the objec-
tive of either returning no violated clauses if the in-
stance is satisfiable (SAT), or minimizing the number
of violated clauses (Max-SAT).

6 Empirical Results

7 Conclusions and Future Work

While we have not included numeric results in this re-
port since this work is experimental and the solver is
still undergoing considerable tuning, we wish to stress
that the FMSAT solver has an average solution qual-
ity and run-time very close to that of WalkSAT for
most instances. However, it appears that at this time,
the solver gets less competitive as the problem size in-
creases. However, it is very likely that this is an im-
plementation issue, and that optimizing the most fre-
quently performed operations, such as gain update, will
greatly improve runtime. We have observed that, over
a single run of FMSAT, the number of clauses violated
is greatly reduced during the first few passes. After
that, runtime increases as fewer and fewer positive-gain
moves exist. However, this property is very useful for
Max-SAT problems, where the objective is to satisfy a
large percentage of the clauses in a short time, and the
problem size is typically very large. We believe that
a highly optimized version of FMSAT would be an ef-
fective Max-SAT solver. Overall, we feel that we have
demonstrated that the FM heuristic shows promise in
the domain of inexact SAT solvers.
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