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Abstract

We present a new stability analysis for hybrid legged
locomotion systems based on the “symmetric” fac-
torization of return maps. We apply this analysis
to 2 and 3 degree of freedom (DOF) models of
the Spring Loaded Inverted Pendulum (SLIP) with
different leg recirculation strategies. Despite the
non-integrability of the SLIP dynamics, we obtain a
necessary condition for asymptotic stability (and a
sufficient condition for instability) at a fixed point,
formulated as an exact algebraic expression in the
physical parameters. We use this expression to study
a variety of 2 DOF SLIP models that have previously
been posited as low dimensional representations of
running, focusing on the sensory “cost” required to
achieve “fast” transients as measured by the degree of
singularity of the linearized dynamics. We introduce
a new 3 DOF SLIP model with pitching dynamics
whose stability properties, revealed by this analysis,
provide for the first time the beginnings of a formal
explanation for the surprisingly stable gaits of the
open loop controlled robot, RHex.

Keywords – legged locomotion, hybrid system,
return map, Spring Loaded Inverted Pendulum,
stability, time-reversal symmetry

1 Introduction

This paper introduces a new formalism for studying
the stability of legged locomotion gaits and other pe-
riodic dynamically dexterous robotic tasks. We are
motivated in part by the need to explain and control
the remarkable performance of RHex, an autonomous

hexapedal running machine whose introduction broke
all prior published records for speed, specific resis-
tance, and mobility over broken terrain [1]. Powered
by only six actuators, located at the “hips” to drive
each of its six passively compliant legs, in the manner
of single-spoked rimless wheels, RHex’s locomotion is
excited by a single periodic “clock” signal split into
phase and anti-phase copies for coordinating its alter-
nating tripod gait. A simple PD controller at each hip
motor in a given tripod forces its leg to track the alter-
nately fast and slow clock reference signal correspond-
ing to presumed stance and swing phases. Experi-
mentally, RHex’s performance at various speeds over
various terrains is strongly dependent upon the par-
ticular values of the clock parameters, and, as is typi-
cal within the feedforward control paradigm, each new
situation demands its own carefully tuned parameter
set. Better analytical understanding of the relation-
ship between clock signal and steady state gait should
dramatically simplify the frequently lengthy empiri-
cal parameter tuning exercises presently required to
achieve high performance gaits.

1.1 The SLIP Model as a Template for

RHex

A complete account of the relationship between
RHex’s clock signal and steady state gait in even the
simplest case would entail insight into the steady state
properties of an under-actuated high degree of freedom
(DOF) hybrid mechanical system whose Lagrangian
dynamics switches among a set of 26 possible holo-
nomically constrained models depending upon which
feet are in contact with the ground. Fortunately, a
growing body of simulation study and empirical evi-
dence [2] suggests that RHex, when properly tuned,
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exhibits sagittal plane stance behavior well approxi-
mated by the two degree of freedom SLIP. This comes
in addition to the well-established fact that the cen-
ters of mass of running animals [3] and humans [4] ap-
proximately follow the dynamics of the sagittal plane
SLIP. A general framework for “anchoring” the SLIP-
“template” mechanics in the far more elaborate mor-
phologies of real animals’ bodies has been introduced
in [5]. Briefly, given a high-dimensional dynamical
system – the “anchor” – that is believed to be a rea-
sonably accurate model of an animal or robot, a “tem-
plate” is a low-dimensional dynamical system whose
steady state encodes the task and is conjugate to the
restriction dynamics of the anchor on an attracting
invariant submanifold.

In general, both the anchoring as well as the con-
trol of the SLIP template seem to demand sensing,
actuation, and computation that may be unrealistic
relative to the resources that animals and practical
robots might possess. Indeed, a hierarchical controller
[6] for a RHex-like simulation model programmed in
SimSect [7] that enforces both the anchoring as well as
the template control relies on sophisticated full state
feedback. A part of the sensor-suite necessary to im-
plement this feedback control has only recently been
installed on the robot [8] and it is currently unknown
whether the stabilizing effect of this controller seen in
simulation will persist in the presence of unavoidable
sensor noise. This motivates the question: is it pos-
sible to implement the template-anchor paradigm [5]
with sensor-cheap, low-bandwidth robotic controllers?

In this paper we address that part of the above ques-
tion concerned with template control. Namely given
that a SLIP-anchoring mechanism is present, either by
deliberate design or by the interaction of the controlled
robot with its environment, can the stability and per-
formance of the controlled template be assessed me-
thodically (beyond empirical or numerical study), for
example, as a function of the cost of the sensory feed-
back required?

1.2 Output feedback stabilization in

the SLIP model

The SLIP model is a hybrid dynamical system formed
by the composition of leg-body stance dynamics with
ballistic body flight dynamics. Control takes place
during the flight phase, where the leg angle is set for
the next touchdown event. The two degree of free-
dom SLIP model provides a ubiquitous description of
biological runners in the sagittal plane [3] and, as men-
tioned above, a broadly useful prescription for legged
robot runners such as RHex [9, 1, 2] as well. The

closely related three degree of freedom Lateral Leg
Spring (LLS) model, has been recently identified as a
candidate template for cockroach running in the hor-
izontal plane [10, 11] and seems likely to be relevant
for RHex as well [1].

However, the limitations of the two degree of freedom
SLIP model (no pitching dynamics, no lateral dynam-
ics) and the three degree of freedom LLS model (fail-
ure to reproduce some aspects of animal data [12])
show that far more sophisticated models will be re-
quired to capture more salient features of the anchor.
In particular, a literal template of RHex, i. e. a model
whose dynamics represents the restriction dynamics
of an attracting invariant submanifold in RHex, must
include a source of dissipation as well as hip torques.
Despite these shortcomings, the two degree of freedom
SLIP and its extension to three degrees of freedom (in-
troduction of pitch dynamics) are sufficiently well mo-
tivated by prior literature, sufficiently mathematically
challenging (due to their non-integrable nature) and
their analysis sufficiently revealing of RHex-like prop-
erties (as is shown below) as to motivate our exclusive
focus on them in this paper.

The stability properties of these hybrid dynamical sys-
tems can be assessed by a Poincaré or return map R
acting on a (reduced) Poincaré section X :

R : X → X . (1)

In legged locomotion, the iterates of this return map
R – the function relating the body state at a periodi-
cally (at each stride) occurring event – summarizes all
properties relevant to the goal of translating the body
center of mass. The return map arises in general from
a controlled plant model

x(k + 1) = A(x(k), u(k))

y(k) = C(x(k)) (2)

where the discrete time control input variable, u(k),
represents the consequences at the integrated stride-
by-stride level of controlled influences imposed over
continuous time within stance or flight. In this pa-
per, physically motivated assumptions (listed in Sec-
tion 2.4.1) that we impose upon the allowable contin-
uous time influences turn out to yield a discrete time
representative, u, that implicitly determines the flight
time for the ballistic phase of the body at each stride.
When the continuous time physical influences imposed
within a given stride are determined according to state
information gathered from the available observations
of the previous stride, we have effectively introduced
a discrete time feedback policy,

u(k) = H(y(k)) (3)
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whose closed loop yields (1), R(x) = A(x,H ◦ C(x)).
The controlled plant model for SLIP systems is spec-
ified in Section 2.4.3.

In this paper we will confine our study exclusively to
such time invariant output feedback laws, H (3) for
two allied reasons. First, this restriction focuses at-
tention on the key role played by the output function,
C (2), variations of which we will use to model sensor
limitations of the underlying physical system repre-
sented by the SLIP model. Second, since u models
the influence of flight phase duration (implicitly by
specifying the leg angle trajectory), this restriction to
time invariant output feedback, H (3), models the leg
recirculation policies that have so rightly captured the
attention of the legged locomotion community in re-
cent years.

The surprising discovery of “self-stable” legged loco-
motion – first in the closely related LLS model [11];
subsequently in the SLIP itself [13, 14] – demands a
more systematic account of what is meant by the term
“self.” In these studies, the duration of flight phase is
determined by a fixed leg angle policy, and “self” con-
notes the apparent absence of active sensors. Recently,
a more elaborate state-dependent leg retraction policy
has been shown numerically to inherit the stability
properties of the fixed touchdown angle policy while
increasing the basin of the stable gait [15]. On the
other hand, a recirculation policy that initiates after
leg liftoff a constant angular velocity until leg touch-
down can induce neutral stability [16]. These appar-
ently slightly varied policies mask significant variation
in cost and effort depending upon how the sensor suite
might be implemented in practice. We seek to shed
greater light on when a more or less clever leg recircu-
lation strategy can make a difference in the quality of
gait stability (e.g., faster transients, larger basin) as a
function of the “cost” of sensory data.

Of course, real sensors are not implemented in these
templates at all but in physical machines. Empirically,
it is abundantly clear that the leg swing policy plays
a central role in the gait quality of physically useful
machines such as RHex [1]. Leg recirculation strate-
gies have been shown numerically to play a key role
in the gait quality of independent locomotion models
inspired by quadrupedal animal trotters [17] and gal-
lopers [18]. When the SLIP template is anchored ac-
tively [6] then its stability properties determine those
of the anchor by definition, hence insight into how to
tune the quality of SLIP gaits transfers directly over to
the physical machine of interest. However, in the ab-
sence of complete state feedback, the correspondence
between the template and the behavior of a complex
system that shows empirical evidence of anchoring it

is not at all clear.

Lacking formal results bearing on this issue, we find it
useful to introduce terminology summarizing the fol-
lowing intuitive distinction. We will say that the cor-
respondence is “descriptive” if properties observed in
the complex model are also observed in the template
model fitted to it. We will say that the correspon-
dence is “prescriptive” if design parameter settings in
the complex model indeed anchor and yield as well the
same properties they produce in the template model.

1.3 Contribution of this paper

Notwithstanding its apparent simplicity, the SLIP
model is non-integrable: the stance phase trajectory
cannot be written down in closed form [19]. This has
motivated authors who seek insight more systematic
than numerical simulation can provide to develop var-
ious physically motivated closed form approximations
to R instead [20, 21, 22]. In contrast, here we observe
that while R cannot be written in closed form, cer-
tain physically reasonable assumptions (listed in Sec-
tion 2.4.1, below) imply that the determinant of its
Jacobian at a symmetric fixed point (to be defined in
Section 2.3) of R can be so expressed. The central con-
tributions of this paper arising from that observation
include:

1. A new analytical framework based on a “symmet-
ric” factorization of the return map R, in terms of
its non-hybrid components that yields the closed
form expression of the determinant at a symmet-
ric fixed point of R (Section 3). Necessary condi-
tions for asymptotic stability, sufficient conditions
for instability, and conditions equivalent to neu-
tral stability of the closed loop map, R, follow.

2. Closed form conditions on H ◦C yielding rigorous
statements concerning the sensory “cost” of con-
trol in both the 2 DOF and 3 DOF settings that
cannot be established by mere numerical study,
as follows:

(a) 2 DOF SLIP models: any control with fast
transients (“singular” control: the Jacobian
of the closed loop return map is globally sin-
gular) requires velocity sensing and is there-
fore “costly” (Section 3.3.1).

(b) 3 DOF SLIP models: SLIP models that have
only non-inertial (body frame) sensors avail-
able cannot implement singular control (Sec-
tion 3.4.1).

3. A new 3 DOF SLIP model based upon the RHex
gait generator [1] which, when subject to the
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factored stability analysis, imposes for the first
time analytical conditions on RHex’s “feedfor-
ward clock” parameters [1] necessary for the sta-
bility (and sufficient for instability) of the result-
ing 3 DOF gait (Section 3.4.2).

4. A preliminary numerical study in Section 4 sug-
gesting that our 3 DOF SLIP model is a good
descriptive model of a RHex-like 24 DOF model
(programmed in SimSect [7]).

In Section 2 we preface this analysis by introducing
the terminology and notation for hybrid systems to
be used subsequently, followed by a review of how re-
versibility symmetries can replace the symplectic sym-
metry in Liouville’s theorem (see e.g. [23]), which does
not generally apply to hybrid systems. We then de-
velop the consequences of these observations in Section
3 along the lines described above, present a prelimi-
nary numerical study in Section 4, and close with some
brief concluding remarks in Section 5.

2 Theoretical framework and

modeling assumptions

In section 2.1 we introduce the terminology of hybrid
dynamical systems and provide some intuition con-
cerning the machinery used to trim away the awk-
ward and inessential details of our hybrid model to
yield a conventional discrete dynamical control sys-
tem (2) whose closed loop properties (1) represent the
formal object of study. Having established a notation
for (hybrid) dynamical systems, Liouville’s theorem, a
key tool in the present study, can be stated formally
in the next section, 2.2. Then an analogue of the local
form of Liouville’s theorem for discrete maps derived
from hybrid systems will be established in Section 2.3.
Section 2.4 formally defines the SLIP system with its
hybrid components as well as its Poincaré section and
discrete time return map.

2.1 Preliminary definitions and mod-

eling considerations of hybrid dy-

namical systems

Models of legged locomotion are characterized by dis-
tinct phases, notably, stance and flight. Formally, the
dynamics cannot be described by a single flow, but
require a collection of continuous flows and discrete
transformations governing their transitions. The re-
sulting model is called a “hybrid” system. This section
makes the notion of a hybrid system more precise by
adapting the definitions in [24] to the present setting.

Let I be a finite index set and Xα, α ∈ I with
dim(Xα) = 2N a collection of open Euclidean domains
(charts). Assume a mechanical system whose time
evolution is described by holonomically constrained
autonomous conservative vector fields fα, with con-
figuration space variables q: ẋ = fα(x) with x =
(q q̇)> ∈ Xα. Transitions from one vector field fα
to another vector field fβ are governed by thresh-
old functions hβα which specify an event at their zero-
crossing. The threshold functions hβα can depend on
the initial condition x0 = x(t = 0) ∈ Xα, time t, and
the current state f tα(x0) =: x(t).1 We restrict our-
selves to hybrid systems where for each chart there
is only one threshold function hβα; hence the upper
index β will be dropped from now on. We also re-
set the time to zero at each chart transition. The
end time of the evolution on chart Xα is uniquely de-
fined by tα(x0) = mint>0{t : hα(f

t
α(x0), x0, t) = 0}.

The equation hα(f
t
α(x0), x0, t) = 0 will be referred to

as the threshold equation. Switching between charts
is effected by transition mappings T βα with domains
in Xα and ranges in Xβ . The flow map Fα for the
αth vectorfield is defined via the implicit function, tα,

Fα : x0 7→ f
tα(x0)
α (x0).

2

In this paper, as in many settings of hybrid dynamical
systems, we are interested in the attractive behavior
of distinguished orbits whose appropriate projections
are periodic. By “periodic” we mean that the dis-
tinguished orbit is defined on a recurring sequence of
charts along which the projected flow yields a return
to the same projected initial condition. An “appropri-
ate” projection strips away variables whose values are
not descriptive of the locomotion task – here, the con-
served total mechanical energy along with the cyclic
variable of elapsed distance. Similarly, “attractive be-
havior” denotes the asymptotic properties of projected
orbits relative to the projection of the distinguished or-
bit. These slight variants of the traditional Poincaré
analysis of conventional dynamical systems theory will
all be introduced formally in the next section, and will
be seen to yield a stride map

S = S2 ◦ S1 (4)

whose projection (along with those of its factors, Sα)
that we will denote R (along with the corresponding
factors, Rα) captures as a discrete time iterated dy-
namical system the locomotion relevant behavior of

1Note that this is more general than the definition in [24],

where h
β
α only depends on f tα(x0). This added generality is

required because we wish to study the effects of leg recirculation
strategies – reference trajectories parametrized by time that are
triggered by a liftoff transition - see e.g. equation (47).

2Note that Fα is not the usual constant-time flow map of
dynamical systems theory f tα(x0); rather the time varies de-
pending upon the initial data x0.
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our hybrid dynamical system analogous to a Poincaré
map.

2.2 Liouville’s theorem and stability

Informally, Liouville’s theorem states that volume in
phase space of a holonomically constrained conserva-
tive dynamical system described by a single Hamilto-
nian flow is preserved, i.e. a set of initial conditions
at t = 0 in phase space will be mapped to a set with
identical symplectic volume for any t ≥ 0. More for-
mally, Liouville’s theorem appears in two equivalent
formulations, the local and the global form [23].

Theorem 1 (Liouville’s theorem (local form))
Let f t(x) be the flow of a vector field f on a chart
X of a Hamiltonian system, i.e. ∃H : X → R with
dim(X ) = 2N,N ∈ N such that

f(x) =

(
0 1N×N

−1N×N 0

)
DxH(x) ∀x ∈ X (5)

Then for all x ∈ X and for all times t for which the
flow is defined,

Dxf
t(x) ∈ Sp2N ; det

(
Dxf

t(x)
)
= 1 (6)

( Sp2N denotes the group of symplectic matrices of size
2N×2N .) The matrix of partial derivatives of the flow
with respect to the initial conditions x is symplectic
and its determinant is one.

The global form states that f t maps a measurable set
of initial conditions to a set of equal measure.

Definition 1 (Volume preservation) A map S :
X → X is locally volume preserving at a point x ∈ X if
|det (DxS(x)) | = 1. Its local volume at x is defined to
be det (DxS(x)). It is volume preserving (or globally
volume preserving) if |det (DxS(x)) | = 1 ∀x ∈ X .

This definition retains the familiar informal notion
of volume preservation (the “global” integral version
arises, after all, from the local determinant condition)
at the expense of a slight degree of imprecision in
terminology. Upon cursory inspection, it might be
thought that conservative “piecewise holonomic” [25]
systems automatically satisfy the hypotheses of Liou-
ville’s theorem. By fixing t at a particular but ar-
bitrary time t̄, a “degenerate” hybrid dynamical sys-
tem can be defined on a single chart X1 = X with
one vectorfield f1 = f and the threshold function
h1(f

t(x0), x0, t) = t − t̄. The resulting stride map
S = F1 = f t1(·) with t1 = t̄ then obviously satisfies
det (DxS(x)) = 1 ∀x ∈ X . However, for a threshold

equation that is not purely time-dependent but also
depends on f t(x0) and x0, the evolution time t1 is de-
pendent upon the initial condition: t1 = t1(x0), and
det
(
Dxf

t1(x0)(x0)
)
6= 1 in general. Hence for a gen-

eral hybrid dynamical system in which the threshold
functions are not purely time-dependent, the determi-
nant of the Jacobian of the stride map S (4) cannot
be expected to be of absolute value one, even if all the
vector fields are Hamiltonian and all transition func-
tions are volume preserving.

Liouville’s theorem precludes the asymptotic stabil-
ity of a Hamiltonian system, since an asymptoti-
cally stable equilibrium point reduces a finite phase
space volume to a single point. This would require
limt→∞ det (Dxf

t(x)) = 0 for all x in the basin of
attraction of the asymptotically stable equilibrium
point. However, because Liouville’s theorem is not
guaranteed to apply, asymptotic stability of piecewise-
defined holonomically constrained conservative Hamil-
tonian systems whose discrete time behavior can be
described by an appropriate projection of a stride map
S,3 has been observed in the literature. Examples in-
clude a discrete version of the Chaplygin sleigh [25, 26]
and low-dimensional models of legged locomotion in
the horizontal and sagittal planes [11, 13, 14]. In all
of those cases, some threshold functions are not solely
time-dependent and the stride map is not volume pre-
serving – a necessary condition for asymptotic stabil-
ity. In particular, at an asymptotically stable fixed
point x̄, |det(DxS(x̄))| < 1.

Having established the non-applicability of Liou-
ville’s theorem to general hybrid dynamical systems,
we will present criteria in the next section under
which, nevertheless, the volume preservation property,
|det (DxS(x̄)) | = 1 does indeed hold. The result could
be called a point Liouville theorem for stride map fixed
points, because in distinction to the local form of Liou-
ville’s theorem, which holds for all points of symplectic
phase space, our theorem only holds at fixed points,
x̄, of S.

2.3 A point Liouville theorem for hy-

brid dynamical systems

In order to prove that |det (DxS(x̄)) | = 1 at a fixed
point of S, additional assumptions and an additional
structure of the underlying vectorfields fα is needed.
In particular, we require that the vectorfields fα pos-
sess a time reversal symmetry (for a survey of time
reversal symmetries in dynamical systems see [27]; for
an extensive review see [28]):

3The term “piecewise holonomic system” was introduced in
[25].
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Definition 2 (Time reversal symmetry) A vec-
tor field f on a chart X admits a time reversal sym-
metry G : X → X with G an involution4(G ◦G = id)
if

DxG · f = −f ◦G. (7)

or, equivalently, if

G ◦ f t = f−t ◦G . (8)

We will next introduce a further property of the stride
map factors, Sα, of S = S2 ◦S1, namely that they can
be written as time reversed flow maps Sα = Gα ◦ Fα
or Sα = Fα ◦ Gα. We restrict our investigation to a
subset of fixed points of S, namely the ones that are
also fixed points of the time reversed flow maps Sα,
Such fixed points we will call symmetric in analogy
to certain fixed points of reversible diffeomorphisms
(see definition 6 in Appendix C.1). Fixed points of
this kind will be shown to lie on distinguished orbits
termed symmetric [29]; Such orbits have been recog-
nized in the prior legged locomotion literature as use-
ful steady state target trajectories in the control of
one-legged hoppers [9] and also serve as steady state
target trajectories in this paper.

Definition 3 (Symmetric orbit of a time re-
versible vector field)
The orbit of a vector field f with time reversal sym-
metry G is called symmetric if it is invariant under
G [29]. This definition of symmetric orbits coincides
with the notion of neutral orbits introduced in [9] and
formalized in [30].

Theorem 2 Let x̄ be a fixed point of Sα = Gα ◦ Fα,
where Fα is the flow map of a vector field fα with time
reversal symmetry Gα. Then x̄ lies on a symmetric
orbit of fα.
Proof: If x̄ is a fixed point of Sα then there exists
a time t̄ such that Gα ◦ f t̄α(x̄) = x̄. If x̄ lies on a
symmetric orbit then ∀t ∈ [0, t̄] ∃t′ ∈ [0, t̄] : f t

′

α (x̄) =
Gα ◦ f tα(x̄). Let t′ = t̄− t. Then f t′α (x̄) = Gα ◦ f t−t̄α ◦
Gα(x̄) = Gα ◦ f tα(x̄).

Clearly, S locally preserves volume at a symmetric
fixed point x̄ if its time reversed flow maps do. On
the other hand, involutions are known to be volume
preserving at their fixed points:

Theorem 3 The determinant of the Jacobian of an
involution G : RN → RN at a fixed point x̄ of G is

4In this paper, we restrict ourselves to involutive time rever-
sal symmetries, although a more general definition can be found
in [27].

plus or minus one.
Proof:

G ◦G = id

D(G ◦G)(x) = 1N×N ∀x ∈ RN

DG(G(x)) ·DG(x) = 1N×N (9)

Since G(x̄) = x̄, (9) implies that:

DG(x̄) ·DG(x̄) = 1N×N

⇒ det2(DG(x̄)) = 1 (10)

Hence a criterion for Sα being an involution is needed.

Lemma 1 If tα is Sα invariant, that is, tα ◦ Sα = tα
on a set Xhα , then Sα ◦ Fα is an involution on Xhα .
Proof: Let x0 ∈ Xhα .

Sα ◦ Sα(x0) =

Gα ◦ Fα ◦Gα ◦ Fα(x0) =

Gα ◦ f tα(Sα(x0))α ◦Gα ◦ f tα(x0)α (x0) = (11)

f−tα(Sα(x0))α ◦ f tα(x0)α (x0) = x0 .

A condition for the Sα invariance of tα is now given,
in turn, as follows.

Lemma 2 A necessary condition for the Sα invari-

ance of tα is hα(Gα(x0), Gα ◦ f tα(x0)α (x0), tα(x0)) = 0
∀x0 ∈ Xhα .
Proof: If tα is Sα-invariant then tα(x0) must solve the
threshold equation for Sα(x0):

hα(f
tα(x0)
α ◦Gα ◦ f tα(x0)α (x0), Gα ◦ f tα(x0)α (x0), tα(x0)) =

hα(Gα(x0), Gα ◦ f tα(x0)α (x0), tα(x0)) = 0 (12)

Assuming that tα(x0) is also the minimal solution of
the threshold equation for Sα(x0), it follows that the
condition of Lemma 2 is also sufficient, and one con-
cludes that tα is invariant under Sα. Lemma 2 es-
sentially checks that the threshold function hα “pre-
serves” the time reversal symmetry of fα.

Combining Lemmas 1 and 2 and Theorem 3 consti-
tutes a point-wise Liouville theorem for discrete sys-
tems of the form S = S2◦S1 at symmetric fixed points.
The generalization to a stride map composed of more
than two time reversed flow maps Sα is straightfor-
ward. As a final observation that we will require be-
low (in Appendix A), note that if Theorem 3 has been
shown to hold for Sα = Gα ◦ Fα, it also holds for
reverse time flow maps of the form Sα = Fα ◦Gα:

Lemma 3 If Sα = Gα ◦ Fα is an involution, then
S′α = Fα ◦Gα is an involution, too.
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Figure 1: Coordinate convention of SLIP with pitch-
ing dynamics. In the text, the COM coordinates
will be parametrized by cartesian coordinates, i. e.
y = ζ sin(ψ) and z = ζ cos(ψ). In flight, the leg an-
gle φ will in general be a function of time and of the
SLIP’s liftoff state: φ(t, x0).

Proof:

S′α ◦ S′α = Fα ◦Gα ◦ Fα ◦Gα
= (Gα ◦Gα) ◦ Fα ◦Gα ◦ Fα︸ ︷︷ ︸

=id

◦ Gα

= Gα ◦Gα = id .

2.4 SLIP dynamics

2.4.1 Modeling assumptions

In this section we establish the specifics of the SLIP
models considered in this paper. They are listed in
terms of the categories: geometry, potential forces,
control, and orbits:

Geometry: The 3 DOF sagittal plane SLIP model
is shown in Fig. 1. It shows a rigid body of mass m̃
and moment of inertia Ĩ with a massless springy leg
with rest length ζ̃0 attached at a hip joint that coin-
cides with the center of mass (COM). The strength of
gravity is g̃. The approximation of a leg with zero mass
avoids impact losses at touchdown and simplifies the
control. For convenience, all of the following expres-
sions are formulated in dimensionless quantities, i.e.

t = t̃
√

g̃

ζ̃0
, y = ỹ

ζ̃0
, ẏ =

˙̃y√
ζ̃0g̃

, z = z̃
ζ̃0
, ż =

˙̃z√
ζ̃0g̃

, θ = θ̃,

θ̇ =
˙̃
θ
√

ζ̃
g̃ and I = Ĩ

m̃ζ̃20
. Also shown are the pitch angle

θ with respect to the horizontal and the parametriza-

tion of the COM in terms of cartesian (y, z) and po-

lar (ζ =
√
y2 + z2, ψ = arctan(y/z)) coordinates with

the coordinate origin at the foothold. The body is as-
sumed to remain in the sagittal plane and its config-
uration is parametrized by SE(2) coordinates (y, z, θ)
or (ζ, ψ, θ).

Trajectories: A full stride consists of a stance and a
flight phase: in stance, we assume the foothold is fixed,
the leg compressed and the body moves in the positive
y direction ẏ > 0; in flight, the body describes a ballis-
tic trajectory under the sole influence of gravity. The
stance phase starts with the leg uncompressed and
ends when the leg has reached its rest length ζ̄ again.
Then the flight phase begins and ends when the mass-
less leg – appropriately placed – touches the ground.
Stability investigations in this paper are confined to
trajectories that are in the vicinity of symmetric tra-
jectories in both stance and flight, where e.g. the liftoff
and touchdown vertical heights are equal.

Control: No continuous control is exerted during
stance and flight, the corresponding vector fields do
not change from stride to stride. The only con-
trol authority consists in determining the transitions
between flight and stance by specifying the stance
and flight time. The stance time is implicitly deter-
mined by requiring the leg to undergo a compression-
decompression cycle, hence the only designable control
authority consists in specifying the flight time, which
can be implicitly parametrized by the free leg angle
trajectory φ(t, x0) and hence touchdown COM height.
Due to the massless assumption, the leg can be arbi-
trarily placed during flight at no energetic cost.

Potential forces:

P1 The potential energy is given by Ep = z +
V (y, z, θ).

P2 The non-gravitational potential V is analytic
and satisfies the symmetry relation V (y, z, θ) =
V (−y, z,−θ). This condition does not seem to
severely restrict our choice of potentials, and it
includes the often-used radial spring potential
V (y, z, θ) = Vr(ζ) for the 2 DOF model.

P3 V factorizes as V (y, z, θ) = Vr(ζ)Vp(y, z, θ) with
Vr(1) = 0. This ensures that V is zero at touch-
down and liftoff. Because of the masslessness of
the leg, V stays zero during flight.

After having listed SLIP’s modeling assumptions, we
will define the stance and flight components of the

7



hybrid SLIP system and identify time reversal sym-
metries present in its vectorfields.

2.4.2 Definition of the hybrid SLIP system

The SLIP system consists of two phases – stance and
flight – hence I = {1, 2} with 1 referring to stance and
2 referring to flight. In both phases, we choose the
same parametrization of the configuration space – by
the cartesian coordinates of the mass center relative
to the fixed toe, y, z, and the orientation in of the
body in the inertial frame, θ. Hence, both charts are
equal, X̂1 = X̂2 = R2×S1×R3 =: X̂ with phase space
elements denoted by x̂ = (y, z, θ, ẏ, ż, θ̇)>.

Stance The stance vector field reads

f̂1(x̂) =




ẏ
ż

θ̇
−∂yV (y, z, θ)

−1− ∂zV (y, z, θ)
− 1
I ∂θV (y, z, θ)




(13)

With P2 this vector field is also analytic in x̂ and
hence its flow f̂ t1(x̂) is analytic in t and x̂. Using P3

f̂1 admits the linear time reversal symmetry

Ĝ1 = diag(−1, 1,−1, 1,−1, 1) . (14)

(the linear time reversal symmetry of (13) without
pitching dynamics was already recognized in [30]).

With the “radius” function ζ : x̂ 7→
√
y2 + z2, the

threshold function is given by

h1(x̂(t), x̂0, t) = ζ(x̂(t))− ζ(x̂0) (15)

Flight The flight vector field reads

f̂2(x̂) =
(
ẏ, ż, θ̇, 0,−1, 0

)>
(16)

whose analytic flow is trivially computed as

f̂ t2(x̂0) =




y0 + ẏ0t

z0 + ż0t− t2

2

θ0 + θ̇0t
ẏ0

ż0 − t
θ̇0




(17)

Solving eq. (7) with f̂2, the diagonal linear involutive

time reversing symmetry Ĝ2 of (16) is not uniquely
defined and is given by

Ĝ∓2 = diag(∓1, 1,∓1,±1,−1,±1) . (18)

As will become clear later in the next section, in or-
der to define a stride map as in (4), the time reversal
symmetries should match for stance and flight, hence
Ĝ−2 = Ĝ1 =: Ĝ is chosen.

The threshold function h2 for a general leg placement
parametrized by the angular trajectory φ(t, x̂0) (see
Fig. 1) becomes zero when the toe touches the ground

h2(x̂(t), x̂0, t) = z(t)− cos(φ(t, x̂0)) . (19)

and implicitly defines the control input t2(x̂0). If φ de-
pends on x̂0 – the liftoff coordinates, feedback control
is employed. The design of the function φ constitutes
the control authority in our SLIP model.

2.4.3 Discrete time behavior of SLIP locomo-
tion: Poincaré section, return map, and
controlled plant model

Poincaré section A SLIP stride consists of stance
and flight, therefore its stride map should be written
as Ŝ = F̂2 ◦ F̂1. The end of the stance phase is charac-
terized by the liftoff event, detected by the threshold
equation h1; the end of flight is characterized by the
touchdown event, detected by the threshold equation
h2. The factorization of Ŝ suggests a Poincaré section
P that is the surface of the touchdown event, where
the leg length is one and the COM is to the left of the
foothold:

P = {x̂ ∈ X̂ : y2 + z2 − 1 = 0, y < 0} . (20)

Return map We would like to factor Ŝ into time
reversed flow maps Ŝα in order to satisfy a prerequisite
of Lemma 1. This is accomplished by inserting the
square of the common time reversal symmetry Ĝ:

Ŝ = F̂2 ◦ Ĝ ◦ Ĝ ◦ F̂1 (21)

However, Ŝ does not formally constitute a return map
for the Poincaré section P, because as detailed in Sec-
tion 2.4.1, trajectories of relevance to forward locomo-
tion have a monotonically increasing fore-aft compo-
nent; y(t), hence, cannot be periodic. On the other
hand, there is an effective projection informally built
into the SLIP modeling assumption P3. At the be-
ginning of stance, the y-coordinate of the coordinate
origin must be reset to the new foothold in order to
interpret Vr as a radial leg potential (or, more awk-
wardly, one could reset the definition of the potential
function at each new touchdown). Both issues can be

resolved by projecting out the y-entry of Ŝ. A fur-
ther dimensional reduction is possible because of con-
servation of energy in both stance and flight phase.
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Formally, the total energy

E(x̂(t)) =
1

2
(ẏ2(t) + ż2(t) + Iθ̇2(t)) +

z(t) + V (y(t), z(t), θ(t))

=: E0

can be interpreted as a constant parameter of the SLIP
system and can then be used to eliminate the ẏ vari-
able ẏ(t) = E−1x(t)(E0),

5 with x being the projection of

x̂ onto its “non-y, ẏ” components: Π : X̂ → X ; x̂ 7→
x = (z, θ, ż, θ̇)>. A return map R acting on the re-
duced Poincaré section X = R × S1 × R2 with inde-
pendent coordinates x can then be written as

R = Π ◦ F̂2 ◦ Ĝ ◦ Ĝ ◦ F̂1 ◦ Σ (22)

with

Σ : P → X̂ ; x 7→



−
√
1− z2

E−1x (E0)
x


 (23)

The y and ẏ components of F̂2 and Ĝ are completely
decoupled from the other components, hence the pro-
jector Π can be pulled to the right in order to define
two return map factors Rα

R = F2 ◦G︸ ︷︷ ︸
=:R2

◦Π ◦ Ĝ ◦ F̂1 ◦ Σ︸ ︷︷ ︸
=:R1

, (24)

where F2 and G are the obvious restrictions of F̂2 and
Ĝ to the reduced Poincaré section X . If Ŝα are in-
volutions, we want the involutive character to per-
sist for Rα. This is obvious for R2 = S2. For R1

it requires Σ ◦ Π = id on the range of Ĝ ◦ F̂1 ◦ Σ.
Let x1 = Ĝ ◦ F̂1 ◦ Σ(x0) with x0 ∈ P. y1 is the Ĝ-
reflected y-coordinate at liftoff, hence y1 = −

√
1− z21 ;

and ẏ1 = E−1x1 (E0). Therefore y1 = Σ ◦ Π(y1) and R1

is an involution if Ŝ1 is one.

Controlled plant model Having defined the closed
loop return map on the reduced Poincaré section, we
clarify the relation of this closed loop return map to
the controlled plant model formalism introduced in
Section 1.2. Since the control parameter of our SLIP
model is the flight time and quantities used for feed-
back are the liftoff coordinates, the controlled plant
model, introduced conceptually above (2), can now be
written in touchdown coordinates as

x(k + 1) = f
t2(k)
2 ◦G ◦R1(x(k))

y(k) = C(G ◦R1(x(k))) (25)

5Given an equation g(y, x) = g0, the corresponding implicit
function will be written as y = g−1

x (g0).

Using a leg angular trajectory to implement feedback
control, the threshold equation implicitly defines the
flight time t2(k) by

t2(k) = min
t>0
{t : h2(f t2(G ◦R1(x(k))), y(k), t) = 0}

(26)
Using the explicit form of h2, (19), this expression for
the flight time, in turn, is a function of the control
input

u(k) = H(y(k)) = φ(·, y(k)) (27)

whereH parametrizes the leg angle trajectory in terms
of the output vector y(k) and the “dummy” variable
t, denoted by ·.

2.4.4 Notation

The salient symbols used in this paper are next listed,
with brief explanations of their meanings.

General hybrid system definitions
I finite index set, enumerated by α

X̂α chart: phase space of a dynamical system
t, x̂ time, chart element (dimensionless)

f̂α vector field of a dynamical system on X̂α
f̂ tα flow of f̂α on X̂α
F̂α flow map
T βα transition function
hα threshold function: triggers chart transition

tα(x̂0) evolution time on chart X̂α starting at x̂0
P Poincaré section (surface in X̂α)
Xα reduced Poincaré section
Rα return map factor on Xα
R return, Poincaré map

In general, an element or a map without the diacritic
·̂ denotes an element of the reduced Poincaré section
Xα or a map on Xα.

Other definitions

Ĝα involutive time reversal symmetry

X̂hα set where partial stride map is an involution

Ŝα stride map factor on X̂α
Ŝ stride map

Π projector from X̂α to Xα
Σ map from Xα to X̂α
V conservative SLIP potential without gravity

3 Stability and control of SLIP

models

In this section the stability and control of SLIP models
will be analyzed via the return map R and its factors
Rα. In Section 3.1 it is first shown that the stance
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factor R1 is locally volume preserving at a fixed point
x̄, independent of the specific form of the potential V
as long as the conditions P1 - P3 are satisfied. We will
then derive an expression for the local volume of R2

as a function of the leg angle trajectory φ. Combining
these two results will give a necessary condition for
stability of a SLIP model in terms of the controlled leg
angle trajectory φ. Note that by different SLIP models
we mean SLIP models that have potentials satisfying
the conditions P1 - P3 but that differ in their leg
angle trajectories φ.

In the remaining portions of this section, we use the
preceding analysis to explore an informal relation be-
tween the “degree of stability” as manifest in the sin-
gularity of the linearized discrete return map and the
“cost of feedback.” The latter is judged with respect
to a number of quantitative and qualitative features
of known relevance in robotic implementations. These
informal “cost” measures are introduced and moti-
vated in Section 3.2 and are shown to be quantifi-
able using the preceding analysis. Next, in Section
3.3 we apply the results of 3.2 to the study of several
2 DOF SLIP models (i.e., SLIP models without pitch-
ing dynamics) that have appeared in the literature,
classifying them with respect to the “cost” properties
previously introduced. Finally, in Section 3.4 we in-
troduce a new 3 DOF SLIP model that offers a more
realistic description of the physical robot RHex oper-
ating under the influence of its open loop gait gener-
ating “clock” [1]. We apply the analytical methods of
Section 3.1, characterizing sensory “cost” and control
benefit laid out in Section 3.2, and are able to give for
the first time conditions on the RHex clock param-
eters – some necessary for gait stability, and others
sufficient for gait instability.

3.1 Computation of the local return

map volume

3.1.1 Stance

In this section we will apply the results of Section 2.3
to show that R1 is an involution by showing that Ŝ1 is
an involution for a SLIP model satisfying the assump-
tions of Section 2.4.1. We first apply Lemma 2: Given
t1 = t1(x̂0), the threshold equation in Lemma 2 reads

h1(G(x̂0), G(x̂(t1)), t1) = ζ(x̂0)− ζ(x̂(t1)) = 0 (28)

However, since this is just the negative of the origi-
nal threshold equation h1(x̂(t1), x̂0, t1) = ζ(x̂(t1)) −
ζ(x̂0) = 0, t1 is a solution of (28). Assuming that
t1(x̂0) is indeed the minimal solution of the threshold

equation for S1(x̂0) for all x̂0 ∈ X̂ , Lemma 2 can be

applied to prove that Ŝ1 is an involution on X̂h1 = X̂ .
By the arguments in Section 2.4.3, R1 is also an invo-
lution and Theorem 3 now implies that R1 is locally
volume preserving at its fixed point.

3.1.2 Flight

We now derive a formula for the determinant of the
Jacobian of the flow map F2 given an arbitrary leg
angle trajectory φ(t, x0). This is used to compute the
determinant of the Jacobian of the partial return map
R2 = F2 ◦G at a fixed point of R2.

Note, in contrast to R1, that |det(DxR2(x̄))| can be
computed directly for any specific leg angular trajec-
tory φ using the closed form expression of the flight
phase flow (17). Nevertheless, in Appendix A Lemma
2 is applied to a particular family of leg angle trajec-
tories in order to classify which of the resulting flight
phase return maps are involutions.

The threshold function h2 for a general leg angle tra-
jectory φ is h2(x(t), x0, t) = z(t) − cos(φ(t, x0)) (19).
Setting h2 = 0 determines the time from leg liftoff
(tLO = 0) to leg touchdown tTD = t2. Because h2
is a transcendental map, a closed form expression for
t2(x0) cannot be found in general.

It should be pointed out that the dependence of
φ(t, x0) on the flight time t is redundant in the sense
that the leg angle is irrelevant to the dynamics of the
system except at the touchdown time tTD(x0). Specif-
ically, a given flight time tTD(x0) = t2(x0) can be
enforced by a purely state dependent leg angle “tra-
jectory” φ(x0) = arccos (z(t2(x0))) or by any time de-
pendent trajectory φ′(t, x0) that satisfies

φ′(t2(x0), x0) = φ(x0) . (29)

The advantage of including time as an additional ar-
gument of φ will be pointed out in Section 3.3.1.

The flow map F2 takes the state vector x0 from its
value at leg liftoff to that at touchdown: F2(x0) =
x(tTD). A fixed point of a symmetric flight trajectory
satisfies x̄ = S2(x̄) = F2 ◦G(x̄).
The determinant of the Jacobian of F2(x0) =

f
tTD(x0)
2 (x0) can easily be computed from the expres-
sion for the flight phase flow (17), bearing in mind
that the flight time tTD(x0) also depends on the ini-
tial conditions:

det(Dx(F2)(x0)) =

1− ∂ż0tTD(x0) + ż0∂z0tTD(x0) + θ̇0∂θ0tTD(x0)(30)

This expression exemplifies the remarks in Section 2.2,
since it will reduce to one, in general, only if tTD is
independent of the initial conditions x0. Hence using
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implicit differentiation of (19) the determinant can be
written in terms of partial derivatives of φ(t, x0):

det (DxF2(x0)) = 1 +
∆1 num

2

∆1 den
2

∣∣∣∣
t=tTD

(31)

with

∆1 num
2 = sin(φ(t, x0)) ·(

∂ż0φ(t, x0)− ż0∂z0φ(t, x0)− θ̇0∂θ0φ(t, x0)
)

+ t− ż0
∆1 den

2 = sin(φ(t, x0))∂tφ(t, x0)− t+ ż0 .

Albeit tTD cannot be computed in closed form in gen-
eral because of the transcendental nature of h2, we
know that at a fixed point x̄ of F2 ◦ G with x̄0 :=
G(x̄) the liftoff and touchdown heights are identical
and hence tTD = 2 ˙̄z0. Therefore, sin(φ(tTD, x̄0)) =
−
√

1− z̄20 and θ(tTD) = −θ̄0. The eigenvalues of the
partial return map F2 ◦ G at such a fixed point are
{1, 1,−1,−det(Dx(F2 ◦G(x̄)))}.
Because G = diag(1,−1,−1, 1), the determinant of
the Jacobian of R2 and F2 are related as

det(DxR2(x)) = det(DxF2(G(x))) (32)

2 DOF SLIP model For the 2 DOF SLIP model
without pitching dynamics, the θ, θ̇ variables are ab-
sent and F2, G, and R2 are 2-dimensional maps. The
determinant of the flight phase flow map simplifies to

det(DxF2(x0)) = 1 + (33)

sin(φ(t, x0)) (∂ż0φ(t, x0)− ż0∂z0φ(t, x0)) + t− ż0
sin(φ(t, x0))∂tφ(t, x0)− t+ ż0

∣∣∣∣
t=tTD

The eigenvalues of the partial return map F2 ◦ G at
its fixed point x̄ are {1,−det(Dx(F2 ◦G(x̄)))}. With
G = diag(1,−1), the determinants of the Jacobians of
R2 and F2 are related as

det(DxR2(x)) = −det(DxF2(G(x))) (34)

3.1.3 Local volume of the return map at a
symmetric fixed point

Having derived expressions for |det(DxR1(x̄))| and
|det(DxR2(x̄))| in the two previous sections at fixed
points x̄ of R1 and R2, the composition of R of those
two partial return maps R = R2 ◦ R1 can be used to
factor the determinant |det(DR(x̄))| at a symmetric
fixed point x̄, i.e. a fixed point that is common to
both R1 and R2 (see Section 2.3):

|det(DxR(x̄))| = |det(DxR2 (R1(x̄)))| |det(DxR1(x̄))|︸ ︷︷ ︸
=1

= |det(DxR2 (x̄))| (35)

Hence a necessary condition for local asymptotic sta-
bility of R at x̄ is |det(DR(x̄))| < 1, whereas a
sufficient condition for local asymptotic instability is
|det(DR(x̄))| > 1.6 The factor |det(DxR2 (x̄))| is
governed by the time of flight (30) which in turn de-
pends upon the functional form of the leg angle trajec-
tory φ (31). Demanding stability of R at a symmetric
fixed point therefore imposes conditions on φ, or, us-
ing the formalism of controlled plant models, on H ◦C
specified in (27).

3.2 Deadbeat control and singular re-

turn map Jacobians

3.2.1 Control and sensor modeling

For discrete systems, three different degrees of local
stability can be distinguished, which are character-
ized by the eigenvalues of the Jacobian of the closed
loop return map at a fixed point: i) all eigenvalues
are within the unit circle; ii) all eigenvalues are within
the unit circle and some are zero (“singular control”);
iii) all eigenvalues are zero (“deadbeat control”). In
general, the more singular the closed loop return map
the quicker the transient behavior7 but the higher the
“cost” of control and the more vulnerable to model-
ing errors. Although we are not interested in pursuing
formal optimality conditions, assessing the overall sen-
sory cost of various control alternatives is of central
concern in physical robotics applications. One rea-
sonable approach that we adopt here is to count the
number and characterize the “quality” of the sensed
variables required to complete the feedback loop of
the controlled plant model (2). Here, “quality” refers
to the frame of reference of the feedback variables,
since body frame sensing is generally easier to accom-
plish than inertial sensing. In SLIP models, feedback
control is parametrized by the leg angle trajectory
φ(t, x0), where x0 are the state variables taken at a
certain event. Intuitively, three different aspects of
sensory cost can be readily distinguished:

S1 Detection of the event where the feedback vari-
ables are taken
i) easy for liftoff: can be implemented in a SLIP
hopper by a simple switch at the toe

6Note that necessary and sufficient conditions for stability
would require the knowledge of the eigenvalues of R at x̄. How-
ever, eigenvalues of a composition of two maps do not factorize
into eigenvalues of the two individual maps unless the maps
commute - i.e., both are diagonalizable via the same similarity
transformation.

7This is motivated by the fact that a function from RN to
RN whose Jacobian has rank K < N everywhere maps an N-
dimensional volume to a K-dimensional volume.
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ii) difficult for flight phase apex: requires mea-
surement of vertical velocity ż

S2 Enforcement of the angle trajectory φ: a leg angle
trajectory φ specified with respect to an inertial
frame requires inertial sensing for enforcement
(i.e. feedback control), as opposed to a leg an-
gle trajectory specified with respect to the body
frame.8

S3 Sensing of the feedback variable x0 by the output
map C (2):
i) dimension of the domain (number of argu-
ments) of C
ii) position versus velocity measurement: posi-
tions are in general easier to measure than ve-
locities
iii) “quality”: inertial versus non-inertial (body
frame) quantities

Because we exploit in this paper the factorization of
R into stance and flight phase, it is natural to work in
“liftoff coordinates” – i.e., on the Poincaré section P –
hence, the feedback variables are naturally assumed to
be taken at the “easily detected” liftoff event as noted
in S1. We appraise in Section 3.3.1 the alternative
choice of working formally in apex coordinates (not
to be confused with the physically unattractive choice
of taking the sensory feedback measurements at the
apex event). Criteria S2 and S3 can be addressed by
rewriting the leg angular trajectory φ that is defined
in an inertial frame (see Fig. 1) as

φ(t, x0) = φC(t, C(x0))− θ(t) . (36)

The second term in (36) indicates that φC is specified
with respect to the SLIP’s body frame, as will be the
case in all 3 DOF SLIP models in this paper. For 2
DOF SLIP models, θ is not defined and this term is
absent.

It is not possible to distinguish S3iii, “quality” (i.e.
inertial vs non-inertial frame based) in the 2 DOF
setting, since by its very geometry, body frame co-
ordinates cannot be introduced. On the other hand,
the additional body pitch degree of freedom of the 3
DOF SLIP model allows this distinction to be made.
A leg angle trajectory that only uses sensing with re-
spect to the body reference frame S3, can be modeled
by the following output map CB :

(
φB0

φ̇B0

)
=

(
arccos(z0) + θ0
− ż0√

1−z20
+ θ̇0

)
= CB(x0) (37)

8Note that this feedback control cannot be modeled straight-
forwardly in our simplified SLIP system because of the mass-
lessness of the leg.

where φB0 is the leg liftoff angle with respect to the
body normal (see Fig. 1) and φ̇B0 is the leg’s angular
velocity at liftoff measured in the body frame. Speci-
fying this trajectory in the body frame yields

φ(t, x0) = φCB
(t, φB0

, φ̇B0
)− θ(t) (38)

In summary, the 3 DOF SLIP model allows the dis-
tinction of the “quality” of sensing required for a par-
ticular control input which in turn enables an assess-
ment of the “cost” of control.

3.2.2 Deadbeat control requires singular re-
turn map Jacobians

In this section, we observe that deadbeat control of a
2 or 3 DOF SLIP model requires the return map Ja-
cobian to be globally singular – not just at the control
target fixed point x̄ but on the entire reduced Poincaré
section X .

For the full nonlinear closed loop plant model the re-
turn map R is deadbeat if there exists a K ∈ N such
that

RK(x) = x̄ ∀x ∈ X (39)

for a specified target x̄. This means that

DxR(R
K−1(x)) ·DxR(R

K−2(x)) · . . .
·DxR(x) = 0dim(X )×dim(X ) ∀x ∈ X (40)

A necessary condition for this is
det
(
DxR(R

K−i(x))
)

= 0 for some 1 ≤ i ≤ K.
Since eq. (40) must be valid ∀x ∈ X , we need
det (DxR(x)) = 0 ∀x ∈ X .

3.2.3 General solution of leg angle trajectory
with singular return map Jacobians

As will be reviewed in Section 3.3.1, 2 DOF SLIP mod-
els with globally singular return map Jacobians have
featured prominently in the literature – both dead-
beat and non-deadbeat. In this section we will derive
the general form of leg angle trajectories that render
the return map Jacobian globally singular. In general,
the matrix DxF2 will have full rank. If, under the in-
fluence of a particular leg angle trajectory, φ(t, x0),
the second factor of the closed loop return map is
rank deficient for all state vectors, det(DxR2(x0)) =
0 = det(DxF2(x0)), and if a stable fixed point exists,
then, as discussed in Section 3.2.1, one would expect
a “more rapid” convergence to this fixed point than if
the matrix had full rank. Since formula (31) is valid
for arbitrary flight times, not just at a fixed point of
R2, a partial differential equation for globally singu-
lar leg angle trajectories φ(t, x0) can be obtained by
setting (31) to zero.
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First, setting eq. (30) to zero yields a partial differ-
ential equation for the touchdown time tTD, which by
the method of characteristics [31] has the general so-
lution

tTD(z0, ż0, θ0, θ̇0) = tA + τ(zA, θA, θ̇A) (41)

where τ is an arbitrary differentiable function of the
three arguments and the transformation from liftoff
coordinates to apex coordinates is given by

tA = ż0

θ̇A = θ̇0

zA = z0 +
ż20
2

θA = θ0 + θ̇0ż0 (42)

specifying the time from liftoff to apex, the pitch-
ing velocity at apex, the apex height, and the apex
pitch angle. Since a scalar function tTD is deter-
mined by this partial differential equation, the rank
of DxF2 will generally be reduced by only one using
tA + τ(zA, θA, θ̇A) as the flight time.

Now recall that the time of flight function, tTD = t2
arises in our application as the solution of an im-
plicit function defined by the leg angle trajectory φ
(19). Thus, we must next impose a corresponding
“singularity” condition on φ that guarantees the de-
sired property in tTD. Setting eq. (31) to zero,
det(DF2(x0)) = 0, yields the partial differential equa-
tion for globally singular leg angle trajectories,

∂tφ(t, x0)+∂ż0φ(t, x0)−ż0∂z0φ(t, x0)−θ̇0∂θ0φ(t, x0) = 0

The general solution of this linear, homogeneous, first
order partial differential equation by the methods of
characteristics is

φ(t, x0) = Φ(t− tA, zA, θA, θ̇A) (43)

where Φ is an arbitrary differentiable function of its
four arguments.

3.3 2 DOF SLIP models: sensor re-

quirements and stability

This section focuses on 2 DOF SLIP models with re-
spect to sensor requirements in their feedback loop.
First, it is shown that all 2 DOF SLIP models with
globally singular return map Jacobians require a mea-
surement of the vertical velocity, either explicitly
through the arguments of φ or implicitly. Then the
dimensional reduction of the return map that follows
from the globally singular return map Jacobians is il-
lustrated with four different 2 DOF SLIP models that

have already appeared in the literature. A stable 2
DOF SLIP model with full rank return map Jaco-
bian is also presented to illustrate the power of our
analysis in the low dimensional setting. Since the re-
duced Poincaré section, X , is only two dimensional
for the 2 DOF model, the presence of complex con-
jugate eigenvalues of the linearized return map at a
given fixed point strengthens our stability criteria to
the point that the determinant magnitude condition is
both necessary and sufficient for asymptotic stability.
Thus, as we demonstrate, by varying one parameter,
asymptotically stable, neutrally stable, and unstable
behavior can be exactly assigned.

3.3.1 All singular 2 DOF SLIP models require
velocity sensing

In this section several previously proposed [13, 14, 9,
32, 33] 2 DOF SLIP control strategies are reviewed
with emphasis on their globally singular return map
Jacobians. The general solution for a globally singu-
lar leg angle trajectory for the 2 DOF SLIP model is
obtained from (43) by omitting the pitch coordinates,
hence φ(t, x0) = Φ(t− tA, zA). But both control input
arguments require the vertical velocity measurement
ż0 when expressed in liftoff coordinates (42), which
leaves the constant trajectory φ(t, x0) = const as the
only globally singular leg angle trajectory without ex-
plicit velocity sensing. We will review four 2 DOF
SLIP models with globally singular leg angle trajec-
tories, pointing out that even the leg angle trajectory
φ(t, x0) = const requires velocity sensing for its im-
plementation as highlighted in criterion S2.

Constant leg touchdown angle policy The con-
stant leg touchdown angle policy proposed in [13, 14,
34, 32] has the simple form

φ(t, x0) = 2π − β : t > tA (44)

where β is a constant angle for all strides. No sensing
of the feedback variables S3 is required, hence the out-
put map C can be taken to be a constant. Since the re-
turn map Jacobian of this SLIP model is globally sin-
gular, the return map is effectively one-dimensional.
In [13] this one-dimensional variable was taken to be
the apex height, whereas in [14] the angle of the touch-
down velocity was chosen.9

9A similar leg angular trajectory for a 3 DOF SLIP model
was shown in [14] to yield asymptotically stable behavior for
certain parameter values. Although not presented here, the
return map factorization introduced in this paper can be applied
to this model also to show that its stance phase is locally volume
preserving at a symmetric fixed point whereas its flight phase
has a globally singular return map.
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A Poincaré section volume and the embedded one-
dimensional return map domain is plotted in Fig.
2a), where the return map image X I := R(X ) with
X = [0.8, 0.99]×[−1.5,−0.1] is depicted by solid points
joined by a black line. The color of the points matches
the color of the inverse images R−1

(
X I(zAi

)
)
of these

points. The color corresponds to a parametrization of
the return map image in terms of the resulting apex
heights zAi

. Since a constant leg touchdown angle
is prescribed, the touchdown height is constant and
the return map image is a vertical line in (z0, ż0)-
coordinates. The curved black line denotes the one-
dimensional manifold of all possible fixed points for
arbitrary leg angle trajectories.10 Although φ is a con-
stant and does not explicitly depend on the velocity
measurement of ż0, vertical velocity sensing is implicit
in the derivation of the return maps in [13, 14, 34, 32],
because the leg angle is not held constant through-
out the flight phase, but is assumed to be set to
2π−β in a time interval (ż0−

√
ż20 + 2(z0 − sinβ), ż0+√

ż20 + 2(z0 − sinβ)) in which the COM is above the
touchdown height sinβ. Before this time interval is
reached, the leg is assumed to be at an angle where it
does not interfere with the ground.

Raibert controller The leg placement strategy
proposed by Raibert [9] for a two degree of freedom
SLIP reads

φ(t, x0) = 2π − arcsin

(
ẏ0ts
2

+ kẏ(ẏ0 − ˙̄y)

)
(45)

where ts is the duration of the stance phase, kẏ is
a feedback gain and ˙̄y is the desired forward speed.
In Raibert’s physical implementations, the duration
of the current stance phase was approximated by the
measured duration of the previous stance phase. Here,
we will consider ts a constant. In (45) the average
forward stance speed used in [9] was approximated by
ẏ0. Now ẏ0 can be expressed as ẏ0 =

√
2(E − zA).

Hence eq. (45) is of the form (43) and the return
map domain is a one-dimensional manifold which is

10By Theorem 2 a fixed point of the time reversed stance
flow map Ŝ1 lies on a symmetric orbit of its vector field f̂1.
Symmetric orbits must contain a fixed point of Ĝ [30] and can
therefore be characterized for the 2 DOF SLIP model by the
two-dimensional fixed point set FixĜ = {x̂ ∈ X̂ : y = 0, ż = 0}.
Fixing the energy E0 removes one dimension, hence the set of
all possible fixed points of the return map factor R1 forms a one-
dimensional manifold in X . Given that any x = (z, ż)> with
ż > 0 lies on a symmetric orbit of the flight phase vector field f2
on the reduced Poincaré section X , the set of all possible fixed
points of the return map R is identical to the one-dimensional
manifold of possible fixed points of R1. The fixed points of R
are then given by the intersection of this line with the return
map image.

depicted in Fig. 2b). The output map for this leg
angular trajectory reads C(x0) = zA.

Leg retraction and “optimized selfstabiliza-
tion” In the leg retraction schemes proposed in
[15, 33], the leg is set at a fixed angle αA at the apex
of the flight phase and then starts rotating towards
the ground. Before reaching the apex, the leg angle
can be arbitrarily placed as long as its toe does not
touch the ground. In [15], a constant angular velocity
ω is used (leg retraction), i. e.

φ(t, x0) = αA + ω(t− tA) : t > tA (46)

whereas in [33] a nonlinear angular trajectory that is
constant over all strides

φ(t, x0) = α(t− tA) : t > tA (47)

is employed. In both cases, the output map is C(x0) =
tA. Clearly, these two leg placement schemes are also
of the form (43) and therefore the return map im-
age is a one-dimensional manifold. These return map
images are plotted in Figs. 2c and d respectively.
Both return maps converge to the same point, how-
ever, the second trajectory [33] achieves convergence
to a desired apex height within one stride.11 Since the
apex Poincaré section in [33] is only one-dimensional
and one control parameter – the touchdown time or
rather the leg touchdown angle – is available, the de-
sired apex height can be reached within one stride.
On the other hand, the touchdown Poincaré section
parametrized by (z, ż) is two-dimensional and dead-
beat control can only be achieved within at least two
strides. This seems to be a contradiction, since the
discrete time behavior of identical physical systems
parametrized by different Poincaré sections must be
conjugate, i.e. related by a coordinate transforma-
tion. Particularly the dimension of the return maps
of both parametrizations must agree. In Appendix B
it is shown that if all coordinates of the dynamical
flow are taken into account, the apex and touchdown
return maps are indeed conjugate. However, because
the open loop system is dynamically decoupled in apex
coordinates (i.e. the second variable does not influ-
ence the evolution of the first in these coordinates),
restricting the feedback to depend upon the first vari-
able yields effectively a one-dimensional closed loop
return map. This one-dimensional nature is illus-
trated in Fig. 2d), where the one-dimensional man-
ifold X I := R(X ) is plotted together with color-coded
inverse images R−1

(
X I(zAi

)
)
. As can be seen in Fig.

11The angular trajectory α was obtained by numerical inver-
sion of the apex height-to-apex height return map in order to
implement deadbeat control.
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2d, X I is aligned with one of the inverse images, hence
in the first stride an arbitrary point (z, ż) is mapped
onto X I , whereas in the second stride all points on
this manifold are mapped to the target point.

The authors of [33] call this control scheme “optimized
selfstabilization,” indicating a computational or sen-
sory advantage over regular deadbeat control. In reg-
ular deadbeat control, the leg angle φ would be a func-
tion of both z0 and ż0, requiring the sensing of both
liftoff variables and the online computation or storage
of a lookup table for a function from a two-dimensional
to a one-dimensional space. In (47) only the sensing
of tA = ż0 and a clock is required, and α is a function
from a one-dimensional to a one-dimensional space. In
this context, “selfstability” seems to refer to the fact
that the leg angle is a function of time (starting at
apex) only and and does not explicitly depend upon
the liftoff variables (z0, ż0); it does not mean that no
sensing (e. g. detection of the apex) is required. In the
next paragraph we address the explicit parametriza-
tion of this one-dimensional return map manifold and
show how it can be used to reduce the sensory require-
ments of control.

Sensory requirements of globally singular con-
trol: Given a globally singular 2-DOF SLIP return
map with leg angle trajectory φ(t, x0), this leg angle
trajectory can be rewritten as φ(t, x0) = Φ(t− tA, zA)
according to the results in section 3.2.3. The corre-
sponding output map can be chosen to be C(x0) =
(tA, zA)

>. This does not constitute a sensory advan-
tage over x0 because still one position and one veloc-
ity measurement are required. The threshold function
reads

h2(x(t), x0, t) = z(t)− cos (Φ(t− tA, zA)) (48)

= zA −
(t− tA)2

2
− cos (Φ(t− tA, zA))

Setting h2 to zero implicitly defines a function ∆tA
with the substitution t− tA → ∆tA(zA). ∆tA(zA) en-
codes the direct control parameter during flight – the
total flight time tA + ∆tA(zA). A different angular
trajectory enforcing the same total flight time for all
initial conditions z0, ż0 can then be defined by the in-
verse ∆t−1A : Φ̂(t− tA) := Φ(t− tA,∆t−1A (t− tA)) with
a new output map C(x0) = tA whose only output is
the flight time measured from apex. Hence a leg angle
trajectory φ(t, x0) that initially required the sensing
of (tA, zA)

> and time can be replaced by one that
only requires sensing of the apex, i. e. tA = ż0, and
time. This rewriting of the angular trajectory makes
use of the invariance of the flight time with respect to
certain parametrizations of φ (29) and demonstrates

why deadbeat control for SLIP models can be achieved
with reduced feedback sensing S3i.

3.3.2 A nonsingular, stable 2 DOF SLIP
model without velocity sensing

We will now investigate a 2 DOF SLIP model with a
full rank return map Jacobian where we address both
S3i and S3ii in that no velocity sensing is required
for the feedback loop. For certain parameter values,
this model does exhibit asymptotic stability. In the
previous 2 DOF examples of Section 3.3.1, once sin-
gularity has been imposed, the determinant of the re-
turn map Jacobian vanishes and the factor analysis
can contribute no more information to the stabiliza-
tion problem. However, as this example shows, since
the return map has dimension two, if we operate in a
regime where the eigenvalues are known to have non-
zero imaginary components, then the properties of the
determinant completely determine stability. We can
then dictate the stability properties through a closed
form expression and this is indeed how the present
example has been adjusted.

The leg angle trajectory for this model reads

φ(t, x0) = ωt+ k arccos(z0) + αA (49)

where ω, k, and αA are constants. Note that ż0 does
not appear in (49), hence the output map could be
written as C(x0) = z0. For k = 1 and αA = 0, the leg
rotates clockwise at a constant rate ω starting with the
liftoff angle arccos(z0). This can be considered a crude
2 DOF SLIP version of the leg angle profile specified
by RHex’s open loop controller [1]. A more elaborate
3 DOF SLIP version of RHex’s open loop controller
will be presented in Section 3.4.2. Using (33) the de-
terminant of the Jacobian of R at a symmetric fixed
point becomes:

|det(DxR(x̄))| = |det(DxF2(G(x̄)))|

= |1 + − ˙̄z(k − 1)

− ˙̄z + ω
√
1− z̄2

| (50)




< 1 : ω

√
1−z̄2
˙̄z

< k < 1
= 1 : k = 1
> 1 : k > 1

In order to illustrate the predictive power of
(50), we numerically approximate the determinant
det(DxR(x̄)) of the full return map for fixed SLIP

parameters E0 = Ẽ0

m̃g̃ζ̃0
= 2.1, γ = 13, and fixed re-

circulation parameters αA = π, ω = 14 for different
k ∈ {1/6, 0.5, 1, 2, 3.3}. Here, E0 is the dimensionless
total conserved energy of the system and the dimen-
sionless spring potential is V (ζ) = (γ/2)(ζ − 1)2. We
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Figure 2: One-dimensional return map domains and their inverse images for rank-deficient SLIP-controllers: a)
Fixed leg angle touchdown, b) Raibert, c) Leg retraction, d) Two-step deadbeat. All elements of a colored line
in the (z0, ż0)-plane are mapped to the point with identical color. The union of all these points constitutes the
return map image. The color corresponds to a parametrization of the return map image in terms of the resulting
apex heights zAi

. The range of apex heights considered is zA ∈ [0.92, 1.8]. The curved black line identical in all
four figures denotes the set of all possible fixed points, as explained in Footnote 10.

then compare these values to the values of the deter-
minant obtained by inserting the numerically deter-
mined fixed points x̄ = (z̄ ˙̄z)> into (50). The de-
terminants obtained in those two different ways are
plotted in Fig. 3a and agree to a high precision
(||det(DxR(x̄))| − |det(DxF2(G(x̄)))|| < 10−7). In
Figs. 3b-d iterations of the return map in (z0 ż0)-space
are shown for k ∈ {1/6, 1, 3.3} and initial conditions
off the fixed point. The eigenvalues are complex con-
jugate pairs in all three cases, hence, the magnitude of
the eigenvalues computed in (50) specifies sufficient as
well as necessary conditions for stability and instabil-
ity in this case. For k = 3.3, formula (50) specifies an
unstable fixed point, and, indeed, the plot of a numer-
ical simulation in Fig. 3b depicts a typical trajectory
spiraling away from a small neighborhood as required.

For k = 1/6, formula (50) specifies asymptotic stabil-
ity, and trajectories spiral towards the fixed point, as
depicted in Fig. 3c. For k = 1, formula (50) suggests
neutral stability and numerical simulation verifies that
all trajectories lie on deformed circles around the fixed
point as plotted in Fig. 3d.

Fig. 3d is reminiscent of KAM-tori of area-preserving
2D mappings (see [35]), however, as can be seen in Fig.
4, the phase space volume is not preserved away from
the fixed point x̄ for k = 1. In Appendix C we invoke
reversibility [36] in place of area-preservation to show
that the numerically observed neutral stability for the
leg recirculation scheme with k = 1 is expected.
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3.4 3 DOF SLIP models: body-frame

sensing and stability

In this section the control possibilities with body
frame sensing are explored for 3 DOF SLIP models.
First, the unique 3 DOF SLIP model with the body
frame sensor model (37) and a globally singular return
map Jacobian is presented. By comparing the number
of available design parameters of this SLIP model to
the dimension of the reduced Poincaré section, dead-
beat control is excluded. Then a nonsingular 3 DOF
SLIP model with only body frame sensing is intro-
duced. It is modeled within the limitations of the 3
DOF SLIP dynamics after the open-loop controller of
RHex [1] and is shown to have asymptotically stable
operating regions. A necessary condition for the sta-
bility of this model in terms of a RHex clock parameter
is derived.

3.4.1 Body frame sensing does not admit
deadbeat control

We want to investigate the possibility of deadbeat
control with a leg angle trajectory of the form (38)
φ(t, x0) = φCB

(t, φB0
, φ̇B0

)−θ(t), i.e. using only body
fame sensor information in the feedback loop and spec-
ifying the leg angle trajectory in the body frame.

As shown in Section 3.2.2, deadbeat control requires
globally singular return map Jacobians and hence
φCB

(t, φB0
, φ̇B0

) − θ(t) must be cast into the form
Φ(t−tA, zA, θA, θ̇A) (43). While θ(t) = θA+ θ̇A(t−tA)
does satisfy this functional form, φCB

(t, φB0
, φ̇B0

)
does not, except for φCB

(t, φB0
, φ̇B0

) = const. We will
present numerical evidence in the form of an asymp-
totically stable trajectory at particular parameter val-
ues of a 3 DOF SLIP model in order to show that
stable behavior is possible with the leg angle trajec-
tory

φ(t, x0) = 2π − β − θ(t) . (51)

This 3 DOF SLIP model bears close resemblance to
the LLS model [11] of horizontal legged locomotion,
where at the end of each stance phase the new stance
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leg is set at a fixed angle with respect to the non-
inertial body axis, thus implementing a similar leg an-
gular trajectory.12 A sample discrete trajectory on the
3-dimensional Poincaré section is shown in Fig. 5 for
a potential of the form P3 with Vr(ζ) = (γ/2)(ζ − 1)2

and Vp(ψ, θ) = 1 + cθθθ
2 + cθψθψ + cψψψ

2. The mo-
tivation for this potential is discussed in Section 4.1.
Given that the only design parameter of (51) is β, a

target point ( ˙̄z, θ̄, ˙̄θ) in the reduced three-dimensional
Poincaré space cannot be specified a priori. Hence the
possibility of deadbeat control for the 3 DOF SLIP
model with the body frame sensor model (37) must
be discarded.

3.4.2 A RHex-like 3 DOF SLIP model with
body frame sensing

In this section a leg placement strategy for the con-
trol of the 3 DOF SLIP model with full rank is in-
vestigated. Its importance lies in the fact that this
leg placement strategy is modeled after the open-loop
controller employed in RHex [1] within the limitations
of the 3 DOF SLIP model. The angular reference tra-
jectories prescribed by RHex’s open loop clock con-
troller [1] are specified by the (dimensionless) param-
eters tc, ts, ϕs, ϕ0; see Fig. 6. For one half of the clock
period tc, the trajectories for the left (L) and the right
(R) tripod can be expressed as functions of time in the

12Note, however, that the flight duration is zero.
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Figure 5: A sample discrete trajectory on the
3-dimensional Poincaré section parametrized by
(ż0, θ0, θ̇0) converging to an asymptotically stable
fixed point. Because of the rank-deficient nature of the
leg placement, z0 is a function of the other Poincaré
section variables z0 = cos(θ0 + π/2 − β). The values
of the dimensionless variables characterizing this sys-
tem are cθθ = 400, cθψ = −12, cψψ = 0, E0 = 2.1,
γ = 13.25, I = 0.489, and β = 1.0562.

robot’s body frame (B) as

φBL
(t) ={

ωst+ ϕ0 0 ≤ t < ts
2

ωf t+
ϕs

2 (1− ωf
ωs

) + ϕ0
ts
2 ≤ t < tc

2

(52)

φBR
(t) =
{ −π + ωf t+ ϕ0 0 ≤ t < tc−ts

2
ωst− ϕs

2 (1− ωs
ωf

)− π ωsωf + ϕ0
tc−ts
2 ≤ t < tc

2

where ωs =
ϕs

ts
< ωf = 2π−ϕs

tc−ts . These angular trajec-
tories are depicted in Fig. 6. They are enforced at
each leg of the robot by a simple PD-controller.

In order to implement this controller in a simplified
3 degree of freedom SLIP controller, the following as-
sumptions are made:

R1 RHex’s clock should prescribe motions with (sub-
stantial) flight phases, i.e. ts < tc/2.

R2 During stance the (virtual) stance leg can be ap-
proximated by a SLIP; this means that there is
no net torque apart from gravity on the leg.

R3 The PD-controller that enforces the angular ref-
erence trajectories (52) during flight has infinite
gains and tracks those trajectories without errors.
In consequence, as the present stance leg lifts off,
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Figure 6: Illustration of liftoff and touchdown events
in the body frame of a RHex-inspired leg recirculation
scheme [1] for SLIP with pitching dynamics.

the PD-controller can be assumed to have posi-
tioned the second (present flight) leg at the exact
angle with respect to the first (present stance) leg
as specified by (52). In contrast, during stance,
the angular position and velocity variables evolve
according to the SLIP stance mechanics (13).

Assumption R1 simply focuses attention on RHex’s
dynamical regime as opposed to the possibly quasi-
static operation available to platforms with sufficiently
high leg number. Assumption R2 is justified by ex-
periments and simulation studies of RHex operating
in the relevant dynamical regime [37, 2, 34]. Assump-
tions R2 and R3 make the controlled SLIP model a
pseudo-clock controlled system, where the clock signal
is turned off during stance and turned on at a reset
phase at liftoff. In the following derivation, the left
leg (L) is chosen to be the stance leg.

In order to cast the reference trajectories in an ex-
pression for φ(t, x0) using assumption R3 we need to
express φBR

(the flight leg angle with respect to the
body frame) in terms of the angle of the stance leg at
liftoff φBL

(tLO).
13 In addition, we need to transform

leg angles specified in the body frame to the respective
angles in the inertial frame. The relation between the
body and the inertial frame is given by

φB = φ+ θ (53)

Hence the leg angle trajectory of the right (flight) leg

13Note that the time in φBL
differs from the time in φ(t, x0);

it is not reset at the beginning of a new flight phase.

with respect to the inertial frame is given by

φR(t) = φBR
(t+ tLO)− θ(t) = φ(t, x0) (54)

where tLO = φ−1BL
(φL0 + θ0) is the time with respect

to the RHex clock when liftoff occurs and φL0 =
arccos(z0) is the angle of the stance leg at liftoff in the
inertial frame. This procedure is illustrated within the
body frame in Figure 6.

Using the expressions for the RHex clock trajectory
(52), we obtain an angular trajectory for the 3 DOF
SLIP system that at any instant in time has the gen-
eral form

φ(t, x0) = ωt+ k (arccos(z0) + θ0)︸ ︷︷ ︸
=φB0

+αA − θ(t) (55)

with ω ∈ {ωf , ωs}, and k ∈ { ωsωf , 1,
ωf
ωs
}; the dif-

ferent values of αA can easily be derived and are
not important in this context. This expression is
of the form (38) with the body frame sensor model
CB(x0) = arccos(z0) + θ0 = φB0

, i.e. no body frame
velocity measurement is required. The functional form
of eq. (55) translates into different functional expres-
sions for |det(DF2(G(x̄)))| which are distinguished by
the location of liftoff and touchdown with respect to
the piecewise-linear leg angle trajectories. We enu-
merate these six cases by two numbers (LO → TD)
which denote the region in Fig. 6 where liftoff and
touchdown occurs.

(LO → TD) |det(DF2(G(x̄)))|

(1→ 1)
(1→ 2)

|1 + (− ˙̄z+ ˙̄θ
√
1−z̄2)(ωf

ωs
−1)

(− ˙̄z+ ˙̄θ
√
1−z̄2)+ωf

√
1−z̄2

|
˙̄θ> ˙̄z√

1−z̄2

> 1

(2→ 2)
(1→ 3)

1

(2→ 3)
(3→ 3)

|1 +
(− ˙̄z+ ˙̄θ

√
1−z̄2)( ωs

ωf
−1)

(− ˙̄z+ ˙̄θ
√
1−z̄2)+ωs

√
1−z̄2

|
˙̄θ> ˙̄z√

1−z̄2

< 1

Table 1: Functional expressions for |det(DF2(G(x̄)))|
for different locations of the liftoff and touchdown
event.

Based on the properties of symmetric orbits that we
focus on in this paper, a necessary condition on a
RHex clock parameter for asymptotic stability can
now be derived.

A necessary condition for asymptotic stability
For symmetric orbits, the liftoff and touchdown leg
angles in the inertial frame are of equal magnitude
but opposite sign: φL0 = −φR(tTD). This also holds
for the pitching angles: θL0 = −θ(tTD). Using (53) to
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translate the liftoff and touchdown angles to the body
frame

φBL
(tLO) = φL0 + θL0

φBR
(tTD) = φR(tTD) + θ(tTD)

we obtain φBL
(tLO) + φBR

(tTD) = 0. With the def-

initions φ̂BL
= φBL

− ϕ0 and φ̂BR
= φBR

− ϕ0 as in
Figure 6, this equality can be rewritten as

φ̂BL
(tLO) + φ̂BR

(tTD) = −2ϕ0 (56)

By locating the liftoff and touchdown angles of (56)
for symmetric orbits within regions 1-3 in Figure 6, a
table of possibly allowed liftoff-touchdown transitions
as a function of the sign of RHex clock’s leg offset
angle ϕ0 can be derived:

(LO → TD) ϕ0 < 0 ϕ0 = 0 ϕ0 > 0
(1→ 1)
(1→ 2)

no no yes

(2→ 2)
(1→ 3)

yes yes yes

(2→ 3)
(3→ 3)

yes no no

If ˙̄θ > ˙̄z√
1−z̄2 , the determinant for the transitions

(2 → 3) and (3 → 3) will be less than one. Hence a
necessary condition for asymptotic stability is ϕ0 < 0

provided that ˙̄θ > ˙̄z√
1−z̄2 . On the other hand, a suf-

ficient condition for instability (including neutral sta-

bility) is ϕ0 > 0 provided that ˙̄θ > ˙̄z√
1−z̄2 .

It should be emphasized that the expressions in table 1
are independent of the specific 3 DOF SLIP potential
V as long as the general conditions P1 - P3 listed in
2.4.1 are obeyed. However, a specific SLIP model does
influence the location of fixed points x̄ and therefore
the numerical value of the determinant for the cases
1 → 1, 1 → 2, 2 → 3, 3 → 3 as well as the location of
the eigenvalues.

This analysis provides for the first time a partial ex-
planation for the surprising stability of the open-loop
clock driven robot RHex.

4 Application: Toward hierar-

chical control of a hexapedal

robot

In this section we explore numerically the applicabil-
ity of these ideas to the robot RHex [1]. In Section 4.1
we review the general approach to hierarchical control

[5] in the specific context of a RHex-like anchor sys-
tem compared to the SLIP-template with a physically
motivated stance phase potential and leg angle tra-
jectory. In Section 4.2 we present simulation results
and assess the degree of correspondence between the
simulated anchor and its putative template.

4.1 Control of the anchor by control-

ling the template

A template is a low dimensional model of a mecha-
nism operating within a specified environment that is
capable of expressing a specific task. To anchor this
low dimensional model in a more physically realistic
higher degree of freedom representation of the robot
and its environment, we seek controllers whose closed
loops result in a “prescriptive” correspondence (de-
fined in Section 1.2) of the dynamics of the high and
low degree of freedom models. Hence the controller
must a) force the high-dimensional anchor to follow
the dynamics of the low-dimensional template (“an-
choring”), and b) control the template to achieve a
certain task. In the case at hand the anchor is given
by the robot RHex, whereas the template is given by
a 3 DOF SLIP model as in Section 2.4.1 with a leg
angle trajectory (55). Note that this template-anchor
hierarchy includes the intrinsic abstraction of neglect-
ing lateral dynamics and focusing on the sagittal plane
motion. The analysis of the previous chapters will be
shown to give insights into part b); we assume that
the SLIP-anchoring mechanism (part a)) has already
been addressed by either deliberate design [6] or by
the interaction of the controlled robot with its envi-
ronment, as has been shown for RHex’s steady state
behavior [37, 2].

As a first step towards the goal of devising a new con-
troller for RHex or optimizing RHex’s open loop con-
troller, we provide numerical evidence for the agree-
ment of the stability properties of a RHex-like model
programmed in the SimSect simulation environment
[7] with the stability properties of the 3 DOF SLIP
model introduced in Section 3.4.2. In particular,
we show that in a physically interesting operational
regime, stable simulations in SimSect correspond to
stable fixed points of the corresponding SLIP model.

Here, “correspondence” is established by fitting sim-
ulation data to the 3 DOF SLIP model with stance
phase potential introduced in Section 3.4.1 and with
the RHex-like leg angle trajectory (55) using the RHex
clock parameters of the SimSect simulation. This
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stance phase potential

V (y, z, θ) =
γ

2
(ζ − 1)2

(
1 + cθθθ

2 + cθψθψ + cψψψ
2
)

(57)
is the generalization of a potential V (ψ, θ) = (γ/2)(ζ−
1)2(1 + cθ+ψ(θ+ ψ)2) which could be implemented in
a physical single-leg hopping robot by a passive leg
spring and a passive torsional spring between the body
and the leg. The generalized potential (57) would re-
quire passive springs attached to a “co-moving” in-
ertial frame, preventing a physical implementation
with a one-legged robot. However, we believe that
this model reasonably approximates the moments due
to the “outrigger” front and back legs, compressed
against the horizontal ground surface, in the tripod
stance phase of RHex.

4.2 Correspondence between RHex-

like simulations and their fitted

SLIP models

Simulations of a RHex-like hexapedal robot were run
in SimSect [7] over a discretized range of clock pa-
rameters of RHex’s open loop clock controller [1]
that respect assumptions R1, R2, R3 of Section
3.4.2: tc ∈ [0.235, 0.245], ϕs ∈ [0.84, 1.04], ϕ0 ∈
[−0.16, 0.04], df ∈ [0.52, 0.6], where the duty factor df
is defined as df = (tc − ts)/tc. Of the resulting 1815
SimSect simulations, 522 (= 29%) were stable accord-
ing to the criteria of Appendix D.1. Then a 3 DOF
SLIP model with the stance potential (57) and the
leg angle trajectory (55) was fit to those stable cases
following the fitting procedure outlined in Appendix
D.2.

As is detailed below, the 3 DOF SLIP model approx-
imates the 24 DOF SimSect steady state dynamics
surprisingly well given the gulf in dimension. Specif-
ically, the trajectory fitting errors are very small on
average, the fixed points of the SimSect simulations
and the fitted SLIP models are within the same order
of magnitude, and the asymptotic behavior agrees in
almost all cases.

However, while the fitted SLIP models provide good
correspondence once a specific SimSect operating
point has been selected, it is not the case that a priori
specification of clock parameters yields a SLIP model
whose fixed point locus and stability predicts that ob-
served in the SimSect model. In this sense, the present
SLIP model provides a descriptive but not prescriptive
representation of the SimSect dynamics.

4.2.1 Correspondence of trajectories

The quality of the fit is assessed for each stable sim-
ulation by the two fitting error numbers ∆yzL2 and
∆θL2 as described in Appendix D.3. The average fit-
ting error and standard deviation for both errors for
the 522 stable SimSect simulations for the cartesian
coordinates is small ∆yzL2 = 3.82±0.42% and of sim-
ilar magnitude as the fitting errors for 2 DOF SLIP
models observed in [34], whereas the average fitting
error for the pitch coordinates ∆θL2 = 93.65±25.76%
is considerably larger. As an illustration of the fitting
results a sample SLIP fit is presented in Figure 7. The
data trajectories of y(t), ẏ(t), z(t), ż(t), θ(t), θ̇(t), ζ(t)
are plotted together with the trajectories of their fit-
ted SLIP models.
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Figure 7: Trajectories of a stable SimSect simulation
and the corresponding trajectories of the fitted SLIP
model. The fitting errors are ∆yzL2 = 3.56% and
∆θL2 = 51.46%.

The large ∆θL2 fitting error is an indication that the
proposed 3 DOF SLIP model is not a sufficiently accu-
rate abstraction of SimSect’s pitching dynamics. An-
other contributing factor to the size of ∆θL2 is the
fact that the magnitudes of both the θ(t) and θ̇(t)
trajectories are small, which makes the denominator
of the fitting error ∆θL2 (64) small. Another devia-
tion of the dynamics of the fitted SLIP model from
SimSect is apparent in the ẏ(t) trajectories of Fig. 7
which is typical of all fitted SLIP models. Here, the
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fitted SLIP trajectory is out of phase with the SimSect
COM trajectory; nevertheless the fitting error ∆yzL2
is small because of the large average value of the Sim-
Sect trajectory that enters (64). We believe that the
acceleration in the forward direction during the leg
compression phase seen in SimSect as opposed to a
deceleration in the corresponding SLIP model is due
to the non-conservative nature of the SimSect model,
where energy is pumped into the system by the hip
torques, and then lost to damping and friction.

4.2.2 Correspondence of fixed points

Next we investigate whether the fixed point of the fit-
ted SLIP model accurately predicts the fixed point of
the corresponding SimSect run. In general, the fitted
SLIP model with the initial condition obtained from
its SimSect simulation as described in Appendix D.3
will not operate at a fixed point of its return map R.
Hence a root-finding algorithm (Matlab’s ‘fsolve’) is
employed to determine the fixed point x̄SLIP (if it ex-
ists) of the return map R of the fitted SLIP model as
well as the eigenvalues {λi}i=1,...,4 of the Jacobian of
the return map: DxR(x̄SLIP). The fixed point x̄SLIP is
then compared to the “fixed point” x̄Sim – the appro-
priate projection of the initial data point of the Sim-
Sect simulation stance data. Scatter plots of the com-
ponents of the fixed points x̄SLIP and x̄Sim of all stable
SimSect simulations are shown in Fig. 8. For perfect
correspondence of the SimSect and SLIP dynamics, all
fixed point components should lie on the identity lines.
While the orders of magnitude of the components of
the fixed points match, the components are in gen-
eral not well correlated, except for z̄SLIP and z̄Sim if a
constant offset is taken into account. The fixed points
˙̄zSim assume an almost constant value and the pitching
components of x̄SLIP are very close to zero and under-
estimate the magnitude of the pitching components of
x̄Sim.

4.2.3 Correspondence of stability at a fixed
point

Given the numerically determined eigenvalues
{λi}i=1,...,4 of a fitted SLIP model at its fixed point
x̄SLIP, its local asymptotic stability properties can
be assessed. The magnitude of the determinant
|Π4
i=1λi| agrees to a high numerical precision with

the appropriate expression in Table 1, predicting
instability for ϕ0 > 0 and allowing asymptotic
stability for ϕ0 ≥ 0. However, SimSect simulations
that are stable in the sense of Appendix D.1 are found
with similar frequency of occurrence for ϕ0 > 0 as
well as for ϕ0 < 0 for the range of clock parameters
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Figure 8: Scatter plots of components of the fixed
points of stable SimSect simulations versus the cor-
responding fixed point components of the fitted SLIP
models. For perfect correspondence, all points should
lie on the identity line.

considered. On the other hand, if the magnitudes of
the individual eigenvalues are only slightly larger than
one, e.g. |λi| < 1.05, i = 1, ..., 4 as is the case for 92%
of the 522 stable SimSect runs, then the instability
might only be revealed after many iterations (see
Fig. 3b for a “weakly” unstable trajectory of a 2
DOF SLIP model with |λ1| = |λ2| ≈ 1.007). Hence
the predicted instability of the fitted SLIP models
for SimSect simulations with certain RHex clock
parameters might not be discernible from stability
given the criteria in Appendix D.1 due to the finite
amount of simulation time for each simulation and
and also due to the limitations of the SLIP-SimSect
correspondence as discussed above.

5 Conclusions

In this paper we use the example of the SLIP locomo-
tion model to show how factored analysis of the return
map may be a useful new tool in the stability analysis
of hybrid Hamiltonian systems. Specifically, we derive
a necessary condition for the asymptotic stability of
SLIP for an arbitrary leg angle trajectory as well as a
sufficient condition for its instability. These conditions
are formulated as an exact algebraic expression despite
the non-integrability of the SLIP system. Hence leg
recirculation strategies that violate the above condi-
tion can be discarded without recourse to cumbersome
numerical simulations. We also use the closed form ex-
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pressions to characterize the “cost” of sensing required
for the imposition of “fast” transients in a variety of
2 DOF SLIP models that have appeared in the recent
legged locomotion literature.

We finally apply this analysis to a particular 3 DOF
SLIP model with pitching dynamics and a RHex-like
leg recirculation strategy that satisfies the necessary
condition for asymptotic stability in certain parame-
ter regions. An accompanying numerical study shows
that this model captures the salient aspects of the
steady state dynamics of the robot RHex [1] (sim-
ulated in SimSect [7]) and accurately predicts the
robot’s stability properties.

This analysis provides for the first time a partial ex-
planation for the surprisingly stable behavior observed
empirically in the robot RHex. It also paves the
way for a more principled investigation of detailed,
biologically-motivated leg placement strategies in the
LLS model [11] which captures many aspects of cock-
roach locomotion [12].
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A Time reversal symmetry of

RHex-like leg angle trajecto-

ries

In this appendix we apply the condition in Lemma
2 to a particular family of leg recirculation schemes,
thus proving the involutive nature of the correspond-
ing time reversed flow map. In particular, we prove
that the solution tTD(x0) of the threshold equation
(19) for S2 = G ◦ F2 at x0 ∈ X for a particular leg
angle trajectory also solves the threshold equation at
S2(x0). We focus on the family of leg angle trajecto-
ries

φ(t, x0) = α(t) + k (arccos(z0) + θ0)− θ0 − θ̇0t (58)

where α(t) is an arbitrary analytic function of time.
This family has the form of the RHex-like recirculation
strategy (55). The threshold function h2(f

t
2(x0), x0, t)

for a 3 DOF SLIP model reads

h2(f
t
2(x0), x0, t) = z(t)− cos(φ(t, x0)) . (59)

Then using G(x0) = (z0,−θ0,−ż0, θ̇0)> and

G ◦ f tTD

2 (x0) =




z0 + ż0tTD − t2TD

2

−
(
θ0 + θ̇0tTD

)

−(ż0 − tTD)
θ̇0


 (60)

the threshold function in Lemma 2 reads

h2(G(x0), G ◦ f tTD

2 (x0), tTD) =

z0 − cos
(
α(tTD)− θ̇0tTD + k arccos(z0 + ż0tTD−

t2TD
2

)− (θ0 + θ̇0tTD)(k − 1)
)

= 0

For a solution of this equation with the leg recircu-
lating only once during flight φ(tTD, x0) ∈ ( 32π, 2π).
This must be taken into account when inverting the
cosine:

arccos(z0) = −
(
α(tTD)− θ̇0tTD +

k arccos(z0 + ż0tTD −
t2TD
2

)

−(θ0 + θ̇0tTD)(k − 1)
)
+ 2π

⇔ cos (k arccos (z(tTD)))− cos
(
arccos(z0) + α(tTD)

−θ̇0tTD − (θ0 + θ̇0tTD)(k − 1)
)
= 0

k=1⇔ z(tTD)− cos (φ(tTD, x0)) = 0

with φ(t, x0) as in (58). For k = 1 this equation is
equal to the original threshold equation (59) at x0 and
hence tTD(x0) also solves the threshold equation for
S2(x0). Assuming that tTD(x0) is also the minimal
solution of the threshold equation at S2(x0) for all
x0 ∈ X , we can conclude that the time reversed flow
map of the flight phase with a leg angle trajectory
defined by (58) with k = 1 is an involution on Xh2 =
X . According to Lemma 3 this means that F2◦G = R2

is also an involution. Then |det(DxF2(x̄)| = 1 at a
fixed point x̄.

B Equivalence of apex and

touchdown Poincaré sections

In section 3.3.1 it was noted that in [13, 15] one-
dimensional Poincaré maps characterized by the apex
event during flight phase were used to illustrate
the asymptotic behavior of the constant leg touch-
down, leg retraction, and “optimized selfstabiliza-
tion” strategies for the 2 DOF SLIP model. On the
other hand straightforward counting of dimensions
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shows that the Poincaré section of a 2-dimensional
SLIP model should be 2-dimensional: the dimension-
less phase space X̂ := R × R+ × R2 with elements
x̂ = (y, z, ẏ, ż)> is four-dimensional; conservation of
energy E(x) = E0 and the definition of the Poincaré

section P := {x̂ ∈ X̂ : p(x) = 0, y < 0} should re-
duce the dimension by two. For the Poincaré section
denoting the touchdown event, p(x) =

√
y2 + z2 − 1

whereas for the Poincaré section denoting the apex
event, pA(x) = ż. Using conservation of energy to
eliminate ẏ, the reduced Poincaré sections can then
be parametrized by x = (z, ż)> ∈ X for the touch-
down event and by xA = (yA, zA)

> ∈ XA for the apex
event. While for some singular leg placement strate-
gies the reduction to a 1-dimensional Poincaré section
at the touchdown event is obvious, e. g. for the con-
stant leg touchdown angle strategy illustrated in Fig.
2 a), there is a priori no reason why the apex Poincaré
section should only be parametrized by one variable.

In order to illustrate the equivalence of the discrete dy-
namical systems defined by the two different Poincaré
sections, we give an explicit coordinate transformation
between the coordinates of the two reduced Poincaré
sections X and XA. Because of the reset of the y-
coordinate at touchdown, this coordinate transforma-
tion TA relates the touchdown variables x to the next
apex variables xA and not to the previous apex vari-
ables. It has the form

TA : X → XA(
z
ż

)
7→

(
yA
zA

)

where yA =
√

1− z2LO +
(√

2(E0 − z)− ż2
)
żLO and

zA = zLO +
ż2LO

2 and (zLO, żLO)
> = G ◦R1(x). In the

notation of the controlled plant model (2), the control
inputs – the apex to touchdown time tA = uA and
liftoff to touchdown time tTD = u – are related by

uA(k) = u(k)− żLO(k) . (61)

The difference between the two parametrizations
arises in the structure of the controlled plant model
maps A: the apex controlled plant model map AA
decouples into two separate maps Az and Ay that are
independent of yA(k) because of the y coordinate reset
at touchdown:14

(zA(k + 1), yA(k + 1))> = A((zA(k), yA(k))
>, uA(k))

zA(k + 1) = Az(zA(k), uA(k))

yA(k + 1) = Ay(zA(k), uA(k))

14The formal expressions for Az and Ay can easily be derived
and are not given here.

Hence the only way that yA(k) can enter the apex
return map RA is through feedback: uA(k) = tA(k) =
tA(zA(k), yA(k)). Omitting the variable yA(k) which
denotes the horizontal distance between the toe pivot
and the flight phase apex, a one-dimensional return
map zA(k + 1) = Rz(zA(k)) = Az(zA(k), tA(zA(k)))
results. For the 3 DOF SLIP model with pitching, the
apex return map without yA(k) dependence reduces
the dimension from 4 to 3.

This explains why the apex Poincaré section is a con-
venient parametrization if feedback is restricted to a
subset of the Poincaré section coordinates. However,
the touchdown Poincaré section seems to be a more
natural choice for the description of physical systems,
since the touchdown event is clearly easier to detect
than the apex event, which requires velocity sensing.

C Invariant tori near a fixed

point of 2 DOF SLIP models

In this section we establish criteria for the neutral sta-
bility of fixed points of the return map R of a legged
locomotion model. The closed circles in Fig. 3d) sug-
gest the existence of 1-dimensional R-invariant tori,
on which R acts quasi-periodically. This is reminis-
cent of area-preserving mappings which can possess
KAM-tori (see [35] and references therein); however,
as indicated in the determinant contour plot for the
stance phase alone (Fig. 4), area is in general not pre-
served in a neighborhood of the fixed point of R, unless
the leg placement policy is designed to exactly com-
pensate for the determinant deviations of the stance
phase. It is well known, on the other hand, that re-
versible dynamical systems can mimic the behavior of
Hamiltonian systems in the sense that they can also
exhibit KAM-tori ([38], for a review see [28]). We will
show how, under certain assumptions, a theorem on
reversible mappings [36] can be applied to establish
the existence of R-invariant tori in a neighborhood of
a fixed point.

C.1 A theorem on invariant tori near

a fixed point of reversible diffeo-

morphisms

Before stating the main theorem, several definitions
and a lemma must be provided:

Definition 4 (Involution of type (p, q)) Let x̄ ∈
RN be a fixed point of the involution: G(x̄) = x̄. An
involution is said to be of type (p, q) with p + q = N
at x̄ if the characteristic polynomial of the Jacobian
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of G at x̄ reads (−1)N (λ + 1)p(λ − 1)q. This is the
general form of the characteristic polynomial at the
fixed point, since any involution can be written in a
neighborhood of its fixed point as a partial reflection
[39].

Definition 5 (Reversible diffeomorphism) A
diffeomorphism R : RN → RN is called reversible with
respect to the involution G if G ◦R ◦G = R−1.

Lemma 4 (Composition of involutions) The
composition R = R2 ◦ R1 of two involutions R1 and
R2 is reversible with respect to each of them, i.e.
R1 ◦ R ◦ R1 ◦ R = id = R2 ◦ R ◦ R2 ◦ R. Likewise, a
diffeomorphism R that is reversible with respect to the
involution R2 can be written as R = R2 ◦ R1 where
R1 is another involution [40].

Definition 6 (Symmetric fixed point of a re-
versible diffeomorphism) By Lemma 4 a diffeo-
morphism R reversible with respect to the involution
R2 can be written as R = R2 ◦ R1. A fixed point
x̄ ∈ RN of R is called symmetric if it is also a fixed
point of R2 [28].

The reduced Poincaré map for SLIP models in this
paper was factorized as R = R2 ◦ R1 (24). If R1 and
R2 are involutions, then the following abridged version
of Theorem 2.9 in [36, pages 147-152] can be applied:

Theorem 4 (Invariant tori near a fixed point
of a reversible diffeomorphism (M.B. Sevryuk,
1986)) Let R and R1 be diffeomorphisms R,R1 :
RN → RN , analytic in a neighborhood of a common
fixed point x̄ ∈ RN and let R be reversible with respect
to R1. Assume that the eigenvalues {λi, λ̄i}i=1,...,N/2

of the Jacobian at the fixed point DxR(x̄) satisfy λi ∈
S1\{−1, 1} and {λi}i=1,...,N/2 are pairwise distinct. In
addition assume that R is nondegenerate, i. e. ∃l ∈ N
such that R ∈ Ψ∗l (for a definition of Ψ∗l see [36]).
Then the following holds:

a) In any neighborhood of x̄ ∈ RN there exist N/2-
dimensional tori invariant under R and R1. The
action of R on these tori is quasiperiodic, and the
frequencies of this action are constant on those
tori.

b) There exist neighborhoods Oε of x̄ ∈ RN

(limε→0 diam(Oε) = 0, Oε1 ⊂ Oε2 if ε1 < ε2)

such that limε→0
mes(Gε)
mes(Oε)

= 1 where Gε denotes

the union of invariant tori in Oε.

c) R1 is an involution of type (N/2, N/2).

C.2 Application to 2 DOF SLIP mod-

els

We will now argue that this theorem can be applied
to the 2 DOF SLIP model with a RHex-like leg recir-
culation (49) with k = 1 as suggested by Fig. 3d).
The recirculation strategy (49) is clearly of the form
(58), hence R2 is an involution by the result of Ap-
pendix A. In Section3.1.1 it was shown that the par-
tial stance return map R1 is also an involution. Next
we need to show that Ri are analytic at the fixed point
x̄ ≈ (0.8772,−0.0764)>:

Analyticity of the stance phase return map fac-
tor In Section 2.4.2 the analyticity of the stance

phase flow f̂
t(x̂0)
1 was established. The correspond-

ing threshold function h1 (15) is analytic in x̂(t) and
x̂0 if ζ 6= 0. By the implicit function theorem, t1(x̂0)

will be analytic as long as d
dt

(
ζ
(
f̂ t1(x̂0)

))
|t=t1(x̂0) 6=

0. At the fixed point x̄, ζ = 1 6= 0 and
d
dt

(
ζ
(
f̂ t1(̂̄x)

))
|t=t1(̂̄x) = ȳ ˙̄y+ z̄ ˙̄z ≈ 0.6829 6= 0. Hence

t1(̂̄x) is analytic at ̂̄x. Since the composition of ana-

lytic functions is analytic, F̂1 = f̂
t1(̂̄x)
1 (̂̄x) and Ŝ1 are

analytic at ̂̄x, and R1 is also analytic at x̄.

Analyticity of the flight phase return map fac-

tor In Section 2.4.2 the flight phase flow f
t(x)
2 was

seen to be analytic. We focus on the leg angle
trajectory (49). The corresponding threshold func-
tion h1 (19) is analytic in x0 and t if 0 < z0 <
1. By the implicit function theorem, t2(x0) will be
analytic as long as d

dt (h2(f
t
2(x0), x0, t)) |t=t1(x0) 6=

0. At the fixed point x̄, 0 < z̄ ≈ 0.8772 <
1 and d

dt (h2(f
t
2(G(x̄)), G(x̄), t)) |t=t2(G(x̄)) = − ˙̄z +

sin(ω(−2 ˙̄z) + arccos(z̄) + π)ω ≈ −6.6551 6= 0. Hence
t2(G(x̄)) is analytic at G(x̄). Then the composition

F2 = f
t2(G(x̄))
2 (G(x̄)) is analytic at G(x̄), and S2 and

R2 are analytic at x̄.

If Ri are analytic, then the composition R is also ana-
lytic in x̄ and by Lemma 4 in Appendix C.1 the return
map R is reversible with respect to both R2 and R1.

The numerically determined eigenvalue of R : R2 →
R2 at the fixed point x̄ in Fig. 3d is λ1 = −0.6956 +
i0.7185 ∈ S1 \ {−1, 1}. The nondegeneracy condition
cannot be verified rigorously due to the nonintegrable
nature of the return map, but is assumed to hold
since degenerate diffeomorphisms are exceptional in
the sense that they constitute a variety of codimension
one [41]. Then the theorem predicts one-dimensional
tori around the fixed point which are invariant under
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R and R1 and R2, two of which are plotted in Fig.
3d. The quasiperiodicity of the action of R is corrob-
orated by the numerically determined trajectory of R.
Theorem 4 also predicts that R1 and R2 are involu-
tions of type (1, 1). For the flight phase partial return
map R2 this was established in Section 3.1.2. For the
stance phase partial return map, the eigenvalues of the
Jacobian of R1 at the fixed point x̄ were numerically
determined to be ≈ 1,−1.

D SLIP fitting protocol

D.1 SimSect simulations

1. A simulation must successfully complete 10 sec-
onds of simulation time without crashing, i.e. by
maintaining upright forward locomotion.

2. A simulation must be stable over the last 20
strides. A stride is a part of the trajectory be-
tween two isolated maxima of the z-component
of the COM-trajectory. Stability is measured in
terms of the maximal deviation of averaged linear
and angular velocities at the minimum of the z-
component of the COM-trajectory for the last 20
individual strides with respect to the respective
averaged quantities over those strides.

3. The second to last stride of the simulation is se-
lected and is required to exhibit a flight phase
at the isolated maxima, i. e. none of SimSect’s
six legs touch the ground over a finite amount of
time around these maxima. In addition, at the
the minimum of the z-component of the COM-
trajectory all three legs of the stance tripod are
required to touch the ground, whereas all three
legs of the flight tripod must be off the ground.

Once a SimSect simulation has passed all of the
above conditions, it is called stable. Then a 3-
DOF SLIP model is fit to the simulation data
of the selected stride. The simulation data re-
quired for fitting is given by time series vec-

tors ỹSim, ˙̃ySim, ¨̃ySim, z̃Sim, ˙̃zSim, ¨̃zSim, θ̃Sim,
˙̃
θSim,

¨̃
θSim

which form the part of the stride trajectory where all
three legs of the stance tripod of the SimSect model
are on the ground whereas all three legs of the flight
tripod are in the air (“stance phase”).15 Here the y-
coordinate denotes the forward position of SimSect’s
COM, z denotes the vertical position of the robot’s

15The stance tripod of RHex and the SimSect model is formed
by those three legs that are simultaneously in the slow phase of
the RHex clock controller. The flight tripod is formed by the
other three legs that are in the fast phase.

COM, and θ denotes the pitch angle of the robot in
the sagittal plane.

D.2 Fitting procedure

The equations of motion for the SLIP’s stance phase
(13) and the equation for the total conserved energy
in terms of dimensional variables can be written as

m̃¨̃y = −∂ỹV (ỹ, z̃, θ̃)

m̃(¨̃z + g̃) = −∂z̃V (ỹ, z̃, θ̃)

Ĩ
¨̃
θ = −∂θ̃V (ỹ, z̃, θ̃) (62)

Ĩ

2
˙̃
θ2 = Ẽ0 − V (ỹ, z̃, θ̃)− m̃g̃z̃ − m̃

2
( ˙̃y2 + ˙̃z2)

with V (ỹ, z̃, θ̃) = κ̃
2 (ζ̃−ζ̃0)2(1+cθθ θ̃2+cθψ θ̃ψ̃+cψψψ̃2),

ζ̃ =
√

(ỹ +∆ỹ)2 + z̃2, and ψ̃ = arctan ỹ+∆ỹ
z̃ . We

want to determine the a priori unknown parameters
cf = (κ̃, ζ̃0, cθθ, cθψ, cψψ,∆ỹ, Ẽ0) by fitting the numer-
ical data of a single stance phase of a SimSect sim-
ulation to the equations (62). The first five compo-
nents of cf are parameters that determine the SLIP
potential V . The sixth component ∆ỹ resets the y-
coordinate origin and hence determines the y-position
of the foothold of the fitted virtual SLIP with respect
to the stance data. The fitting parameters also include
the total energy Ẽ0, because in SimSect the total en-
ergy is not constant due to damping, frictional losses
and hip motor torques.

In order to determine the fitting parameters cf a non-
linear fitting procedure (using Matlab’s ‘lsqcurvefit’)
is employed that computes

min
cf
||Ffit(cf , x̃)− x̃fit||22 (63)

where x̃ = (ỹSim, z̃Sim, θ̃Sim, ˙̃y
2

Sim + ˙̃z
2

Sim),

x̃fit = (m̃¨̃ySim, m̃(¨̃zSim + g), Ĩ
¨̃
θSim, (Ĩ/2)

˙̃
θ
2

Sim),
and Ffit(cf , x̃) is the expression obtained by inserting
x̃ into the right-hand side of the equations (62). Once
a solution cf has been found, the quality of the fit
must be quantified.

D.3 Fitting error assessment

Instead of using the residual (63), which lacks an
intuitive physical interpretation and does not repre-
sent an error measure in phase space, we compute
fitting errors as in [4, 37]. The assessment of the
quality of the fit proceeds in two steps. First, a
SLIP simulation over the same period of time as the
data trajectory is run with the fitted value of cf .
The initial conditions are taken to be the positions
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and velocities of the data trajectory at the mini-
mum of z̃Sim.

16 Second, the resulting SLIP trajec-

tories ỹSLIP, ˙̃ySLIP, z̃SLIP, ˙̃zSLIP, θ̃SLIP,
˙̃
θSLIP are com-

pared to the data trajectories by L2 percent errors:

∆XL2 = 100
||XSim −XSLIP||2

||XSim||2
, (64)

Here, X ∈ {ỹ, ˙̃y, z̃, ˙̃z, θ̃, ˙̃θ} and ||·||2 is the standard 2-
norm. In an effort to simplify the assessment of the fit-
ting error, the quality of the fit is reported as two num-
bers — the average L2 percent error of the cartesian
coordinates ∆yzL2 = (∆ỹL2+∆z̃L2+∆ ˙̃yL2+∆ ˙̃zL2)/4
and the average L2 percent error of the pitch coordi-

nates ∆θL2 = (∆θ̃L2 +∆
˙̃
θL2)/2.
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Proceedings of the International Conference on
Robotics and Automation (ICRA) 2003, Taipei,
Taiwan, 2003.

[9] M.H. Raibert. Legged Robots that Balance. MIT
Press, Cambridge, MA, 1986.

[10] T. Kubow and R. Full. The role of the me-
chanical system in control: a hypothesis of self-
stabilization in hexapedal runners. Philosophical
Transactions of the Royal Society of London Se-
ries B - Biological Sciences, 354(1385):849–861,
1999.

[11] J. Schmitt and P. Holmes. Mechanical models for
insect locomotion: dynamics and stability in the
horizontal plane I. Theory. Biological Cybernet-
ics, 83:501–515, 2000.

[12] J. Schmitt, M. Garcia, R. Razo, P. Holmes, and
R.J. Full. Dynamics and stability of legged loco-
motion in the horizontal plane: A test case using
insects. Biological Cybernetics, 86 (5):343–353,
2002.

[13] A. Seyfarth, H. Geyer, M. Günther, and R. Blick-
han. A movement criterion for running. Journal
of Biomechanics, 35:649–655, 2002.

[14] R. M. Ghigliazza, R. Altendorfer, P. Holmes, and
D. E. Koditschek. A simply stabilized running
model. SIAM Journal on Applied Dynamical Sys-
tems, 2(2):187–218, 2003.

[15] A. Seyfarth, H. Geyer, and H. Herr. Swing-leg
retraction: a simple control model for stable run-
ning. Journal of Experimental Biology, 206:2547–
2555, 2003.

[16] R. Altendorfer, D. E. Koditschek, and P. Holmes.
Towards a factored analysis of legged locomotion
models. Technical Report CSE-TR-467-02, Uni-
versity of Michigan, 2002. to appear in Proceed-
ings of the International Conference on Robotics
and Automation (ICRA) 2003, Taipei, Taiwan.

[17] H.M. Herr and T.A. McMahon. A trotting horse
model. International Journal of Robotics Re-
search, 19 (6):566–581, 2000.

[18] H.M. Herr and T.A. McMahon. A galloping horse
model. International Journal of Robotics Re-
search, 20 (1):26–37, 2001.
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D.E. Koditschek, H.B. Brown Jr., M. Buehler,
N. Moore, D. McMordie, and R. Full. Evidence
for spring loaded inverted pendulum running in
a hexapod robot. In Experimental Robotics VII,
pages 291–302. Springer Verlag, 2001.

[38] V.I. Arnol’d. Reversible Systems. In R.Z.
Sagdeev, editor, Nonlinear and Turbulent Pro-
cesses in Physics, volume 3, pages 1161–1174.
Harwood Academic Publishers, 1984.

[39] S. Bochner. Compact groups of differentiable dif-
feomorphisms. Ann. Math., 46(3):372–381, 1945.

[40] G.D. Birkhoff. The restricted problem of three
bodies. Rend. Circ. Mat. Palermo, 39:265–334,
1915.

[41] M.B. Sevryuk. Personal communication.

28


