
A Markov Chain Sequence Generator for Power Macromodeling

Xun Liu Marios C. Papaefthymiou
Department of Electrical Engineering

and Computer Science
University of Michigan

Ann Arbor, Michigan 48109

Abstract

In macromodeling-based power estimation, circuit macromodels are created from simulations of synthetic input vector
sequences. Fast generation of these sequences with all possible statistics is crucial for ensuring the accuracy and speed of
macromodeling. In this paper, we present a novel sequence generator based on a Markov chain model. Specifically, we
formulate the problem of generating a sequence of vectors with given statistics as a transition matrix computation problem,
in which the matrix elements are subject to constraints derived from the specified statistics. We also present a practical
heuristic that computes such a matrix and generates a sequence of

���
-bit vectors in ��� �����	��
� time. Our generator is

guaranteed to yield vector sequences with a given average input probability � , average transition density � , and spatial
correlation � , or reports that the specified sequence type does not exist. Derived from a strongly mixing Markov chain,
it generates binary vector sequences with accurate statistics, high uniformity, and high randomness. Experimental results
show that our sequence generator can cover more than 99% of the parameter space. Sequences of 2,000 48-bit vectors are
generated in less than 0.05 seconds, with average deviations of the signal statistics � , � , and � equal to 1.0%, 0.6%, and
0.6%, respectively.

Our generator enables the detailed study of power macromodeling. Using our tool and the ISCAS-85 benchmark
circuits, we have assessed the power sensitivities of three input statistics. Our investigation has revealed that power is
most sensitive to transition density, while only occasionally exhibiting high sensitivity to signal probability and spatial
correlation. We have also investigated the power estimation error resulting from input signal imbalance. Our experiments
show that signal imbalance can cause estimation error as high as 100% in extreme cases, although errors are usually within
25%.

1 Introduction

The basic idea behind power macromodeling is to generate a mapping between the power dissipation of a circuit and
certain statistics of its input signals. The most commonly used statistics are the average signal probability � , the average
transition density � , and the spatial correlation � . Power macromodeling proceeds in two phases. In the characterization
phase, the circuit is simulated under sample input streams with various signal statistics to obtain power dissipation values.
This mapping is used in the evaluation phase to predict the power dissipation of the circuit based on the statistics of its
actual input signals.

A key issue in power macromodeling is the fast generation of input sequences with different and diverse statistics
during the characterization phase. The creation of synthetic sequences can amount to a significant portion of macromodel
characterization time. More importantly, sequence generation affects the accuracy of macromodeling. Since the actual
input signals are unknown during the characterization step, sequences with all possible statistics must be applied to cir-
cuit simulation. Large estimation errors may arise when the actual input signal statistics fall outside the range of the
characterization statistics.

In this paper, we present a novel sequence generator based on Markov chain (MC) modeling. Given average signal
probability � , average transition density � , and spatial correlation � , our generator can produce a binary vector sequence
of arbitrary length and width that satisfies these statistics, or it reports that no such sequence exists. We give a precise
mathematical formulation of the sequence generation problem as a transition matrix computation with ��������� constraints
and ����������� unknowns. Relying on Markov chain theory, we argue that the � -bit vector sequences generated from this
exponential-size formulation have accurate statistics, superior uniformity, and high randomness. We subsequently move
on to describe a practical heuristic for implementing our proposed sequence generator. Our heuristic solves a reduced
version of the original matrix computation problem with only ����� �!� constraints and ���"�#� unknowns. We prove that the
resulting sequences are still characterized by high accuracy, uniformity, and randomness, just like the ones derived from
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the original exponential-size formulation. The worst-case runtime of our heuristic generator is ��������� � � � , where � is the
width and � is the length of the generated vector sequence.

Experimental results confirm our theoretical analysis. Our generator is capable of producing vector sequences with
statistics that cover more than 99% of the statistics space derived by mathematical analysis. The generated sequences have
superior uniformity and precise statistics. For sequences of 2,000 48-bit vectors, average deviations of the signal statistics
are 1.0%, 0.6%, and 0.6% for � , � , and � , respectively. The CPU time for generating each ����� �
	����� sequence is less than
0.05 seconds.

Our signal generator can serve as a powerful tool for the analysis of power macromodels. To demonstrate its high
utility, we have studied the effect of each macromodel parameter on power dissipation. By computing power sensitivities
of all three statistics for ISCAS85 benchmark circuits, we have found that transition density is the most power affecting
parameter, while signal probability and spatial correlation show large power sensitivities only occasionally. We have also
investigated the power effect of signal imbalance. We conclude that power macromodels are robust in general, although
high estimation errors may still arise in extreme cases.

The remainder of the paper has 7 sections. In Section 2, we give background on power macromodeling and sequence
generation. In Section 3, we present the precise mathematical formulation of the MC based sequence generator. In
Section 4, we describe a clustering scheme to derive a low-complexity formulation with all the original desirable properties.
We solve the new problem formulation in Section 5. Our sequence generator is evaluated in Section 6. Section 7 describes
the application of our generator to the study of power macromodeling. Section 8 summarizes our contributions.

2 Background

2.1 Power Macromodeling Characterization

Power macromodeling is derived from RT-level power estimation [20, 25]. A power macromodel is a mapping between
the power dissipation of a circuit under a specific input sequence and certain statistics of that sequence. Various mapping
methods have been proposed in the literature. A look-up table (LUT) approach is introduced in [14] and improved in [4].
The LUT stores the estimates for equally spaced discrete values of the input signal statistics. Interpolation is used for
the estimates of the input statistics not in the LUT. Zhanping et al introduce the concept of power sensitivity which can
be used to analyze and improve the accuracy of interpolation [8, 9]. Analytical power macromodeling uses mathematical
expressions to calculate estimates and, therefore, avoids the space cost [5, 16]. The commonly used expressions are low-
order polynomial functions.

Besides mapping methods, different statistics have been chosen to build power macromodels. Input signal entropy was
proposed in [21] and applied to power macromodeling in [13]. Temporal correlation was introduced in [12] and applied
to power macromodeling in [5]. In this paper, we choose average input signal probability � [4, 14, 18], average input
transition density � [4, 14], and input spatial correlation � [4, 14] as the input parameters to generate the macromodels.
Given a circuit block with � inputs and a binary input stream ����� ��������	���� � 	�������	���� � ��	 ������	 ���"!��#	��"! � 	�������	��"! � ��$ of length � , these
metrics are defined as follows [5]:

� �
% �&�' � % ! ( ' � � ( &

�)�*� (1)

� �
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Once the input parameters are chosen, sample input streams with different � , � , and � are generated. The power
dissipation < of a given circuit is then derived by simulations with these input signals to create the macromodel

<=�?>�� �@	 �A	��!�/	 (4)

where > is a mapping procedure. In the evaluation phase, the �B	 �A	�� of the actual input sequence are computed and the
power dissipation is predicted using > . In case the actual � , � , and � do not match any of those used in the characterization,
approximation methods such as interpolation are applied.

The number of different sequences used in the characterization phase and the distribution of their signal statistics sig-
nificantly affect the quality of > and eventually the power estimation result. The statistics of the characterization sequences
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need to cover the entire space of the possible statistics. Furthermore, the distribution of these statistics must be carefully
chosen. Power sensitivity to an input metric � can be used to show how � affects < and is defined as:

��������
	��
 < � (5)

Intuitively, the higher the sensitivity of � is, the more different points of � should be used in the characterization phase
to increase the accuracy of power macromodeling.

2.2 Sequence Generation

Sequence generation has been widely used in many fields such as coding, simulation, cryptography, and verification. The
related literature is very extensive, and this section can only give a very brief and certainly non-exhaustive discussion.

Research on sequence generation can be divided into several different areas. One of the very active fields is pseudo-
random number generation (PRNG). The objective of PRNG is to generate a sequence of numbers with uniform distribution
within a given set [3, 6, 23, 24]. The most frequently used PRNG algorithm is the linear congruential random number
generation method [17]. In this approach, starting from an initial number � � , called the seed, a sequence of binary
numbers � (

is generated by
� ( � ����� ( +-� ��� ����� ��� 	 (6)

where � , � , and � are parameters. The results from PRNG can be modulated to create random vector sequences with
certain probability distribution functions. On the other end of the spectrum, deterministic sequence generation (DSG)
tries to produce specific signal patterns. One of the most important DSG applications is circuit testing [1, 2]. (Sequence
generation in random testing [27] can be considered as a special case of DSG, because its objective is to produce all patterns
exhaustively and avoid any repetition.)

Sequence generation for power macromodeling (SGPM), which is the problem addressed in this paper, is different from
both PRNG and DSG. The required sequences do not follow the uniform distribution but need satisfy certain statistical
properties, i.e. the given signal probability, transition density, and spatial correlation. It is impossible to generate sequences
with these statistics from PRNG results, since vectors from PRNG are pseudo-independent from each other. In addition,
the sequences must exhibit high randomness and do not need contain specific patterns or avoid repetition as in DSG. SGPM
also differs from sequence synthesis/compaction (SSC) techniques [7, 11, 19, 22]. In SSC, a sequence is derived from a
given longer sequence. The objective of SSC is to ensure that the derived sequence maintains the same properties, e.g.
power effects, as the original one. Consequently, the shorter sequence can replace the longer one in simulations to reduce
computation time. SGPM is actually the procedure to generate the original long sequences. It is complementary to SSC,
which can be the post-processing step of SGPM to further speedup macromodel characterization.

Previous power macromodeling research has lacked an efficient and mathematically sound way for generating input se-
quences with given signal statistics. In [5], a large number of sequences was generated based solely on average probability
� . The generated sequences were inspected for other relevant statistics, and only sequences whose statistics were closest
to the required ones were selected. Therefore, this approach was not guaranteed to cover the entire space of statistics,
nor could it control the uniformity of the sequence statistics distribution. In [15], the input sequences were also generated
based solely on � . A local tuning method was used to make the sequences conform to the required statistics. However, this
approach could cause large variations of the statistics in different parts of the generated sequences.

3 MC-Based Sequence Generation

In this section, we present the mathematical formulation of our MC-based sequence generator. Specifically, we show that
sequences can be generated from a state transition graph (STG), which is uniquely represented by its transition matrix�

. We then give a set of ��� � � � constraints that relate the elements of the transition matrix with a given set of target
statistics. We prove that if the transition matrix

�
satisfies these constraints, it is guaranteed to yield sequences with the

given statistics. Furthermore, based on the structural properties of our STG, we argue that the generated sequences achieve
high statistics accuracy, high uniformity, and high randomness.

3.1 Preliminaries on Markov Chains

A MC is a sequence of random variables ��� , � ����	�5�	������ , with the property that the probability of ��� depends only on the
value of ��� +-� . Mathematically, this property can be represented by

� �����! ����+��#	"��� + � 	������ � � �/� � �����# ��� +-� � 	 (7)
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where
�

denotes conditional probability density functions. When � � takes only finite discrete values, a Markov sequence
can be generated by constructing a STG, in which every distinct discrete value is represented by a vertex. Directed edges
are introduced between every pair of vertices (including each vertex to itself) and represent state transitions. A non-negative
number is assigned to each edge, representing the probability of the corresponding transition. Consequently, the STG can
be uniquely defined by a transition probability matrix

�
, where � ( 8 & equals the probability of the transition from state �

to state � . Figure 1 shows a STG with two states that can be used to generate binary sequences. Its transition probability
matrix is � �

� � ��5 � � �
� � � � � ��� � (8)

0 1
0.4 0.60.1

0.9

Figure 1: STG for a binary Markov sequence

To generate a Markov sequence from a STG, the STG is traversed starting from an arbitrary state and based on the
transition probabilities. Each time a vertex is visited, its value is appended to the sequence.

If every element in the transition matrix
�

is strictly positive, the STG represented by
�

belongs to a special type
of Markov chains called strongly mixing Markov chains (SMMCs). The sequence created from SMMCs is ergodic with
uniform stationary distribution. The probability that the STG is in state � at certain time t during the traversal will converge
to � ( as t goes to infinity, no matter what the starting state is. The parameters � ( are called stable state probabilities and
satisfy the fixed-point equation �
	��� � �� � (9)

3.2 Mathematical Formulation

We first introduce some notation. We denote by ������ � the number of 1s in the binary vector � . Accordingly, the probability
� ��� � and the spatial correlation � ��� � can be computed by

� ��� � � ������ �
� 	 (10)

� ��� � � ������ � 	 ���*3 ������ � �
� 	 ��� 3 5 � 	 (11)

where � is the vector width.
The following theorem casts the problem of generating a sequence with a given � , � , and � into the problem of com-

puting a matrix whose elements satisfy a set of ��� � ��� constraints.

Theorem 1 A sequence of � -bit binary vectors with average probability � � , average transition density � � , and spatial
correlation � � can be generated from a STG with a � � � � � transition matrix

�
, whose elements � ( 8 & are all strictly positive

and satisfy the following constraints. � � ( 	;����� ( � 5 	������ ��	������ � � 3 5��"	
�
	��� � �� 	 (12)�5 ��� 	 � � �5 ��� 	 (13)

� � � � � +���
( ' � � ����� 	 � ( 	 (14)

� � � � � +���
( ' �

� � +-��
&�' � ������ . � � 	 � ( 8 & 	 � ( 	 (15)

� � � � � +���
( ' � � ����� 	 � ( 	 (16)

where
�5! is the m-dimensional vector of 1s.
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Proof. (sketch) Equations (12) and (13) show that
�

is the transition matrix for a MC with � � states. Since all elements
of
�

are positive, the MC is strongly mixing. Next, we show that Equations (14), (15), and (16) ensure that the generated
sequence has the correct statistics. Each binary vector can be represented as a unique integer by enforcing a fixed bit order
for all vectors. Consequently, � , � , and � can be computed using the stationary distribution

�� and transition matrix
�

as
follows:

� � � � +-��
( ' � � ����� 	 � ( 	 (17)

� � � � +-��
( ' �

� � +���
&�' � ������ . � � 	 � ( 8 & 	 � ( 	 (18)

�7� � � +-��
( ' � � ����� 	 � ( 	 (19)

where �-	���� � � 	������ � ��365 � .
3.3 Properties of SMMC-Based Generator

The sequences generated by a SMMC have accurate statistics, superior uniformity, and high randomness, properties that are
particularly desirable for power macromodeling characterization. The statistical parameters � , � , and � can be controlled
accurately by appropriately selecting

�� and
�

as in Theorem 1. Furthermore, since
�

is fixed and the state probabilities
of the STG converge to

�� after the initial warm-up period, � , � , and � also become stable, indicating that the generated
sequences have high uniformity.

The sequences also have high randomness due to the Markov chain model. In Markov sequences, two non-adjacent
vectors are independent. From an information theory standpoint, independence means maximization of information en-
tropy, which is a measure of randomness. From Equation (9), it is straightforward to prove that, if all elements of

�
are positive, the stationary probabilities

�� of all patterns are positive. Therefore, every pattern will appear in a sequence,
provided it is long enough.

In addition to providing sequences with accurate statistics, high uniformity, and high randomness, our SMMC-based
generator has a short warm-up period and is capable of producing sequences with almost all possible statistics. We demon-
strate both advantages through our empirical results in Section 6.

4 Pattern Clustering

Though the SMMC-based generator in Subsection 3.2 can generate high quality sequences, the computation of the associ-
ated transition matrix

�
can be a formidable task when � is large, because the number of unknowns increases exponentially

with � . Specifically, we need to solve for � � � � � � unknowns to obtain
�

and
�� .

In this section, we reduce the size of the original STG by clustering together multiple vector patterns and only solve for
the transition matrix of the clustered STG. Within each cluster, we apply a specific rule to determine which state is reached.
This clustering approach reduces the number of unknowns from an exponential number in the original formulation to only
quadratically many. It still guarantees positive transition probabilities between any pair of states (including each state
to itself), thus yielding sequences that achieve all the desirable properties of the sequences derived from the original
formulation.

00 11

0110

Figure 2: Clustering example

To reduce the number of variables, we group vector patterns � with the same ������ � into clusters, based on the obser-
vation that � ��� � and � ��� � solely depend on ������ � and the vector width � . The resulting clustered STG has � � 5 clusters.
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Figure 2 demonstrates the clustering procedure for � � � . A total of 3 clusters is created, and the patterns within each
cluster have the same number of 1s.

During sequence generation, the clustered STG is traversed in a similar manner as the original STG. When a cluster � (
is reached from a pattern � & in cluster � & , a 2-step method is used to decide the exact pattern being reached within � ( . In
the first step, the number of bits inverted is decided. For a transition from � & to � ( , the number of inversion bits � can range
only from  � 3 �� to

� ��� ��� ���	 � � 3 � 3 � � . For each possible � , we use a function
� ���@	�� � to describe the probability

that � is chosen: � ���@	�� �/� ���
	 +�� ( + & �  	 ��5 3�� ������� ���
(�0 & 8 � � +

( + &  + 	 � 	 (20)

where � � %�� ! !�� � ! ��� 	 � ��	 +�� ( + & �  	 ��5 3�� � ����� ���
(�0 & 8 ��� +

( + & "+ 	  is the normalization factor and � ��� � 5 is a tuning
parameter. Once the number of inversion bits � is decided, ���*� �*3�� � � � 0s and � � 3
� ��� � ��� 1s in � & are selected
randomly and inverted to create the new pattern.

Based on the description above, we can prove that during a cluster transition � &"! � ( , any signal pattern in � ( can be
reached with a strictly positive probability. Consequently, the STG of individual states is strongly mixing as long as the
clustered STG is strongly mixing, indicating that the sequences resulting from our clustered STG maintain all the desirable
properties in Subsection 3.3. (Proof is omitted due to page limitations.)

The following theorem gives the constraints for the construction of a clustered STG to generate sequences with given
statistics.

Theorem 2 A sequence of � -bit binary vectors with average probability � � , average transition density � � , and spatial
correlation � � can be generated by a clustered STG with a ��� � 5 �/� �"� �?5!� transition matrix

�
, whose elements � ( 8 & are

all strictly positive and satisfy the following constraints.� � ( 	������ ( � 5�	 ����� ��	�� ��� 	 � �4	
�
	��� � �� 	 (21)�5 � 0 � 	 � � �5 � 0 � 	 (22)

� � � 5
�
	 ��( ' � � 	 � ( 	 (23)

� � � ��( ' � ��
&�' � � ���-	���	�� � 	 � ( 8 & 	 � ( 	 (24)

� � � ��( ' � � ����� 	 � ( 	 (25)

where � ���4	���	�� � � %#� ! !$� � ! �
� 	 �
	 � ���@	�� � is the average number of transition bits when moving from cluster � ( to � & and� is a real number in the range ���%� � 5 .

The proof is omitted due to space limitations. Theorem 2 shows that our clustering scheme reduces the number of
unknowns to � � �'&�� �(& and the number of equations to ��� �*) .

5 Heuristic Solution

Although the clustering approach reduces the number of unknowns significantly, solving for
�

in Theorem 2 remains
challenging due to the non-linearity of Equations (21) and (24). In this section, we present a heuristic implementation of
the sequence generator. Our heuristic avoids solving non-linear equations by calculating

�� first, and then solving a linear
set of constraints for

�
and � .

5.1 Solving for the Stable Condition

In this subsection, we compute
�� using Equations (23) and (25) and the following constraint derived from the basic concept

of probability. �5 � 0 � 	 �� � 5�� (26)
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We first check whether there exists a solution
�� which satisfies all three equations. Theorem 3 describes the conditions

under which minimal and maximal � are achieved for a given � � . Based on this theorem, we can compute the lower and
upper bounds of � for a given � � . (There are at most 2 unknowns and 2 linear equations in both conditions.) Then, the
existence of a solution

�� for any � � � 	�� � � pair can be confirmed by comparing � � with these bounds.

Theorem 3 Let � be a set of tuples of dimension � � 5 . Every tuple �*� � � � 	 � � 	�������	 � � � in � satisfies Equations (23)
and (26). For each � , we can calculate its � value using Equation (25). Then, the tuple with minimal � satisfies� ( � � 	 � �1� 5	�� 	�������	 � 365$ 	 (27)

and the tuple with maximal � satisfies� ( � � 	 ��� ����	�������	 � $ 	 ������"� 	 � ��� 	 ����
	 � 	 � ��� � (28)

If the solution exists, we must compute the �"� � 5 � unknowns � � � ( ��5 using the three linear Equations (23), (25),
and (26). We solve for � ( by first generating ���*� 5 � numbers � � � ( �� � � 5 from a tuning parameter � ��� � 5 . The
generated numbers are guaranteed to satisfy Equations (23) and (26). Furthermore, the � value of the numbers � ( ��� � is
monotonic in � . Thus, we can use binary search to find the � for which the numbers � ( �� � satisfy Equation (25).

5.2 Solving for the Transition Matrix

After computing
�� , we compute

�
and then � such that Equations (21), (22), and (24) hold. A simple approach is to

assume that the clusters are independent of each other and, therefore, � ( 8 & � � ( 	 � & . We call the matrix constructed
under this assumption Independent Matrix

� � � � . It can be proved that the � value of the generated sequence is monotonic
in � . Therefore, we can compute the smallest and largest achievable average transition densities � � � � � � and � � � � �

	 , when� � � � � � , by assigning � to 0 and 1, respectively. If � � � � � � � � � � � � � � �
	 ,
� � � � is our solution for

�
.

When � � � � � � � � � ,
� � � � cannot be used as

�
. We note that the unit matrix � is the correct solution for

�
when � � � � ,

because no bit changes and there is no switch between clusters. Based on this observation and the fact that � is linear in� ( 8 & , we can construct
�

as � � ��5 3�� � 	 � ��� 	 � � � � 	 (29)

where � � ��� � � � � � � �
	 � � � ��� � � � � � � � � .

When � � � � � � � �
	 , we use a similar approach to compute

�
by finding a

��� ��� � that can give the maximal transition
density. Since the inversion bit number of a cluster transition � & ! � ( is no more than

� �
� ��� � �	 � �*3���3 � � , the
maximal possible bit inversion arises when � � +

( ! � ( . Therefore, transition matrices with large � ( 8 � + ( can generate
sequences of large � . To construct

��� ��� � , we visit every row � from top to bottom and assign the largest possible � ( 8 � + ( .
The remaining elements in the same row are assigned to satisfy � ( according to Equations (21) and (22). The algorithm
finishes after every element in

��� ��� � assigned.
The maximal achievable transition density �  �

	 using our generator can be computed by setting
� � ��� ��� � and � ��5 .

If the target transition density � � � �  �
	 , no sequence can be generated. Otherwise, we can construct

�
using� ��� 	 ��� ��� � � ��5 3�� � 	 � � � � 	 (30)

where �*� ��5 � ��� � 3	� � � � �
	 �������  �

	 3 � � � � �
	 � ����� .

After solving for
�

, we conduct a binary search to compute a value for � so that Equation (24) holds. In all cases, every
element in

�
is positive. Therefore, the resulting sequence generator is a SMMC system and can generate sequences with

accurate statistics, high uniformity, and high randomness.

5.3 Heuristic Summary

Figure 3 gives pseudocode for our sequence generator SG. Given sequence width � , length � , and statistics � � � 	�� � 	�� � � ,
SG returns the required sequence or reports that such a sequence does not exist.

SG first computes the stationary probabilities
�� using Equations (23), (25), and (26) in lines 1–2. It then computes the

clustered transition matrix and tuning parameter � in lines 3–4 using Equations (21), (22), and (24). Finally, SG uses
�

and � to generate the sequences in line 5.
The complexity of computing

�� is ���"�#� , since each of the �"� � 5!� elements in
�� is computed in ����5 � time and the

binary search iteration only contributes a constant factor for fixed computation accuracy. The complexity of computing
�

is ���"� �!� , because each element in
��� ��� � is computed in ����5 � steps. The complexity of generating the sequence is ����� 	 ��� ,

where � and � are the width and length of the vector sequence, respectively. It follows that the worst-case complexity of
our sequence generator is ���"� � � � 	 � � .
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SG ( � , � , � � , � � , � � )
1 if (Comp � ( � , � � , � � , �� ) == false)
2 return false
3 if (CompTand � ( � , � � , �� ,

�
, � ) == false)

4 return false
5 SeqGen( � , � , � , � )
6 return true

Figure 3: Algorithm SG

6 Performance Evaluation

In this section, the performance of the proposed sequence generator is evaluated. Experimental results demonstrate that
our generator can produce sequences with high statistics coverage, accurate statistics, and good uniformity with quick
convergence.

We implemented the proposed sequence generator using C on a SUN Ultra-Sparc II workstation with 512 MB memory.
In our experiments, we generated 220 sequences with target � , � , and � evenly distributed in the 3-dimensional space. The
ranges of � , � , and � were [0.05,0.95], [0.05,0.85], and [0.05,0.45], respectively. For all three parameters, the granularity
was � ��5 . Each sequence was 48 bits wide and 2,000 vectors long.

6.1 Coverage

This subsection demonstrates the capability of our generator to produce sequences with almost all possible statistics.
Figure 4(a) shows the average probability � and average transition density � of our 220 sequences. The solid line represents
the theoretical upper bound of � for a given � from [16]:

��� � � � ��� ����B	�� 3 � � �/� (31)

Figure 4(b) shows the average probability � and the spatial correlation of the same sequences. The solid line represents the
theoretical upper bound of � for a given � , as derived from Theorem 3:

��� � � � � 	 � 	 ��5 3 ���
� 3 5 � (32)

In both cases, the statistics of the generated sequences, represented by the small circles, occupy the entire space within the
bounds, indicating nearly complete coverage.
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Figure 4: p,s,d distribution: (a) p-d relation (b) p-s relation

Figure 5 shows the achievable � range (as a percentage) for every � �@	 �!� pair. It is computed by comparing the maximal
achievable transition density �  �

	 of our generator with the bound in Equation (31). On the average, our generator covers
more than 99% of � ’s range. For most � �@	��!� pairs, 100% coverage is achieved. The only sequences with � �@	���	 � � that
could not be generated are in the region around � � 5 (� � ��� ) ). This fact reflects the trade-off between randomness and
the range of statistics. (The sequences with � � 5 can only contain a repeating 2-vector pattern, while every vector is
guaranteed to occur in our sequences.) Nevertheless, we can generate sequences that cover more than 96% of the possible
� range when � � � � ) .
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6.2 Accuracy

Our sequence generator can create sequences with accurate statistics. Figure 6(a) shows the average probability of the
generated 220 sequences. The x-axis gives the sequence number. The target average probabilities of the sequences are also
shown linked by a solid line. For almost all sequences, the average probabilities of the generated sequences overlap with
their targets. Figures 6(b) and 6(c) give the similar comparisons for the transition density and spatial correlation. In both
cases, most generated sequences show the exact statistics as their targets. The average relative error for � , � , and � is 1.0%,
0.6%, and 0.6%, respectively. The corresponding standard deviation is 0.014, 0.006, and 0.006.
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Figure 6: Accuracy of sequence statistics

6.3 Uniformity and Convergence

A sequence � is uniform if different parts of � have similar statistics. The sequences generated by our generator have
superior uniformity. In our experiments, we computed the statistics of different fragments within each sequence. Figure 7
shows the fluctuation of � , � , and � for various fragments of a sample sequence. (Similar results were obtained from all
sequences.) The x-axis gives the starting point of each fragment. All fragments have a length of 750 vectors. The target
statistics are shown by the straight lines. Our graph shows that all three statistics are stable and, therefore, the sequence
has good uniformity.

To analyze the convergence speed of our generator, we computed the statistics of the first � vectors of our sequences.
Figure 8 shows the change of � , � , and � with respect to � for a sample sequence. The straight lines represent the target
statistics. Our experiments show that warm-up length is about 750 vectors, which are computed within 0.02 seconds for a
48-bit wide sequence.
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7 Power Macromodeling Analysis

Our sequence generator can be applied to power macromodeling analysis, resulting in helpful insights for improving the
effectiveness of power macromodels. In Subsection 7.1, we analyze the relation between various input statistics and
power dissipation. Our results indicate that more accurate macromodels might be achieved by increasing the granularity
of � and decreasing the granularity of � and � in the characterization step. In Subsection 7.2, we investigate the signal
imbalancing effect on the accuracy of power macromodeling. We conclude that power macromodeling is robust, although
high estimation errors can arise in extreme cases.

7.1 Power Sensitivity Study

Our sequence generator can generate a set of sequences with the value of one statistical parameter changing over the entire
parameter space while all other statistics remain fixed. Therefore, it enables us to perform extensive experiments to reveal
the relation between circuit power dissipation and specific statistics of the input signals.

In our study, we designed 10 combinational circuits from the ISCAS-85 benchmark suite using a 0.35 � m standard cell
library. For each circuit, we generated about 300 sequences with � , � and � evenly distributed in the 3-dimensional space.
(Since input widths vary, the number of sequences was different for each circuit.) For all three parameters, the granularity
was � ��5 and the range was [0.1,0.9]. We then simulated these circuits using switch-level simulation with the generated
inputs to obtain their power dissipation.
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Figure 9 gives the power dissipation of circuit � ���� for input sequences with different statistics. Our results show that
the power effect of transition density � is the largest. The relation between � and power is close to linear. The spatial
correlation � and signal probability � do not affect power dissipation significantly, since the power surfaces in Figure 9 are
quite flat. However, these two statistics do affect the power occasionally, particularly when � is small.
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Figure 9: Power dissipation of c880 with respect to (p,d,s)

Furthermore, we computed the average and maximal power sensitivity for all three statistics normalized by average
power dissipations. Table 1 gives our results. The sensitivities to � and � are much smaller than � . This observation
indicates that we could increase the granularity of � and decrease the granularity of � and � in the characterization step to
achieve a more accurate macromodel and reduce model characterization time.

Table 1: Power sensitivities

Design Name ��������� ���	��
 �������� �����
 ��������� �����

c1355 0.46 1.50 1.75 3.21 0.69 1.11
c1908 0.24 0.73 1.97 2.92 0.51 1.05
c2670 0.93 2.67 2.46 3.73 0.09 0.34
c3540 0.46 1.48 2.24 3.33 0.52 0.71
c432 0.76 1.96 1.80 3.49 0.81 1.98
c499 0.39 1.37 1.72 3.13 0.68 1.24
c5315 0.97 2.82 2.44 3.44 0.28 0.63
c6288 0.60 1.71 1.99 3.24 1.14 2.16
c7552 0.22 0.86 2.28 3.13 0.35 0.73
c880 1.16 3.11 2.39 4.15 0.25 0.91

average 0.62 1.82 2.10 3.38 0.53 1.09

7.2 Input Imbalance Study

Since power macromodeling uses average signal statistics of all input bits, it implicitly assumes that all input bits have
similar statistics. However, this assumption might not be true in an actual system. For example, the most significant bit
in the input of a datapath component might switch less frequently than the least significant bit. We call this phenomenon
input imbalance. In this subsection, we analyze the effect of input imbalance on the accuracy of power macromodeling.

We applied the following investigation procedure. First, we simulated each circuit using a balanced input sequence
with � �B	 �A	��!� . We then used our generator to create a set of imbalanced sequences with the same statistics and applied
them to the circuit. Finally, the power dissipations of the circuits under imbalanced inputs were compared with that of the
balanced sequence.
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Figure 10 illustrates our procedure for generating imbalanced sequences. For a benchmark circuit with � inputs, we
randomly chose � bits and permanently set them to zero. We supplied the remaining ��� 3 ��� bits with a sequence of
statistics � � ��� � ����� 	 � ��� � ������	�� ��� � ����� � . It can be proved that the statistics of the entire � -bit sequence are always � �@	���	 � �
if

� ��� � ����� � � 	 � ���"�*3����/	
� ��� � ����� � � 	 � ���"�*3���� 	
� ��� � ����� � � � 	 � � � � � 	 	"� ��� � 3 � 	 � 	 ������� � �"� 3 ��� � � � 	 	 �"�*3���� ��� � � �

We generated the entire set of imbalanced sequences by increasing � from 1 until no valid � � ��� � ����� 	 � ��� � ������	�� ��� � ����� �
could be found.

We performed our study using all the � �B	 �A	��!� combinations in Subsection 7.1 for all circuits. Figure 11 shows the
comparison results for circuit � ���� , in which the maximal power increase and decrease are given with respect to the power
of corresponding balanced input sequences. The worst-case increase can be as high as 100%, indicating that the imbalanced
sequences can result in quite different power dissipation. Consequently, power macromodeling techniques can result in
large errors in case of imbalanced input signals.
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Figure 11: Power variation in c880 due to signal imbalance
To further assess how seriously signal imbalance can affect the power estimation accuracy, we have computed the

percentages that the worst-case power variation remains in the
�

25% and
�

50% ranges. Table 2 gives our results. On the
average, in 68% of the cases, the worst case power variation due to signal imbalance is within 25%. In 90% of the cases,
the worst-case power change due to signal imbalance is within 50% of dissipation with balanced inputs, on the average.

It should be noted that our investigation assumes absolute zero on certain inputs. This is an extreme case. We expect
the power effect of signal imbalance in a real situation to be less than that of Table 2. When high estimation accuracy is
needed, the input signals can be partitioned into groups and characterized separately as in [10].

8 Conclusion

We have presented a novel vector sequence generator based on Markov chains. We have also given a practical heuristic for
constructing the proposed generator and corresponding vector sequences in ����� � � ��� � time. Our generator is guaranteed
to produce vector sequences with given average probability � , average transition density � , and spatial correlation � , or
to report that the specified sequence type does not exist. In experiments, our generator runs extremely fast, yielding
sequences covering more than 99% of the statistics space. Furthermore, the generated sequences have accurate statistics,
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Table 2: Power variations due to input imbalance.

Design Name � 25% � 50%

c1355 62% 93%
c1908 92% 95%
c2670 52% 95%
c3540 90% 93%
c432 56% 85%
c499 56% 93%
c5315 57% 84%
c6288 57% 82%
c7552 78% 84%
c880 82% 91%

average 68% 90%

high uniformity, and high randomness. The proposed generator enables a detailed analysis of power macromodeling and
can provide useful insights for improving its effectiveness. To demonstrate the utility and power of our tool, we have used
it to investigate the power sensitivities of three input statistics and to analyze the power effect of signal imbalance.
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