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Abstract

Broadcast encryption allows a sender to broadcast messages in such a way that only the
sender-specified subset of users can decrypt them. Over the years a number of schemes have
appeared that solve different variants of the problem. The number of applications that could
take advantage from an efficient broadcast encryption scheme has also grown and includes
such examples as content-based publish subscribe systems. Such systems are characterized by
messages going to arbitrary and rapidly changing subsets of users. Each message can potentially
go any of the 2™ — 1 possible subsets. Collusion resistance and small resource requirements are
necessary.

In this paper we present a simple and efficient broadcast encryption scheme based on one-way
group operations. A group operation ® is one-way if x ® y is easy to perform for any two group
elements x and y, but computing the inverse x ! (w.r.t. ®) is infeasible. Groups with infeasible
inversion have recently received attention as a cryptographic primitive and their existence is still
uncertain. Under the assumption that such groups exist, we prove the security of our broadcast
encryption scheme and explore a few areas where such constructions might come from. Finally,
we discuss some functions used in existing cryptosystems and compare them with one-way group
operations.

1 Introduction

Broadcast encryption schemes provide a convenient way to distribute digital content from a sender
to dynamically changing sets of users in such a way that only the privileged users can decrypt
it. Such schemes are useful in pay-TV systems, distribution of copyrighted material, streaming
audio/video, information distribution, etc. As discussed in [OP01], broadcast encryption can also
be useful for securing content-based publish subscribe systems where the set of receivers varies as
a function of the the message content being distributed [SAB*T00, BCM 199, Car98].

Since its introduction by Fiat and Naor [FN93], significant amount of research has been done
on different broadcast encryption schemes. The basic problem has many variants. For example, the
privileged set can be fixed, slowly changing, or rapidly changing. A scheme can support a single,
bounded, or unbounded number of broadcasts. The keys stored at each user can be fixed or changing
over time. The number of revoked users can be bounded or unbounded. The scheme can be resistant
to random or arbitrary adversarial coalitions of various sizes. etc.

We study one of the most interesting (and one of the hardest) variants of broadcast encryption
when receivers are stateless. Broadcast encryption with stateless receivers, as defined in [HS02], has
the following requirements:

e Each user is initially given a collection of keys.



e The keys can be used to decrypt any number of broadcasts.
e The privileged set can be defined as any subset of receivers.
e The keys do not change based on user’s viewing history.

e The keys do not change as new users join/leave the system (in our case, every new user’s
public key must be made available to others).

e Consecutive broadcasts can be destined to unrelated privileged sets.
e Each privileged user can decrypt the broadcast by herself.

e Even a coalition of all the non-privileged users cannot decrypt the broadcast.

A number of approaches solving different variants of the broadcast encryption problem are
described in section 2.

We introduce and define one-way group operations and show how such operations can be used
to construct a secure broadcast encryption scheme which satisfies the above requirements. One-way
group operations are operations on special types of groups: groups with infeasible inversion. If ®
denotes the operation on such a group G, then for any x,y € G, x®y can be computed in polynomial
time (in the length of a suitable representation of the elements) whereas no probabilistic polynomial
time algorithm can compute x | with a non-negligible probability. This new cryptographic primitive
has also been independently studied in [Hoh03].

Our broadcast encryption scheme is contributory in nature and allows any user to send and
receive broadcasts. The scheme supports rapidly changing and arbitrary subsets of receivers. It is
also fully collusion resistant. We prove that one-way group operations are sufficient for the security
of our scheme. The existence of groups with infeasible inversion is still in question and we examine
functions used in existing cryptosystems and show where they fall short.

The remainder of this paper is organized as follows. Section 2 describes in more detail different
existing broadcast encryption schemes and their limitations. It also describes alternatives to broad-
cast encryption. Section 3 defines groups, groups with infeasible inversion and the properties of
one-way group operations. Section 4 describes our broadcast encryption scheme and presents proof
of the scheme’s security. Section 5 discusses the properties of our broadcast encryption scheme
and explores possible sources of one-way group operations. Finally, Section 6 presents the current
challenge to construct groups with infeasible inversion. It also presents concluding remarks.

2 Related Work

Broadcast encryption involves n receivers and a broadcaster. The broadcaster wishes to broadcast
messages to a specific subset of S C {1,...,n} of receivers (for example, receivers that previously
paid for the broadcasts). In the idealized scheme, which is the topic of this paper, any receiver in
S should be able to decrypt the broadcast. However, even if all receivers outside of S collude they
should not be able to decrypt the broadcast.

Broadcast encryption was first introduced by Fiat and Naor [FN93] in the context of pay-TV.
The authors presented methods for securely broadcasting information such that only a selected
subset of users can decrypt the information while coalitions of up to k unprivileged users learn
nothing. Unfortunately, schemes presented in [FN93] as well as in extensions found in [BC94,
BMS98, SvT98] require a large numbers of keys to be stored at the receivers or large broadcast



messages. Another problem in the context of secure content-based systems is that some coalitions
of more than k unprivileged users can decrypt the information.

Luby and Staddon [LS98] studied the trade-off between the number of keys stored in the receivers
and the transmission length in large and small target receiver sets. They prove a lower bound that
shows that either the transmission must be very long or a prohibitive number of keys must be
stored in the receivers.

An extension proposed in [ASW00] decreases the number of keys required and the length of
transmissions by relaxing the target set. It allows a small fraction of users outside the target set
to be able to decrypt the information. The authors introduce “f-redundant broadcast encryption
schemes” where the total number of broadcast recipients is no more than f times the size of the
target set. Such a scheme may work well for pay-TV and similar applications but is unacceptable
when confidentiality of broadcast information must be preserved.

More recently, Naor-Naor-Lotspiech [NNLO1] gave a construction where each receiver has to
store only O((log n)?) encryption keys and the header of a broadcast message must contain O(n—|S))
encryptions of a message key (|S| is the size of the receiver set).

Halevi and Shamir [HS02] showed that the number of keys stored at the receiver can be reduced
to O(k * logn). This property holds only for systems designed to broadcast to large sets S (when
size of S is close to n, so that n — |S| is small. k is the size of an encryption key.

Whether one can build a secure broadcast encryption scheme where both the size of the header
and the size of each receiver’s key store depend at most logarithmically on n, remains an open
problem. Fiat and Naor [FN93] and Chick and Tavares [CT89] proposed solutions but they are
either not completely collusion resistant [FN93] or they can only handle a small number of receiver
sets S [CT89].

In a recent paper, Boneh and Silverberg [BS03] present an efficient solution using n-multilinear
maps. The authors construct a secure broadcast scheme that requires O((logt)?) keys stored at
receivers and a constant size header. The multilinear maps are introduced as generalizations of
Weil and Tate pairings on supersingular elliptic curves [RS02]. Boneh and Silverberg use broadcast
encryption as a motivating application hoping that an efficient way to construct multilinear maps
will be discovered. Despite the fact that n-multilinear maps provide an efficient and clean solution to
the secure broadcast encryption problem, the authors admit that finding examples of n-multilinear
maps with n > 2 may be difficult.

During the same time that we were formalizing our broadcast encryption scheme, Susan Ho-
henberger was writing her thesis “The Cryptographic Impact of Groups with Infeasible Inversion”
[Hoh03]. In the process of searching for a directed transitive signature scheme, the author describes
groups with infeasible inversion (GII). The author formalizes properties of such groups and proves
a number of black-boz reductions between cryptographic primitives (including GII). Independently,
using reduction from GII, the author arrives at a construction for two-party key agreement that is
similar to our broadcast encryption scheme (for 2-member groups). But there is no generalization
in [Hoh03] to key agreement in groups with size larger than two. Our scheme, as presented in this
paper, provides construction for n-party key agreement as well as a proof of the scheme’s security.

An alternative to broadcast encryption was earlier presented in [OP01]. The authors present a
number of key caching schemes to enable sending messages to an arbitrary subset S C {1,...,n}.
The basic idea is to generate and cache keys for most frequent subsets S;. The most promising
is the clustered cache approach, which divides the set of receivers n into k clusters. Separate keys
Ki,...,Kx are maintained for subsets from each cluster and each message must be encrypted up
to k times (once for a subset in each cluster). This approach works with relatively small size key
stores at receivers and requires a small number of encryptions per message. It is also collusion-proof.



Unfortunately, the approach may be insufficient, when the key store size is very small and only a
small (preferably one) number of encryptions per message is allowed. It may also prove inefficient
when n is very large.

A related and active area of research is secure group communication [MPH99]. Specifically,
group key management services are closely related to the problem described above. Secure group
communication systems are usually meant to provide secure channel for the exchange of data
between group members. Secure groups are often identified by a session key, known to all group
members, which is used to encrypt all data sent to the group. Key management services are used
to facilitate member joins and leaves (including expulsions) as well as periodic re-keying to ensure
validity of the session key.

The problem of secure delivery of messages from a sender to an arbitrary subset S C {1,...,n}
can be cast as group communication with very dynamic membership (the subset S can change from
one broadcast to another). If a group communication system were used to broadcast messages from
a sender to receivers, a group would have to be reconstructed (possibly entirely) every time the
subset S changes. In the worst case the group would have to be reconstructed for every message. The
existing group key management approaches were not designed to support dynamic changes that
occur in content-based systems do not satisfy our requirements for broadcast encryption algorithms.

A number of group key management schemes attempt to reduce the complexity of reconstructing
a group when joins/leaves occur. Most of those systems were designed to with single joins/leaves in
mind and with the assumption that membership changes are infrequent in comparison to message
sends. Mittra’s Iolus system [Mit97] attempts to overcome the problems in scalability of key distri-
bution by introducing locally maintained subgroups. Approaches based on logical key hierarchies
(LKH) [WHA99, WGL98, YL00] use a key tree to provide O(log N) re-keying in response to a single
join or leave but scale at least linearly in the presence of random group changes. The VersaKey
system [WCST99] extends the LKH algorithm by converting the key hierarchy into a table of keys
but is vulnerable to collusion of ejected members.

A number of key agreement protocols (as opposed to key distribution approaches outlined above)
have been suggested in which group keys are created from contributions of inputs (or key shares) of
desired members [[TW82, SSDW88, BD94, BW98, STW00, KPT00]. The general approach taken
in these protocols is to extend the 2-party Diffie-Helman exchange protocol to N parties. Due to the
contributory nature and perfect key independence, most of these protocols require exponentiations
linear in the number of members [STWO00] for most group updates. Kim et al unify the notion from
key hierarchies and Diffie-Helman key exchange to achieve a cost of O(log(N)) exponentiations for
individual joins; however, the number of exponentiations for k joins or leaves will still be usually at
least linear in k (unless the nodes that are leaving happen to be all clustered in the same parts of the
key tree). Since exponentiation is expensive, these protocols are primarily suitable for establishing
small groups at present and not suitable when group membership can change drastically from event
to event.

3 Groups with Infeasible Inversion

This section defines groups with infeasible inversion and formalizes assumptions for the necessary
group operation.



3.1

Black Box Groups

Let G = {GyJken be an infinite sequence of commutative groups. We assume that the elements of
Gy are represented by strings in {0, 1}¥. The integer k will be our security parameter. We often omit
the subscript k in Gx. We denote the group operation in G by ®, and the identity by 1 — thus ®
is a commutative and associative binary operator over G and for every x € G, there is a unique
inverse denoted x ! such that x ® x ' = x ' ® x = 1. We assume that G is presented as a black
boz. This means we assume the following algorithms.

Samplability: There is a polynomial time sampling algorithm Sg(1%) that produces random
elements of Gy according to (nearly) uniform distribution.

Equality Testing: Given x,y € {0,1}¥, there exists a polynomial time algorithm EQ(x,y)
that returns true if and only if x and y represent the same group element in Gx. We assume
that a special string, say 0¥, represents the identity element of Gy. Thus, we also have an
algorithm for testing if an element is the identity.

Note that equality testing is not necessary if we assume a canonical representation of every
element of Gy as a string in {0, 1}. However, we are not assuming so. For example, different
matrices might represent the same element in a group of linear transformations.

Membership Oracle: Tt is sometimes convenient to have an algorithm Member(x) that,
given x € {0, 1}%, returns true if and only if x represents an element of Gy.

In all cases above, we may often allow the algorithms to be randomized.

3.2

One-Way Group Operations

The group operation ® as defined above is called one-way if the following assumptions hold.

Assumption 1 (Easiness of ®): There is a polynomial time (randomized) algorithm T such
that for all x,y € G, T(x,y) =x®vy.

Assumption 2 (Hardness of inversion): No randomized polynomial time algorithm (PPTM
= Probabilistic Poly-time Turing Machine) can compute x 1 for a randomly chosen x € G
with non-negligible probability. Formally,

V PPTM A, PrlA(x) =x"':x & Sg(1%)] < v(k), (1)
where x € {0,1}* and v(k) is a negligible function of k, i.e., v(k) < 1/k¢ for any constant
¢ > 0. Here the probability is taken over uniformly distribution on x € G and the internal
randomness of A.

Sometimes a slight generalization of Assumption 2 is useful.

Assumption 2': Given randomly chosen x,yi, ...y, it is infeasible to compute y; ® -+ ®
vt ®x "V PPTM A’

PrIA’ (U1, V) =11 ® - ®ur ®x ' ix & Sg(1%), y3 & Sg(1M] <v(k),  (2)

where t = poly(k), and v is a negligible function. Again, the probability is taken over random
choices x and y; and the internal randomness of A’.



It is easy to show that

Proposition 1 Assumption 2 and Assumption 2’ are equivalent.

Proof: Suppose Assumption 2 is false. Hence there is a poly-time algorithm A to compute x ! for
most x. Let x,y1,...,Yyt be inputs in Assumption 2’. Construct A’ from A by first computing x~
and then computing y1 ® --- ® y¢ ® x| using the poly-time multiplier T for computing ®. Time
complexity of A’ is at most time complexity of A + tx time complexity of T which is polynomial
since t is poly. Thus Assumption 2’ is false.

Next, suppose Assumption 2’ is false. Note that falsity of Assumption 2 is not immediately
obvious by simply letting y; = 1 for 1 < 1 < t. This is because A’ could be wrong when all y;
are 1 and yet have a non-negligible success probability by being correct on most other inputs. Let
x be a random element of G (input in Assumption 2). Algorithm A does the following. Generate
random elements yi,...,y; € G (using Sampler Sg(1¥)). Compute z := x @ Y1 ® - - - ® y;. Note
that z is a uniformly distributed random element of G. Feed z and y1,...yt as inputs to poly-
time algorithm A’ that falsifies Assumption 2. Now, A’ outputs y1 ® - Qu¢ ®z . But z ! =
(x®y1®---®y) ' =y ' ® - @y~ ®x . Hence,

AI(Z)y1)---)yt) = y1®"'®yt®z_1
= Y1® - @UBYr '@y @
1
= x .

Hence A outputs whatever A’ does. Thus we have a poly-time inverter A from A’: time com-
plexity of A is at most time complexity of A’ + time to generate the y; + time to compute z.
Finally, note that if A’ has non-negligible probability of success, so does A: Pr[A(x) succeeds] =
2 yepat PrA/(x,y) succeeds]. m

4 Broadcast Key Agreement

Let U be a group (a collection of processors) of users 1,...,n. Given a privileged set S C U of users,
we want a method for each member of S to compute the group key Kg with no communication
(assuming a global initialization). The key Kg should be infeasible to compute by users outside S.
This key is then used to broadcast' messages meant to be received only by members of S.

In our protocol, user i has a secret key s; and a public key p;. There is a common string c,
¢ # 1, known to every user in U. All the keys and the common string are elements of the group G.
The public key p; is defined by p; = s; ® c. The secret keys s; and the common string ¢ are picked
uniformly at random from G using the poly-time sampler. In a global initialization every user is
given the public keys of all users in the system (so, we assume each user has sufficient memory to
store n public keys).

The group key Kg for S C U is defined as

Ks = @pioc. 3)
=
By the definition of p; and commutativity and associativity of ®, note that for each i € S,

Kg = ® P; ® sy. (4)

JES, j#

'In a typical application, there may be a designated server or broadcaster. In that case we assume that the server
is always a member of any privileged set.



Since the p;’s are known to everyone and s; is known (only) to user i, every user in the set S can
compute Kg from (4). No user outside of S can compute Kg directly from (4). In fact, we prove that
no coalition of non-members can efficiently compute the group key:

Theorem 2 If Assumption 2 holds, then for every S C U no coalition of users T such that TNS =0
can compute the group key Ks in randomized polynomial time with non-negligible probability when
the secret keys s; and the common value ¢ are chosen uniformly at random from G.

Proof: Suppose theorem 2 does not hold. W.Lo.g. let S={1,... m}and T=S ={m+1,...,n}.
An attack by the coalition T can be viewed as a randomized algorithm that knows the common
value c, public keys p; for all users i € S, and (at best) the secret keys s; of all users j € T (from
these and c, p; for j € T can be computed). Hence, by our assumption on the attack, there exists
a PPTM B such that

PT[B(C,p1)--- )pmysm-}-],---)sn) :KS] Z 1/kda

for some constant d > 0. Using B we construct an algorithm A’ that violates Assumption 2’. By
Proposition 1, the theorem follows.

Let x,Y1,...,Yn be random elements of G input to algorithm A’. Algorithm A’ constructs an
input instance of B as follows.

Let c:=x,pi=yifori€ S, and let s; =y; forj € T.

Implicitly, we have s; = p;®c ! for i € S. Since B does not know s; for i € S, this is OK. Note also
that the input to B has the right probability distribution. Let B output z, supposedly Ks. Then A’
outputs 2® s;1 ® + -+ ® sn. We have

A'XY1,. .y Yn) = Z2@Smi1 @+ sn
= Ks@smp1® - Qsn
= PI® - Pm®OC @Syl ® - @ 8n
= PI®  Pm®Smi1 Q- Qs ®c | by commutativity
y1®---®yn®x_1.

Hence A’ is correct whenever B recovers the key. It follows that A’ has a non-negligible probability
of success. Furthermore, A’ runs in polynomial time if B does; its additional cost is essentially for
multiplying B’s output by the s;’s. This violates Assumption 2’. m

5 Discussion

5.1 Features and Implications

Given the above outline, an implementation of this key distribution scheme possesses a number of
properties:

e The set of members to be included in a group is entirely arbitrary. This supports applications
such as content-based publish subscribe systems, where group membership changes frequently.



e The system is immune to failures on the part the recipients, who may be off line or otherwise
unavailable. A member wishing to establish a group key may do so independently, and does
not require input from recipients other than their initial public key. This is a weakness in
systems relying on approaches such as Group Diffie-Hellman [STW98, KPT00] that require
coordinated input from group members for key generation. In such systems the number of
potential points of failure increase as the group size increases, magnifying the effects of the
vulnerability.

e The system is immune to collusion. No set of outside or former members may calculate a key
to a group to which it does not belong.

e The contributory nature of this scheme has multiple effects. Each member knows that only
members that are authorized to join are able to join. Members also know that their private
key has been incorporated into the group key, which prevents other members from fabricating
keys that are not available to the entire group.

e Keys are not obsoleted. Simple key distribution protocols obsolete keys as new members join,
requiring new keys to be generated frequently. This also means that if a member does not
have all the public keys needed to decrypt a message, then they can potentially store the
encrypted messages until the keys are obtained.

e As a different key is used for each different set of members, perfect forward and backward
secrecy are provided.

As stated, each group member publishes its public key, which essentially means that it is broad-
cast. There is some question as to whether this should be considered as part of the overhead of
the system or not. Other key distribution systems consider authentication outside their scope for
purposes of evaluation and comparison. Here, authenticating a member requires distribution of
its public key, which also builds the required infrastructure. For the purpose of evaluation and
comparison, we also choose to consider the publication of public keys outside the scope of key
distribution.

The storage requirements for a group of size n is n x keysize. On laptop and larger systems
this is easily accommodated. On very small systems such as smart cards this may be a problem,
however the problem is somewhat mitigated by the fact that public keys are static, and so can be
stored in cheaper read-only memory.

Group keys may be more efficiently computed by storing intermediate results from previous
computations. Extremely computationally limited devices may in fact have a set of pre-calculated
values downloaded from more computationally able members. Some systems may take advantage
of known patterns in membership changes, use algorithms such as “most frequently used”, “most
recently used”, or organize keys in a binary tree structure as used in logical key hierarchies [WHA99]
which requires log(n) time for single membership changes. Again, members are independent, so
each may choose the speed verses space algorithm which best suits their individual needs.

The scheme predicates that public keys have been distributed. For large centrally managed
systems such as publish subscribe, it may be preferable to calculate the expected maximum number
of public keys required beforehand, and provide all of them to members as they join the system.
A new member is assigned an unused public key and given its corresponding private key. This
avoids the incremental method of revisiting existing members to supply them with the public keys
of newly joined members.



5.2 Examination of Existing Functions

Our examination shows that commonly known cryptographic techniques do not satisfy the as-
sumptions for one-way group operations. We are not aware of any constructions that satisfy the
restrictions of groups with infeasible inversions. However, similarly to the author of [Hoh03], we
postulate the existence of such groups and encourage additional research to find examples of this
cryptographic primitive.

This section presents discussion of why some of the more popular cryptographic functions do
not satisfy the requirements for the operator in a group with infeasible inversion.

5.2.1 Diffie-Hellman and RSA

We considered groups where the Diffie-Hellman problem was easy but the inverse in the expo-
nent was hard. However, discrete logarithms (which support Diffie-Hellman and RSA) lack the
associativity property:

(a®)€ # al®)

where a, b, and ¢ are positive integers. The lack of associativity violates one of the group criteria
as presented in section 3.1. Additionally, Sadeghi and Steiner show that using computational Diffie-
Hellman problem to create a group with infeasible inversion would only be possible if the order of
the group remains secret [SS01].

5.2.2 Elliptic Curve Cryptography

Our original idea is based on the elliptic scalar multiplication operation in elliptic curve cryptog-
raphy [LDO0O0]. This operation is similar to exponentiation in multiplicative groups in a way that
inverses are hard to compute. For an integer d, a point on an elliptic curve P, and an assignment
F=d x P, it is difficult to calculate d given F and P.

Briefly, key agreement for groups of size two using elliptic curve cryptography is done in the
following way: an equation describing an elliptic curve and point F on that curve is agreed upon
by group members and published. Each group member chooses a random number to be used as
private key s. Their public key P = s X F. Two members can agree on a common key by calculating:

Ki2 =F xs71 x 52
M calculates:
K]z =Fx S1 X 82

= (F x s3) X s7
= (P2) x s

M calculates:

K]z :FXS]XSZ
= (Fxs1) X8
= (P1) x 82

This technique is not applicable to larger groups because the elliptic scalar multiplication op-
eration X is only valid between an integer value and a point, not between multiple points.



5.2.3 Symmetric Key and Hashes

Finally, classic symmetric key and cryptographic hashes also lack the associative property. Using
AES [DRY9] as a function where A ® B indicates that value B should be encrypted with key A, the
following generally holds true:

(A®B)®C#A®(B®C)

This clearly violates the associativity criteria as presented in section 3.1

6 Conclusions and Future Work

The proposed key distribution scheme provides a number of highly desirable features, including
most notably arbitrary subgroup addressing and immunity to failure. This scheme is not being
presented as the only possible solution with the desired properties, but is attractive because of its
simplicity and elegance. Our research to date has not yielded a group with the required properties.
Discrete logarithm, elliptic curve cryptography, symmetric encryption, and hashing functions have
been shown to be cryptographically hard, but do not satisfy other requirements for groups with
infeasible inversion. Future efforts will focus on discovering a mathematical group with the given
properties, which is pivotal to a successful implementation.

Broadcast encryption is not the only potential application of groups with infeasible inversion.
Such groups are necessary and sufficient for the implementation of a directed transitive signature
scheme and are related to several other cryptographic primitives such as Strongly Associative One-
Way Functions [Hoh03]. We wish to join the author of [Hoh03] in challenging the cryptographic
community to help answer the question regarding the existence of such groups.
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