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C. Serkan Karagöz†, H. Is.ıl Bozma† and Daniel E. Koditschek‡

† Intelligent Systems Laboratory
Department of Electrical and Electronic Engineering, Boğaziçi University
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Abstract

This paper addresses the coordinated navigation of multiple independently actuated disk-shaped
robots - all placed within the same disk-shaped workspace. We encode complete information about the
goal, obstacles and workspace boundary using an artificial potential function over the cross product
space of the robots’ simultaneous configurations. The closed-loop dynamics governing the motion of
each robot take the form of the approriate projection of the gradient of this function. We show, with
some reasonable restrictions on the allowable goal positions, that this function is an essential navigation
function - a special type of artificial potential function that is ensured of connecting the kinematic
planning with the dynamic execution in a correct manner. Hence, each robot is guaranteed of collision-
free navigation to its destination from almost all initial free placements.
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1 Introduction

This paper addresses a geometrically simplified version of coordinated motion planning [11]. A collection
of disk-like robots inhabit a two-dimensional disk-shaped workspace. Each robot can move simultaneously
with and independently of the other robots. Moreover, each has a specified goal location in which it needs to
end up. The ensemble of these locations encodes the overall task. Departing from the classical coordinated
motion planning paradigm, in a manner similar to [37], we further require that i.) each robot’s control
strategy be reactive rather than a tracking strategy based on an a priori generated plan of motion; and ii.)
if possible, the kinematic planning and dynamic control stages be unified. In other words, each robot must
start from its arbitrary initial placement, confront the other robots dynamically and eventually end up in
its goal position. Unlike the traditional open-loop plans where the robot trajectories are calculated a priori,
a feedback-based system can react to changes and thus be more efficient and robust.

This paper presents a formulation of the problem using artificial potential-fields that is guaranteed
to move all the robots to their destinations without any collisions along the way. First, an artificial potential
function that encodes complete information about the goal as well as the freespace is constructed. The
constructive technique is a slight variation of that previously presented in [37]. The closed loop dynamics
governing the motion of each robot occurs in a coordinate slice of the gradient field induced by this function
- hence giving a set of coupled dynamic systems. Although this approach is in principle a completely general
alternative approach, possible existence of undesired local minima on which the system might get stuck has
been a major drawback. While constructive techniques have been reported with success for different, but
related versions of the problem [15, 6], the applicability of these constructs to the realm of coordinated
navigation in two or higher dimensions had still remained a conjecture [37]. This paper shows for the first
time that the line of reasoning presented in [29] can be generalized to coordinated navigation of disk-shaped
robots in a disk-shaped workspace. Provided certain contraints on the allowed goal positions are satisfied,
navigation to the goal placements can be guaranteed.

1.1 Coordinated Motion Planning

Traditionally, the coordinated motion problem has been seen to be a special case of the general open-loop
motion planning problem: i.) The kinematic planning is treated seperately from the dynamic control stage
[23, 25, 7], and ii.) All the robots are considered as a single system whose degrees of freedom is the sum
of all the individual degrees of freedom [32]. In these open-loop approaches, the focus is on developing
computational geometric means that are assured of finding a path in the configuration space that does not
violate any of the hypersurfaces encoding the constraints on the robots’ degrees of freedom [9, 30]. Depending
on how the planning is achieved, these approaches are either classified as being centralized or decentralized
[35]. Unfortunately, the complexity of the coordinated motion planning has proven to be PSPACE-hard
even in two dimensional environments where only translations are allowed and when the final configuration
specifying the final positions of all movable objects are known [11, 38]. This result has been viewed as a guide
to the difficulty of the problem and has led researchers to consider the more tractable, but restricted classes
of the problem. For example, for cases where the contact surfaces are defined by a total of n polynomials
of maximum degree d, it has been suggested that the general Roadmap Algorithm can be applied to get a
solution of order O(n2p(log n)d(2p)4) in deterministic time [32]. Improvements to this result have been made
by considering simpler instances - such as for the case of two independent robots where each has two degrees
of freedom and moves in the plane amidst polygonal obstacles having a total of n corners, a O(n2) algorithm
has been presented in [31]. This result has been extended to k disks to get a solution with O(nk) running
time [32, 26] – hence polynomial in the geometric complexity and exponential in the degrees of freedom.

Against this backdrop, researchers have then approached the problem by proposing heuristic or
approximate schemes [32]. In centralized approaches, the problem is transformed into path and velocity
planning subproblems [12] or into a series of planning subproblems in a prioritized manner [9]. There have
also been approaches that reduce the dimensionality of search by equivalent characterization as a set of
pairwise coordination diagrams [34] or via constraints that when imposed lead to guaranteed polynomial-
time solutions [33, 4]. Alternatively, in decentralized approaches, the path planner is distributed among the
robots – all acting independently and iterating a loop of plan, look for collisions, move or replan [35, 24]. In
an intermediate approach, while the independent nature of the robots’ performance measures is preserved,
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an algorithm for finding the minimal with respect to the natural partial ordering on the space of motion
plans is presented [22]. Obviously, in case of changes in any of the robots’ objectives or the environment,
complete recalculation of paths is required. Furthermore, there is no guarantee of completeness.

We take an approach within the extreme opposite paradigm: purely feedback-based motion planning.
Such approaches have been only rarely explored in the literature, perhaps because it seems intractable. For
the simpler problem of robot motion among stationary obstacles, a variety of potential field heuristics have
been presented in the literature [20, 27], and the reader is referred to [10] for a comprehensive survey. A
hybrid methodology combining open-loop prioritization with lower level potential fields applied to C-Space-
time obstacles and constructed purely on kinematic principles is proposed in [36]. A probabilistic motion
planning method over the robot configuration space combines gradient motions and random walks in [1].
However, most of these work suffer from local minima. The notable exception has been [18], where it has
been shown that via a special construction, exact robot navigation amongst stationary obstacles can indeed
be achieved in general. The construction techniques used for the artificial potential function enable encoding
of both the goal and the obstacles. The generalization of this approach to coordinated navigation has first
been presented for multiple bead-like robots moving on a line [15]. The controllers are obtained simply by
the projection of the gradient on the respective robot space. The extension to the case of disk-like robots in
planar workspaces has first been presented in [37] - where extensive simulations strongly suggest that these
controllers are guaranteed to converge. A mover robot with such a controller has been demonstrated to be
robust against positional disturbances in a sequential version of the problem – where only one robot can
move at a time [13]. In this paper, we provide a formal proof that indeed verifies correctness results from the
simpler robot navigation realm pertain to coordinated navigation of disk-like robots in planar workspaces.

Figure 1: (a) A coordinated navigation scenario; (b)-(f)Snapshots from a task.
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1.2 Motivation

Consider a typical scenario as shown in in Figure 1a where the numbered circles represent the robots and
each small solid circle represents the goal position of a robot. Here, all robots except robot 1 are located
very close to their goal positions. A simple open-loop strategy would be to have robot 1 move around the
robots [19]. We are interested in systems which solve this problem completely in a feedback-based manner.
Since all the robots can move simultaneously, this should be taken advantage of whenever possible. For
example, in this case, a feedback-based strategy leads to cooperation: robots 2 and 3 can nudge slightly to
the left and right by enough amounts to allow robot 1 pass through, and then move back. Then robots 4
and 5 do the same thing and eventually robot 1 moves to its home position. Instead of a complete a priori
specification, we would like to formulate an only partially specified recipe for the automatic generation of
actuator commands that is reactive to robots’s positions at all times.

1.3 The Problem Statement

Consider a collection of p disk shaped robots lying on the same two dimensional workspace bounded by an
outer disk. Each robot has a two degrees of freedom motion capability in this workspace, is assigned to
a goal position vector and can move independently of the others. Thus each robot becomes an obstacle –
possibly moving – for the remaining other robots. We assume that:

(i) Each robot has ideal bounded torque actuators;

(ii) Each robot has perfect real time knowledge of its own position; and

(iii) Each robot knows exactly the sizes and the locations of the other robots any time.

Let b denote the augmented state vector of all the robots. For this paper, we consider the simplest control
setting and model their change of state ḃ according to control law: ḃ = u. We seek a means of determining
the control input u in terms of the present robot state in such a fashion that the robots would converge to
their goal positions starting from almost all initial conditions. For this, we define a smooth map ϕ(b(t)) :
F → [0, 1]. We then let u = −∇ϕ where −∇ϕ is the negative gradient of the map ϕ with respect to b. The
equilibria b(∞) of this system constitute its fixed points. This task is successfully completed if b(∞) = g or
successfully terminated if b(∞) �= g.

1.4 Navigation Functions

Since the basin of a point attractor is a topological ball, whereas the free configuration space of this problem,
F (to be defined formally in the next section), is not, there clearly cannot exist vector fields that take every
point b ∈ F to the goal g. However, there is no such obstruction to smooth vector fields with a point
attractor whose basin includes all of F excluding a set of zero measure. We believe that the disadvantage
of ”losing the way” on an ”invisible” subset of freespace is offset by the many considerable advantage that
dynamical systems based motion planning enjoys, as reviewed, for example in [5], hence our interest in the
following class of scalar valued functions, originally defined in [16]. A map ϕ : F → [0, 1] is a navigation
function if it is:

1. Analytic on F ;

2. Admissible on F - It attains its maximum on the boundary ∂F .

3. Polar on F - its unique minimum occurs at the goal configuration g ∈
◦
F ;

4. Morse on F - All critical points are non-degenerate;

If negative gradient of ϕ is transverse on the boundary and directed inwards, all solutions of the gradient
system approach the critical points where the gradient vanishes. If ϕ is a Morse function (critical points
are non-degenerate), then critical points are isolated, and the unstable equilibria (saddles or local minima)
attract a set of points whose measure is zero. In particular, if g is a unique minimum of ϕ, then almost all
points move towards g. Thus, an appropriately constructed ϕ solves the geometric path planning problem.
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Moreover, if ϕ is interpreted as an artificial potential function, then the gradient vector field leads to the
automated generation of robots’ control torques. Furthermore, within certain constraints, the robots’ limiting
behavior is identical to that of the vector field.
Suppose we relax requirement that ϕ is Morse on F as follows and have what we term essential navigation
function:

4. Morse on
◦
F - All interior critical points are non-degenerate;

In consequence, degeneracy is possibly permitted on ∂F . However, no open set of initial conditions can be
attracted to such critical points since ϕ cannot increase along the motion of −∇ϕ.

1.5 Contribution of the Paper

The main contribution of the paper is to show that our construction (4) is indeed a navigation function. For
this yields – for the case of disk-shaped robots all moving independently in a disk-shaped workspace – an
exact coordinated navigation algorithm with the provably correct feedback laws for the robots [16, 29] almost
everywhere in the configuration space. More precisely, we show that with some reasonable restrictions on
the goal positions, the constructed artificial potential function can be made to be an essential navigation
function – by suitable assignment of the parameters that we prescribe exactly in 1as a function of the known
problem geometry.

2 The Candidate Potential Function

2.1 Notation

Let the collection of p ∈ Z
+ robots be denoted with the index set P = {1, . . . , p}. Each robot i ∈ P is

located by its center point bi ∈ R
2, defined by its radius ρi ∈ R

+ and assigned a goal position gi ∈ R
2. The

state b ∈ R
2p of all the robots is defined as∗ b

�
=

∑
i∈P bi ⊗ ei, where e1, e2, . . . , ep ∈ R

p are the unit base

vectors in R
p. The aggregate goal vector g ∈ R

2p is defined by g
�
=

∑
i∈P gi ⊗ ei.

Now, define the index set of robot pairs Q = {(i, j) |i, j ∈ P, i < j }. The cardinality of Q is denoted

by q
�
= |Q| =

(
p
2

)
= p(p− 1)/2. For all robot pairs (i, j) ∈ Q, define their distance dij ∈ R

2 as dij
�
== bi− bj.

Note that by definition dij =
(
I2 ⊗ cTij

)
b, where In is the n dimensional identity matrix and cij

�
= ei − ej.

The robots’ pairwise relative distance is δij
�
= ‖dij‖. Similarly, their relative pairwise distance at the goal is

gij ∈ R
2 defined by gij

�
= gi − gj . Again, by definition gij =

(
I2 ⊗ cTij

)
g. Let Q0 denotes the index set of

robot pairs including the workspace boundary as a zeroth disk, that is, Q0 �
= Q ∪ {(0, i) |∀i ∈ P }.

The robots cannot overlap each other, so we require that:

δij ≥ ρij
�
= ρi + ρj ∀(i, j) ∈ Q (1)

Furthermore the workspace is bounded by radius ρ0 ∈ R
+, hence each robot i must remain inside a disk of

radius ρ0i
�
= ρ0 − ρi, that is:

‖bi‖ ≤ ρ0i ∀i ∈ P (2)

The free robot configuration space F , is defined as the subset of robot positions in R
2p which satisfy

(1) and (2).

F �
=

{
b ∈ R

2p |(∀i ∈ P, ‖bi‖ ≤ ρ0i) ∧ (∀(i, j) ∈ Q, δij ≥ ρij)
}

(3)

In other words, we are concerned with the closure of non-contacting placements.

∗Here, ⊗ denotes the Kronecker product, where, if A ∈ Rn×m, B ∈ Rp×q , then A ⊗ B ∈ Rnp×mq with an ijth block of size
p × q specified by aijB.
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2.2 Construction

Following the recipe in [29], the candidate function ϕ : F → [0, 1] is constructed as the composition:

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) (4)

The function ϕ̂ : F → [0,∞) encodes the goal point and the obstacles of all the robots using the quotient of
two functions γ : F → [0,∞) and β : F → [0,∞):

ϕ̂(b)
�
=
γk(b)
β(b)

k ∈ Z
+ (5)

The numerator γ(b)
�
= (b − g)T (b − g) encodes the distance from the goal. The denominator encodes the

distance from freespace boundary and is defined as β(b)
�
=

∏
(i,j)∈Q0 βij(b), where ∀(i, j) ∈ Q, βij(b) =

δ2ij − ρ2
ij and ∀i ∈ P , β0i(b) = ρ2

0i − ‖bi‖2. The freespace boundary ∂F is the zero level set of β−1(0) and
entails robots touching each other or the workspace boundary.

Since ϕ̂ blows up on ∂F , it is not admissable. In order to make ϕ̂ admissible, it is squashed by
the function σ : [0,∞) → [0, 1], defined by σ(x) = x

1+x . The resulting function becomes admissible but the
goal point g is a degenerate critical point. In order to make it non-degenerate critical point, the sharpening
function σd : [0, 1] → [0, 1] is applied, given by σd(x) = x1/k. Thus, the resulting function ϕ becomes
admissible and has non-degenerate minimum at b = g.

2.3 Restriction on Goal Locus - g

Our proof requires a few natural restrictions on allowable goal positions g. We doubt they are necessary,
but we have not found a means of relaxing them and while still maintaining the desired result. Interestingly,
similar constraints have been introduced for the different, but related versions of the problem in earlier
studies. For example, to retain the geometry as well as the topology of a ”sphere world” in the freespace,
the robot is defined as a point mass object in [18]. In [28], the minimal gap between any pair of obstacles is
restricted to be larger than the diameter of the robot and the mated object. Our assumptions constrain how
closely the robots may be commanded to locate finally with respect to each other and to the outer boundary
in their goal positions. The goal g is allowed to be chosen from a subset of F subject to two assumptions
given in the sequel.

First, it is helpful to introduce a classification of the freespace that is ”ε away” from the boundary
by defining a notion of robot neighborhoods and their associated ”clusters” as follows.

Robot Neighborhoods: Let ε ∈ R
+ be an arbitrarily small design parameter. ∀i ∈ P , define an ε-neighbor

set Nε(b, i) ⊆ P to be the indices of its closest neighbors – namely Nε(b, i)
�
= {j ∈ P |0 < βij(b) ≤ ε}.

Define the complement sets, N̄ε(b, i) = P − Nε(b, i). Now, recursively define the nth ε-neighbor sets
Nn
ε (b, i) ⊆ P as N0

ε (b, i) := {i} and

Nn+1
ε (b, i) :=

⎛
⎝ ⋃
j∈Nnε (b,i)

Nε(b, j)

⎞
⎠ ⋂
l≤n

N̄ε
l(b, i)

According to this definition, each (n + 1)st neighbor of robot i is ε close to some nth neighbor of
robot i, but no closer - i.e. it is not ε close to any (n − 1)st neighbor. The process is stopped when
Nn+1
ε (b, i) = ∅.

Robot Clusters: Specify a partition
{
P1(b), ..., Ps(b)(b)

}
where Pi(b) ∈ 2P and s(b) is the number of cells

in this partition using a recursively defined function Pi(b) and its complementary function P̄i(b) as
follows: The base step is given by

r1 := 1, P1(b) :=
p−1⋃
j=0

N j
ε (b, r1)
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Figure 2: Unfeasible goal configuration

and the recursive step is given by

rn+1 := min

⎛
⎝⋂
j≤n

P̄j(b)

⎞
⎠ , Pn+1(b) :=

p−1⋃
j=0

N j
ε (b, rn+1)

stopping when
⋂
j≤n P̄j(b) = ∅. At each configuration this partition divides up the robots into distinc-

tive clusters of ”closest neighbors”. For convenience, we wish to keep track of the partition cell index
set S(b)

�
= {i ∈ P |i ≤ s(b)}. We verify that

∐
i∈S(b) Pi(b) is a partition over the robot index set in

Lemma B.3.

Next, consider an arbitrary cluster P ′ ⊆ P containing at least two elements |P ′| ≥ 2. Associate
with it its set of ”supporting configurations”, F ′ ⊆ F

F ′ �
= {b ∈ F |∃i ∈ S(b), Pi(b) = P ′ }

Let Q′ ⊆ Q be the corresponding pair index set defined as:

Q′ �
= {(i, j) ∈ Q |i, j ∈ P ′ } (6)

Finally define two derived problem parameters Λ′ and Λ′′ as follows:

Λ′ �
= max

b∈F ′

⎧⎨
⎩ ∑

(i,j)∈Q′
δij +

2|P ′| − 2
ρ′

∥∥∥∥∥ ∑
n∈P ′

J (bn − ḡ′) ⊗ en

∥∥∥∥∥
2
⎫⎬
⎭ (7)

and

Λ′′ �
= max

b∈F ′,i=arg maxn∈P ′ ‖bn‖

⎧⎨
⎩∑
j∈P ′

δij

⎫⎬
⎭ (8)

where ρ′
�
= min(i,j)∈Q {ρij}, J �

=
[

0 1
−1 0

]
is the 90◦ planar rotation matrix and ḡ′

�
= 1

|P ′|
∑

i∈P ′ bi is the

centroid of the robots in the cell P ′.
With these definitions in place we are now ready to introduce the assumptions that restrict the

allowable goal configurations. The first states that for any robot cluster, the goal positions of the robots in
this group are separated from each other by a value of Λ′. This term is the maximum value of a function of
the pairwise distances between the robots and their centroid.This maximization is over any cell containing
these robots. Figure 2 shows a workspace configuration containing three robots (big circles) which might
be blocked on the way to their goal positions (dark points) since the goal points are not separated enough
according to Assumption 1.
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Assumption 1 ∀P ′ ∈ 2P where ‖P ′‖ ≥ 2 ∑
(i,j)∈Q′

‖gij‖ > Λ′

where Q′ and Λ′ are calculated according to the equations 6 and 7. �

The second assumption states that for any robot group, each goal position is not allowed to be
located closer to the workspace boundary more than a value of Λ′′. This term is the maximum value of
the sum of the distances between the closest robot to the workspace boundary and the other robots. This
maximization is over any cell containing these robots.

Assumption 2 ∀P ′ ∈ 2P where where ‖P ′‖ ≥ 2

|P ′|
√
ρ′′2 − ε− Λ′′ −

∑
i∈P ′

‖gi‖ > 0

where Λ′′ is calculated according to the eqn. 8 and ρ′′
�
= mini∈P {ρ0i}. �

We are sure that these assumptions, introduced to facilitate the proof, involve bounds that are clearly
unnecessarily conservative. In the extensive simulations studies of Section 4, we have never bothered to
verify that they hold. Nonetheless, for formal guarantees to hold, the goals would need to satisfy the two
assumptions and the tuning parameter k, would indeed need to be set as a function of these bounds.

3 The Candidate is a Navigation Function

3.1 Statement of Main Theorem

If ϕ is a navigation function, it is guaranteed that the corresponding gradient field leads to the automated
generation of the robots’ control torques which move the robots toward g starting from almost any initial
robot positions [18].

Theorem 1 For any goal g satisfying assumptions 1 and 2, there exists a positive integer K∗ ∈ Z
+ such

that for every k > K∗, the real-valued function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)
γk(b) + β(b)

)1/k

(9)

is an essential navigation function.

Proof: By definition, ϕ̂ is analytic and admissible on F . By Proposition 3.1, for any free robot
configuration space F constrained by Assumptions 1 and 2, there exists a positive integer K ∈ Z

+ such that
for every k > K, ϕ is polar in F . By Proposition 3.2, for any goal constrained by Assumptions 1 and 2, there

exists a positive integer N ∈ Z
+ such that for every k > N, ϕ is Morse on

◦
F . Taking K∗ = max{K,N}, the

result thus follows. �

3.2 Proof of Correctness

Consider the partioning of the free configuration space F into five disjoint subsets - following a line of
reasoning inspired by that of [29]:

1. the goal point {g}
2. the boundary of the free space ∂F = β−1(0)

3. the set near the outer boundary F0(ε) = {b ∈ F |∃i ∈ S(b), ∃j ∈ Pi(b), 0 < β0j(b) ≤ ε} − ({g} ∪ ∂F)
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4. the set near the internal obstacles F1(ε) = {b ∈ F |∃i ∈ S(b), |Pi(b)| ≥ 2} − ({g} ∪ ∂F ∪ F0(ε))

5. the set away from the obstacles F2(ε) = F − ({g} ∪ ∂F ∪ F0(ε) ∪ F1(ε))

Let Cϕ �
= {b ∈ F |‖Dψ‖ = 0} denote the set of critical points of the function ϕ. Let T : F → 2Q

o

denote the
touching pairs function – that is

T (b)
�
= {(i, j) ∈ Q |δij = ρij }

⋃
{(0, i), i ∈ P |‖bi‖ = ρ0i }

The following proposition shows the absence of the local minima of function ϕ.

Proposition 3.1 For any free robot configuration space F constrained by Assumptions 1 and 2, there exists
a positive integer K ∈ Z

+ such that for every k > K, the real-valued function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)
γk(b) + β(b)

)1/k

(10)

has unique minimum point at g, that is, ϕ is polar on F .

Proof: The polarity of ϕ is analyzed in each subset of F . The functions ϕ and ϕ̂ have the same critical
points with the same type (minimum, maximum or a saddle) [29].

1. By definition, ϕ(g) = γ(g)

(γk(g)+β(g))1/k
. Taking the gradient ∇γ(b) = 2(b − g) and noting that γ(g) = 0

and ∇γ(g) = 0,

∇ϕ(g) =
1

(γk(g) + β(g))2/k

((
γk(g) + β(g)

)1/k∇γ(g) − γ(g)∇ (
γk(g) + β(g)

)1/k
)

= 0

Then g is a critical point of ϕ. Since γ(g) = 0, ϕ(g) = 0. Furthermore, by construction, ϕ : F → [0, 1],
then g is a minimum point of ϕ.

2. Next, consider ϕ on ∂F . By definition, at least two robots must touch to each other or one robot must
touch to the workspace boundary. Partition ∂F = {b ∈ ∂F : ‖T (b)‖ = 1} ∪ {b ∈ ∂F : ‖T (b)‖ > 1}.
There are no critical points in {b ∈ ∂F : ‖T (b)‖ = 1} by Proposition C.1. The critical points in
{b ∈ ∂F : ‖T (b)‖ > 1} are maxima by Proposition C.2.

3. ϕ̂ has no critical points in F0(ε) by Proposition C.3 - which asserts that for every ε > 0, there exists
a lower bound on the parameter k, K3(ε) > 0, such that, if k > K3(ε), then Cϕ̂ ∩ F0(ε) = ∅.

4. The critical points in F1(ε) are not minima by Proposition C.4 – which asserts the following: For every
ε > 0, there exists a lower bound on the parameter k, K2(ε) > 0, such that, if k > K2(ε) then ϕ̂ has
no minimum in any set F1(ε).

5. ϕ̂ has no critical points in F2(ε) by Proposition C.5 – which asserts that for every ε > 0 there exists a
lower bound on the parameter k, K1(ε) > 0, such that if k ≥ K1(ε) then Cϕ̂ ∩ F2(ε) = ∅.

The proof of Proposition 1 is completed by choosing lower bound K > 0 on the parameter k as follows,

K = max {K1(ε),K2(ε),K3(ε)} (11)

�

A non-degeneracy result is made by the Proposition 3.2.

Proposition 3.2 For any free robot configuration space
◦
F constrained by Assumptions 1 and 2, there exists

a positive integer N ∈ Z
+ such that for every k > N, the real-valued function,

ϕ(b) = σd ◦ σ ◦ ϕ̂(b) =
(

γk(b)
γk(b) + β(b)

)1/k

(12)

has non-degenerate critical points, that is, ϕ is Morse in
◦
F .
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Proof: The function ϕ is analyzed in each disjoint region of
◦
F .

1. The goal point g is a non-degenerate minimum point by Proposition D.1.

2. There are no critical points in F0(ε) by Proposition C.3

3. By Proposition D.2, there exists a lower bound N > 0 on the parameter k such that if k > N, then
D2ϕ̂ restricted to F1(ε) is non-singular.

4. There are no critical points in F2(ε) by Proposition C.5.

If the parameter k is chosen accordingly, the result follows.
�

4 Simulations

We now report on extensive computer simulations of the flows associated with the construction to suggest
the nature and quality of the motion planning resulting from the artificial potential function ϕ. We study a
problem involving six robots and five different randomly chosen goal configurations with increasing tightness
as shown in Figure 3. Define a workspace tightness measure tight as,

tight =
100

log10

(∏
(i,j)∈Q ‖gij‖2 − ρ2

ij

)
Note that this measure of tightness captures the difficulty of the task. The closer the robots need to be
packed together the more careful and precise the robots have to be in their movements.

Figure 3: Experiments of increasing tightness: a) tight = 2.44, b) tight = 2.63, c) tight = 2.87, d)
tight = 3.30 and e) tight = 3.45

We will summarize performance by means of the measures originally introduced in [37]. The first
performance measure is the normalized robot path length measure nrl which is the total distance travelled
by the robots normalized by the sum of the Euclidean distances between initial and final positions of the
robots,

nrl =
∑

i∈P
∫ tf
0

‖ḃi(t)‖dt∑
i∈P ‖bi(0) − gi‖

9



Figure 4: Normalized robot path length performance vs. workspace tightness

Here, tf denotes the duration of a simulation, bi(t) denotes the position vector of robot i at time t and bi(0)
denotes the initial position of robot i. The second measure is the design parameter k of function ϕ.

4.1 Normalized robot path length nrl vs. workspace tightness tight

Figure 4 shows the variation of nrl as a function of goal tightness measure tight. In this graphic, each bar
represents the mean and the standard deviation of 30-40 sample runs with random initial configurations.
k is taken to be 60. The effect of k is discussed in the following section. Unlike [37], we observe that the
general trend and the deviation of nrl values increase with increasing workspace tightness. This result is
expected since the closer the robots need to pack together, the more times will encounter each other, thus
requiring longer paths that move around each other in order to reach their goal positions. It is seen that in
the most complex workspace, path length is on average 1.25 - 25 percent longer than the (typically infeasible)
Euclidean straight line between initial and final configurations. In the easiest workspace, this value decreases
to 1.08.

4.2 Normalized robot path length nrl vs. k

Figure 5 shows the dependence of nrl values on k parameter. The graphic presents the mean and the
standard deviation values of 30-40 sample runs for the goal configuration given in Figure 3d and starting
from random initial configurations. It is observed that the general trend of nrl values agree with those
presented in [37] and decreases with the increasing k parameter. This result can be attributed to these facts:

1. For small k values, in the constructed potential function, the term for obstacle avoidance dominates.
The robots attempt to increase their proximity to nearby robots as much as possible. Consequently,
the paths taken by the robots increase. Still, the maximum mean nrl value is 1.68 when k = 20.
Furthermore, the moving task is not accomplished for k values smaller than 20 in the simulations
starting from some initial configurations. This fact is expected since there is a lower bound on k for
convergency to the goal positions.

2. For large k values, the robots are concerned with pointing towards their goal positions rather than
avoiding each other. In this case, a robot may try to pass through the spaces between the other robots
which are only 1-2 cm larger than its diameter. Therefore, the paths taken by the robots become
smaller.

10



Figure 5: Normalized robot path length performance vs. k

5 Conclusion

This paper generalizes the exact artificial potential field methodology to the coordinated navigation of
independent disk-shaped robots all moving in a disk-shaped workspace. Intuitively, the source of complexity
that characterizes this problem arises because each robot becomes a dynamic obstacle for the remaining
robots. Since this is a real time dynamical systems based planner, there can be no a priori knowledge of
robots’ trajectories. However, we assume that (i) every robot has ideal bounded torque actuators; (ii) every
robot has the perfect knowledge of its joint positions in an on-line manner; and (iii) each robot knows exactly
the sizes and the locations of the other robots any time. The approach taken consists of encoding complete
information about the goal, dynamic obstacles and workspace boundary using an artificial potential function
- the navigation functions introduced in [16]. As a consequence of its defining properties, the gradient field
resulting from a navigation function yields a flow guaranteed to bring almost every initial condition to the
goal with no collision along the way. The recourse to an online feedback based planner lends robustness
against the inevitable sensor and actuator inaccuracies (structural stability) and unanticipated changes in
workspace configuration (state stability).

The main contribution is to prove that this artificial potential function is an essential navigation
function with the following properties: i) analytic; ii) admissible; iii.) polar - unique global minium; and iv)
almost non-degenerate - all the interior critical points are isolated. The analysis yields closed-form expressions
that depend on the geometric data and the parameters of our construction. First, lower bounds constrain
the allowable goal proximity of among robot pairs as well as to the workspace boundary to be “reasonable”.
Next, suitable parameter values ensure that the construction indeed holds the required properties.

Although underlying smooth navigation functions have been shown to always exist, constructions
for different versions of the problem remain yet to be developed. These results provide for the first time a
smooth, bounded potential-function based algorithm for the coordinated navigation of disk-shaped robots in
a disk-shaped workspace. Admittedly, the disk-shaped robots treated here constitute a very small portion of
the general coordinated navigation problem of arbitrary robots in arbitrary workspaces. We hope that our
construction motivates the building of artificial potential functions for progressively more realistic scenarios.
Moreover, our assumptions regarding ideal bounded-torque actuators, perfect sensing including all other
robots’ positions and even fixed goals – need to be relaxed in the long run.

Finally, we observe that this approach lends itself naturally to a cooperative game-theoretic inter-
pretation of the problem where the robots (players) are viewed playing a game with an identical payoff
function [2]. It is hoped that this link can be used to initiate the formal analysis for different, but related
problems that have been previously formulated as games. One such case is the event driven version of
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the warehouseman’s problem wherein the actuated robot inhabits the same workspace as a collection of
unactuated, but movable parts. While, even for the open loop version of the problem there remains no gen-
eral provably complete result, extensive and systematic experimental assessment from an implementation of
purely event-driven parts’ mover robot indicate that this approach can be extended to this domain as well.

Appendices

A Definitions

This Section presents a summary of the most commonly used the definitions in the paper. The third column
indicates place of first introduction.

p ⊂ Z
+ The number of robots Section 2.1

P = {1, . . . , p} Robot index set Section 2.1
bi ∈ R

2 Center of robot i Section 2.1
ρi ∈ R

+ Radius of robot i Section 2.1
gi ∈ R

2 Goal of robot i Section 2.1
e1, e2, . . . , ep Canonical orthonormal basis vectors in R

p Section 2.1

b ∈ R
2p �

=
∑

i∈P bi ⊗ ei Section 2.1

g ∈ R
2p �

=
∑

i∈P gi ⊗ ei Section 2.1

ρij
�
= ρi + ρj Section 2.1

Q
�
= {(i, j) |i, j ∈ P, i < j } Section 2.1

Q0 �
= Q ∪ {(0, i) |∀i ∈ P } Section 2.1

In n dimensional identity matrix Section 2.1

cij
�
= ei − ej Section 2.1

dij ∈ R
2 �

== bi − bj =
(
I2 ⊗ cTij

)
b Section 2.1

δij
�
= ‖dij‖

gij ∈ R
2 �

= gi − gj =
(
I2 ⊗ cTij

)
g Section 2.1

γ(b)
�
= (b− g)T (b − g) Section 2.2

βij(b)
�
= δ2ij − ρ2

ij =
∥∥(I2 ⊗ cTij

)
b
∥∥2 − ρ2

ij Section 2.2

β0i(b)
�
= ρ2

0i − ‖bi‖2 = ρ2
0i −

∥∥(I2 ⊗ eTi
)
b
∥∥2 Section 2.2

β̄ln
�
=

∏(i,j) �=(l,n)
(i,j)∈Q0 βij Section 2.2

β(b)
�
=

∏
(i,j)∈Q0 βij(b) Section 2.2

ϕ̂
�
= γk

β Section 2.2
Cψ The set of critical points of ψ Section 3.2

L0i
�
= − 1√

β0i

(
I2 ⊗ eTi

)
, ∀i ∈ P Appendix E

Lij
�
= 1√

βij

(
I2 ⊗ cTij

)
, ∀(i, j) ∈ Q Appendix E

L0 ∈ R
2p × R

2p �
=

[
LT01 . . . L

T
0p

]
Appendix E

L1 ∈ R
2p × R

2q �
=

[
LT12 . . . L

T
p−1,p

]
.

L ∈ R
2p × R

2(p+q) �
= [L0L1] Appendix E

o ∈ R
q+p �

=

⎡
⎣−1 . . . − 1︸ ︷︷ ︸

p

, 1 . . . 1︸ ︷︷ ︸
q

⎤
⎦T Appendix E
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M ∈ R
2(p+q) × R

p+q �
=

⎡
⎢⎢⎢⎢⎣
L01b 0 · · · 0

0
. . .

...
. . .

0 Lp−1,pb

⎤
⎥⎥⎥⎥⎦ Appendix E

∐
i∈S(b) Pi(b) A partition defined on P as a function of b Section 2.3

Pz A cell in the partition where |Pz | ≥ 2 Appendix C.2

Qz
�
= {(i, j) ∈ Q |i, j ∈ Pz } Appendix C.2

Q∗
z

�
= Q \Qz Appendix C.2

αij
�
= γ

kβij
, ∀(i, j) ∈ Q Appendix C.2

α0j
�
= γ

kβ0j
, ∀j ∈ P . Appendix C.2

Q′
z

�
=

{
(l, n) ∈ Qz

∣∣αln ≥ 1
2

}
Lemma E.15

Q′′
z

�
=

{
(l, n) ∈ Qz

∣∣αln < 1
2

}
. Lemma E.15

B Partition Over Robot Index Set

In this Section, Lemma B.3 shows that
∐
i∈S(b) Pi(b) as defined in Section 2.3 is a partition over the robot

index set. Lemmas B.1 and B.2 present two statements used in this proof. For simplicity of the notation, b
argument is omitted in the rest of the paper.

First, let us introduce the algebra of strings of the robot labels. First, let P 1 �
= P , for n ∈ Z

+

and 1 ≤ n ≤ p − 1, Pn+1 �
= {xw |x ∈ P,w ∈ Pn }. Following, define ∀w ∈ Pn+1, w

�
= w0w1 . . . wn where

∀j ∈ {0, . . . , n}, wj ∈ P . Now, recursively define the robot string sets An(i) ⊆ Pn+1 as A0(i) := {i} and

An+1(i) :=
{
wx

∣∣w ∈ An(i), x ∈ Nn+1
ε (i), x ∈ Nε(wn)

}
The robot string set An+1(i), consists of all strings from robot i to each of its (n+1)st neighbors having the
property that contiguous robot numbers denote the ε-neighbor relationship. Note that ∀w ∈ An, the length
of w is n + 1. For convenience, we wish to keep track of the index set R

�
= {ri ∈ P |∀i ∈ S } where ri is as

defined in 2.3. The index set R is the set of all seed robots for all the cells in the partion.

Lemma B.1 For 0 ≤ n < p, ∀i ∈ R, ∀x ∈ Nn
ε (i) and ∃w ∈ An(i) such that wn = x.

Proof: Mathematical induction method will be used.
Base step: n = 0, ∀i ∈ R, ∀x ∈ N0

ε (i) = {i}, ∃w ∈ A0(i) = {i} which means w0 = i.
Induction: Assume statement ∀x ∈ Nn

ε (i), ∃w ∈ An(i) such that wn = x. By definition,

Nn+1
ε (i) =

⎛
⎝ ⋃
x∈Nnε (i)

Nε(x)

⎞
⎠ ⋂

l≤n
N̄ε

l(i)

Thus Nn+1
ε (i) ⊆ ⋃

x∈Nnε (i)Nε(x). Let y′ ∈ Nn+1
ε (i) then y′ ∈ ⋃

x∈Nnε (i)Nε(x). Then ∃x′ ∈ Nn
ε (i) such that

y′ ∈ Nε(x′). By assumption, ∀x ∈ Nn
ε (i), ∃w ∈ An(i) such that wn = x. So, ∃w′ ∈ An(i) such that w′

n = x′.
We find that w′y′ ∈ An+1(i), since

An+1(i) = {wy ∣∣w ∈ An(i), y ∈ Nn+1
ε (i), y ∈ Nε(wn)}

⊇ {wy |w = w′, y = y′, y′ ∈ Nε(x′)}
⊇ {w′y′}

Then ∀y ∈ Nn+1
ε (i), ∃w ∈ An(i) such that v = wy ∈ An+1(i) and finally, vn+1 = y. �

Lemma B.2 ∀i, j ∈ R, ∀ni, nj ∈ {0, . . . , p − 1}, ∀v ∈ Ani(i), ∀w ∈ Anj (j) if vni = wnj then ∃l ∈
{0, . . . , p− 1}, ∃u ∈ Al(i) such that ul = j.

13



Proof: Let v = v0v1 . . . vni = iv1 . . . vni−1r and w = w0w1 . . . wnj = jw1 . . . wnj−1r. ∃ki, kj ∈ {0, . . . , p −
1} such that vki ∈ Nε(wkj ) since for ki = ni, kj = nj , vki = vkj = r and r ∈ Nε(r). Let k′i =
min

{
ki ≤ ni

∣∣vki ∈ Nε(wkj ), kj ≤ nj
}

and k′j = min
{
kj ≤ nj

∣∣vk′i ∈ Nε(wkj )
}

then construct a string u′

with the length l′ as follows,

u′ =

{
iv1 . . . vk′iwk′j . . . w1j if vk′i �= wk′j
iv1 . . . vk′iwk′j−1

. . . w1j if vk′i = wk′j

Note that if vk′i �= wk′j then the length l′ of u′ is l′ = k′i + k′j + 1. Otherwise, l′ = k′i + k′j . u′ denotes a
string from the robot i to the robot j in which adjacent robot numbers indicate an ε-neighbor relationship.
However, this string may not not be the shortest string containing robots i and j. Then, choose the string
with the minimum length such that l = min

{
l ≤ l′

∣∣j ∈ N l
ε(i)

}
. By Lemma B.1, ∃u ∈ Al(i) such that wl = j.

(Note that u = u′ if l = l′). �

Lemma B.3
∐
i∈S Pi is a partition over the robot index set P .

Proof: By definition, if
∐
i∈S Pi is a partition, the following must hold:

1. ∀i ∈ S, Pi �= ∅,
2. P =

⋃
i∈S Pi,

3. ∀i, j ∈ S, i �= j, Pi ∩ Pj = ∅.
To establish (1), note that, by construction Pi =

⋃p−1
l=0 N

l
ε(ri) contains at least N0

ε (ri) = {ri} �= ∅
as long as i ≤ s.

To establish (2), use the termination condition in the definition,
⋂
l≤s P̄l = ∅, and take the comple-

ment of both sides to get
⋃
l≤s Pl = P .

Finally, to establish (3), we use proof by contradiction. Suppose ∃x, y ∈ S, x < y such that
Px ∩ Py �= ∅. Let r ∈ Px ∩ Py . Define i = rx and j = ry. Using definitions of Px and Py,

r ∈
(
p−1⋃
n=0

Nn
ε (i)

)
∩

(
p−1⋃
n=0

Nn
ε (j)

)

Then, ∃ni, nj ∈ {1, . . . , p− 1} such that,

r ∈ Nni
ε (i) ∩Nnj

ε (j)

By Lemma B.1, ∃v ∈ Ani and ∃w ∈ Anj such that, v0 = i, w0 = j and vni = wnj = r. By Lemma B.2,
∃l ∈ {1, . . . , p−1} and ∃u ∈ Al(i) such that, ul = j. Then, j ∈ N l

ε(i) ⊆ Px. But, this is a contradiction since
j �= i and j is chosen from a set that is intersected with P̄x, therefore j �∈ Px. Then the proof is completed.
�

C Polarity

The details of proof of Proposition 3.1 are presented in this section. Section C.1 is included for sake of
completeness – not essential to proof.

C.1 The Free Space Boundary: ∂F = β−1(0)

Recall touching pair function T as defined in Section 3.2. Note |T (b)| = 0 means that in the configuration
b, the robots are not touching to each other and to the workspace boundary. The free space boundary ∂F
will be investigated for two cases: (i) Case 1: |T (b)| = 1, (ii) Case 2: |T (b)| ≥ 2. The following proposition
establishes for Case 1 that there are no critical points on ∂F .

Proposition C.1 If |T (b)| = 1, then Cϕ ∩ ∂F = ∅.
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Proof: If |T | = 1, then only one of the terms of β is zero. Call this term βln, (l, n) ∈ Q0. Then, all the gradient
terms in eqn. 23 vanish except that containing β̄ln �= 0 and ∇βln �= 0. Hence, ∇ϕ|∂F = − 1

kγk

(
β̄ln∇βln

) �= 0.
�

The following proposition studies Case 2 and establishes that ϕ admits maximum valued critical
points on ∂F .

Proposition C.2 If |T (b)| ≥ 2, then Cϕ ∩ ∂F contains only maximum valued critical points.

Proof: Since |T | ≥ 2, ∃(i, j), (l, n) ∈ T , such that βij = βln = 0. Then, all the gradient terms in eqn. 23
vanish, ∇ϕ|∂F = − 1

kγk

(
β̄ij∇βij + β̄ln∇βln

)
= 0. But ϕ : F → [0, 1] and ϕ|Cϕ∩∂F = γ

(γk+β)1/k
= 1, which

means that those critical points achieve the maximum value of ϕ. �

C.2 The Set Near the Outer Boundary: F0(ε)

The following proposition shows that there are no critical points in

F0(ε) = {b ∈ F |∃i ∈ S(b), ∃j ∈ Pi(b), 0 < β0j(b) ≤ ε} − (g ∪ ∂F)

the subspace of F that is close to the outer boundary.

Proposition C.3 For every ε > 0, there exists a lower bound on the parameter k, K3(ε) > 0, such that, if
k > K3(ε), then Cϕ̂ ∩ F0(ε) = ∅.

Proof: (By contradiction) By definition, ∀b ∈ F0(ε) if φ(b) =
∐
i∈S(b) Pi(b) is the corresponding partition

then ∃i ∈ S(b) such that ∃j ∈ Pi, β0j ≤ ε. In other words, there exists at least one cell consisting of at least
one robot close to the workspace boundary.

First, denote the cell which is arbitrarily chosen from the cells consisting of at least one robot close
to the boundary by Pz . Let z′ refer to the index of the closest robot to the boundary in the cell Pz , that is,
z′

�
= argmaxi∈Pz,β0i≤ε{‖bi‖}. If b is a critical point, then by Lemma E.5,

kβ∇γ = γ∇β

Expanding the terms ∇γ and ∇β,

2kβ(b− g) = γ
∑

(i,j)∈Q0

2β
βij

(I2 ⊗ cij) dij

Using the definitions of b and g and letting αij
�
= γ

kβij
∀(i, j) ∈ Q0,

∑
i∈P

(bi − gi) ⊗ ei =
∑

(i,j)∈Q0

αij (I2 ⊗ cij) dij (13)

Decomposing the summation on the right-hand side of eqn. 13 over Q and P respectively,∑
i∈P

(bi − gi) ⊗ ei =
∑

(i,j)∈Q
αij (I2 ⊗ cij) dij −

∑
j∈P

α0j (I2 ⊗ ej) bj

Multiplying both sides by
∑

n∈Pz
(
I2 ⊗ eTn

)
,∑

n∈Pz

(
I2 ⊗ eTn

)∑
i∈P

(bi − gi) ⊗ ei =
∑
n∈Pz

(
I2 ⊗ eTn

) ∑
(i,j)∈Q

αij (I2 ⊗ cij) dij

−
∑
n∈Pz

(
I2 ⊗ eTn

)∑
j∈P

α0j (I2 ⊗ ej) bj
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Using properties of Kronecker product,∑
n∈Pz

∑
i∈P

(bi − gi) ⊗ eTnei =
∑
n∈Pz

∑
(i,j)∈Q

αij(I2 ⊗ eTn cij)dij

−
∑
n∈Pz

∑
j∈P

α0j(I2 ⊗ eTnej)bj

Define Qz
�
= {(i, j) ∈ Q |i, j ∈ Pz } and Q∗

z
�
= Q \Qz. Using Lemmas E.1 and E.2 and simplifying,∑

n∈Pz
(bn − gn) =

∑
(i,j)∈Q∗

z

αijdij −
∑
n∈Pz

α0nbn

∑
n∈Pz

(1 + α0n)bn =
∑
n∈Pz

gn +
∑

(i,j)∈Q∗
z

αijdij

Taking the magnitude of both sides and applying triangular inequality,∥∥∥∥∥ ∑
n∈Pz

(1 + α0n)bn

∥∥∥∥∥ ≤
∑
n∈Pz

‖gn‖ +
∑

(i,j)∈Q∗
z

γδij
kβij

Using bn = bz′ + dnz′ on the left-hand side and maximizing δij/βij ,∥∥∥∥∥ ∑
n∈Pz

(1 + α0n)bz′ +
∑
n∈Pz

(1 + α0n)dnz′

∥∥∥∥∥ ≤
∑
n∈Pz

‖gn‖ +
∑

(i,j)∈Q∗
z

γ
√
ρ2
ij + ε

kε

Taking minimum of left-hand side,

∥∥∥∥∥
∥∥∥∥∥ ∑
n∈Pz

(1 + α0n)bz′

∥∥∥∥∥−
∥∥∥∥∥ ∑
n∈Pz

(1 + α0n)dnz′

∥∥∥∥∥
∥∥∥∥∥ ≤

∑
n∈Pz

‖gn‖ +
∑

(i,j)∈Q∗
z

γ
√
ρ2
ij + ε

kε∥∥∥∥∥ ∑
n∈Pz

(1 + α0n)‖bz′‖ −
∑
n∈Pz

(1 + α0n)δnz′

∥∥∥∥∥ ≤
∑
n∈Pz

‖gn‖ +
γ

kε

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

∥∥∥∥∥ ∑
n∈Pz

(1 + α0n) (‖bz′‖ − δnz′)

∥∥∥∥∥ ≤
∑
n∈Pz

‖gn‖ +
γ

kε

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

Using ∀n ∈ P , α0n > 0 and minimizing left-hand side,∑
n∈Pz

(‖bz′‖ − δnz′) ≤
∑
n∈Pz

‖gn‖ +
γ

kε

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

Recall that ρ′′ = mini∈P {ρ0i}. Using minb∈F0(ε) {‖bz′‖} =
√
ρ′′2 − ε and minimizing left-hand side,

|Pz |
√
ρ′′2 − ε−

∑
n∈Pz

δnz′ −
∑
n∈Pz

‖gn‖ ≤ γ

kε

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

Using Assumption 2, if g is chosen appropriately the left-hand side of the above inequality will be positive.
Manipulating the inequality,

k ≤
γ
∑

(i,j)∈Q∗
z

√
ρ2
ij + ε[

|Pz |
√
ρ′′2 − ε−∑

n∈Pz δnz′ −
∑

n∈Pz ‖gn‖
]
ε

(14)
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If k is chosen as,

k > max
∀b∈F0(ε)

⎧⎨
⎩

γ
∑

(i,j)∈Q∗
z

√
ρ2
ij + ε[

|Pz |
√
ρ′′2 − ε−∑

n∈Pz δnz′ −
∑

n∈Pz ‖gn‖
]
ε

⎫⎬
⎭

�
= K3(ε)

then eqn. 14 cannot hold which implies that b is not a critical point. Thus, ϕ̂ has no critical points in F0(ε).
�

C.3 The Set Near the Internal Obstacles: F1(ε)

The following proposition shows that ϕ̂ has no minimum in the subset of F that is close to the internal
obstacles:

F1(ε) = {b ∈ F |∃i ∈ S(b), |Pi(b)| ≥ 2} − (g ∪ ∂F ∪ F0(ε))

Proposition C.4 For every ε > 0, there exists a lower bound on the parameter k, K2(ε) > 0, such that, if
k > K2(ε) then ϕ̂ has no minimum in any set F1(ε).

Proof: It is sufficient to show that for Cϕ̂∩F1(ε), ∃v ∈ R
2p such that vTD2ϕ̂v < 0. By definition, ∀b ∈ F1(ε),

there is a partition
∐
i∈S(b) Pi(b) such that ∃i ∈ S(b) where |Pi(b)| ≥ 2. Pick arbitrarily a cell consisting of

at least two robots and denote it by Pz – that is |Pz| ≥ 2. Now consider the following vector,

vz
�
=

∑
n∈Pz

J(bn − ḡz) ⊗ en (15)

where ḡz denotes the centroid of the robots in the cell Pz , ḡz
�
= 1

|Pz|
∑

n∈Pz bn. We have chosen this vector
based on our following observation in the experiments: When the robots are getting close to each other,
they start moving perpendicular to their centroid. Let us expand the terms of vTz D2ϕ̂vz using Lemma E.13,

β

2γk
vTz D

2ϕ̂vz =
k

γ
‖vz‖2 + 2vTz LMMTLT vz − 2

k
vTz LMooTMTLT vz

−vTz L1L
T
1 vz + vTz L0L

T
0 vz

Noting that vTz LMooTMTLT vz =
∣∣oTMTLT vz

∣∣2 ≥ 0,

β

2γk
vTz D

2ϕ̂vz ≤ k

γ
‖vz‖2 + 2‖MTLT vz‖2 − ‖LT1 vz‖2 + ‖LT0 vz‖2 (16)

Recall that Qz
�
= {(i, j) ∈ Q |i, j ∈ Pz } and P ′

z
�
= P \ Pz. Using lemmas E.17, E.18 and E.19, substituting

the terms ‖LT1 vz‖2, ‖LT0 vz‖2 and ‖MTLT vz‖2 into eqn. 16 appropriately,

β

2γk
vTz D

2ϕ̂vz ≤ k

γ
‖vz‖2 −

∑
(i,j)∈Qz

δ2ij
βij

−
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

‖bj − ḡz‖2

βji
+

j>i∑
j∈Pz

‖bj − ḡz‖2

βij

⎤
⎦

+
∑
j∈Pz

‖bj − ḡz‖2

β0j
+

∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

2
β2
ji

[
dTjiJ(bj − ḡz)

]2
+

j>i∑
j∈Pz

2
β2
ij

[
dTijJ(bj − ḡz)

]2⎤⎦ +
∑
j∈Pz

2
β2

0j

[
bTj Jḡz

]2
Grouping the terms on the right-hand side as follows,

β

2γk
vTz D

2ϕ̂vz ≤ −k
γ

⎛
⎜⎜⎜⎜⎜⎝

∑
(i,j)∈Qz

γ

kβij
δ2ij − ‖vz‖2

︸ ︷︷ ︸
σ1

⎞
⎟⎟⎟⎟⎟⎠ +

∑
j∈Pz

(
2
β2

0j

[
bTj Jḡz

]2
+

1
β0j

‖bj − ḡz‖2

)
︸ ︷︷ ︸

σ3

17



+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

(
2
β2
ji

[
dTjiJ(bj − ḡz)

]2 − 1
βji

‖(bj − ḡz)‖2

)
+

j>i∑
j∈Pz

(
2
β2
ij

[
dTijJ(bj − ḡz)

]2 − 1
βij

‖(bj − ḡz)‖2

)⎤
⎦

︸ ︷︷ ︸
σ2

Recall that Q∗
z

�
= Q \Qz. By Assumption 1 and Lemma E.15, if k is chosen as,

k > max
∀b∈F1(ε)

⎧⎨
⎩

(|Pz | − 1)
(
ρ0|Pz | +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

)
γ[∑

(l,n)∈Qz ‖gln‖ −
∑

(l,n)∈Qz δln − 2|Pz|−2
ρ′ ‖vz‖2

]
ε

⎫⎬
⎭ �

= K21(ε)

then σ1 > 0. Thus, a sufficient condition to make vTz D
2ϕ̂vz < 0, is

k > max
∀b∈F1(ε)

{
(σ2 + σ3)γ

σ1

}
�
= K22(ε)

Finally, the proof is completed by choosing, K2(ε) = max{K21(ε),K22(ε)}. �

C.4 The Set Away From the Obstacles: F2(ε)

The following proposition shows that for sufficiently large k values, there are no critical points in the subset
of F that is away from the obstacles:

F2(ε) = F − ({g} ∪ ∂F ∪ F0(ε) ∪ F1(ε))

Proposition C.5 For every ε > 0 there exists a lower bound on the parameter k, K1(ε) > 0, such that if
k ≥ K1(ε) then Cϕ̂ ∩ F2(ε) = ∅.

Proof: By Lemma E.5, ∀binCϕ̂, kβ∇γ = γ∇β. Taking the norm of the both sides and re-arranging terms in
2kβ =

√
γ‖∇β,

k =
√
γ‖∇β‖
2β

(17)

By Lemma E.16,

√
γ‖∇β‖
2β

≤ max∀b∈F2(ε){
√
γ}

ε

⎛
⎝ ∑

(i,j)∈Q

√
2
√
ρ2
ij + ε+

∑
i∈P

√
ρ2
0i − ε

⎞
⎠

If k is selected to have value,

k >
max∀b∈F2(ε){

√
γ}

ε

⎛
⎝ ∑

(i,j)∈Q

√
2
√
ρ2
ij + ε+

∑
i∈P

√
ρ2
0i − ε

⎞
⎠ �

= K1(ε)

then, eqn. 17 does not hold which in turn implies that there are no critical points in F2(ε). �

D Nondegeneracy

The details of Proposition 3.2 are given in this section.
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D.1 Goal point {g}
Proposition D.1 The goal point, g is a non-degenerate minimum of ϕ.

Proof: Using Lemma E.7

D2ϕ
∣∣
Cϕ =

1
(γk + β)2/k

(
(γk + β)1/k2I2p − γD2(γk + β)1/k

)
Noting that γ|g = 0 and ∇γ|g = 2(b− g) = 0;

D2ϕ
∣∣
g

=
2

β1/k
I2p

implies that g is a non-degenerate minimum of ϕ. �

D.2 The Set Near the Internal Obstacles: F1(ε)

Proposition D.2 There exists a lower bound N > 0 on the parameter k such that if k > N, then D2ϕ̂
restricted to F1(ε) is non-singular.

Proof: By Lemma E.13, at a critical point of ϕ̂,

β

2γk
D2ϕ̂ =

k

γ
I2p + 2LMMTLT − 2

k
LMooTMTLT − L1L

T
1 + L0L

T
0

Note that L has rank 2p by Lemma E.8. Now, rearranging k
γ I2p = kLHHTLT where H = 1√

γL
T (LLT )−1,

and letting A =
[
I 0
0 −I

]
, we may re-write the previous equation as:

β

γk
D2ϕ̂ = L

(
2M

(
Iq+p − 1

k
ooT

)
MT +A+ kHHT

)
︸ ︷︷ ︸

B

LT

The term Iq+p − 1
koo

T can be guaranteed to be positive semidefinite by choosing,

k > q + p
�
= N1

Since L has rank 2p, it will now suffice to show that vTBv �= 0, for an arbitrary vector v ∈ Image LT ⊂
R

2p+2q, v �= 0. Noting that Image LT = (Image LT ∩KerHT ) ∪ (Image LT \KerHT ), this is investigated
in two cases.
Case i - v ∈ Image LT ∩ KerHT : We will show that Image LT ∩ KerHT = {0}. This follows since
Ker HT ⊆ Ker L, hence Image LT ∩ Ker HT ⊆ Image LT ∩ Ker L. However Ker LLT = {0} according to
Lemma E.8, hence the result.
Case ii- v ∈ (Image LT \KerHT ): Note

vTBv = 2vTM
(
Iq+p − 1

k
ooT

)
MT v + vTAv + k‖HTv‖2 (18)

≥ vTAv + k‖HT v‖2 (19)

Now if k satisfies the inequality,

k > max
F1,‖v‖=1,v �∈KerHT

{ −vTAv
‖HT v‖2

}
�
= N2

then vTBv > 0. The proof is completed by choosing

N = max{N1,N2} (20)

�
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E Computational Lemmas

This Section presents several lemmas that are used in the polarity and nondegeneracy analyses. The reader
is referred to Appendix A for a summary of all the symbols used.
The following lemmas specify certain properties of ei and cij vectors.

Lemma E.1

eTi ej =
{

1 if i = j
0 if i �= j

Proof: If i = j, then eTi ej = eTi ei = ‖ei‖2. But, by definition ei ∈ R
p is a unit vector. Then, ‖ei‖2 = 1. By

definition, ei and ej are base vectors. If i �= j then these vectors turn out to be orthogonal. Then eTi ej = 0.
�

Lemma E.2 If i �= j,

cTijen =

⎧⎨
⎩

1 if n = i
−1 if n = j

0 if n �= i and n �= j

Proof: By definition,

cTijen = (ei − ej)T en

= eTi en − eTj en

In case of n = i, cTijen = eTi ei − eTj ei = 1, by Lemma E.1. In case of n = j, cTijen = eTi ej − eTj ej = −1, by
Lemma E.1. In case of n �= i and n �= j, cTijen = 0, by Lemma E.1. �

The following lemma provides formulas for computing the gradient and Hessian matrix of a function of the
form ψ = u

w .

Lemma E.3 Let u and w be smooth real-valued maps defined on R
n, and let ψ = u

w . Then ∀b ∈ Cψ,

w∇u = u∇w
D2ψ

∣∣
Cψ =

1
w2

(
wD2u− uD2w

)
(21)

Proof: Using rules of differentiation, the gradient of ψ is:

∇ψ =
1
w2

(w∇u − u∇w) (22)

Similarly, the Hessian is:

D2ψ =
1
w2

(
wD2u+ ∇u∇wT −∇w∇uT − uD2w

)
+ w2∇ψ

(
∇ 1
w2

)T
At a critical point ∇ψ = 0 which implies that w∇u = u∇w and thus the first result holds. Next note that
this implies that ∇u = ψ∇w. Hence

D2ψ
∣∣
Cψ =

1
w2

(
wD2u− uD2w

)
�

The following lemma gives a formula for the gradient on ∂F .

Lemma E.4
∇ϕ|∂F = − 1

kγk
∇β = − 1

kγk

∑
(i,j)∈Q0

β̄ij∇βij
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Proof: Using rules of differentiation, the gradient of ϕ is,

∇ϕ =
1

(γk + β)2/k
(
(γk + β)1/k∇γ − γ∇(γk + β)1/k

)
Substituting ∇(γk + β)1/k = 1

k (γk + β)
1−k
k ∇(γk + β) and noting that β|∂F = 0 on the right-hand side of

∇ϕ,

∇ϕ|∂F =
1
γ2

(
γ∇γ − γ

[
1
k
γ1−k (∇γk + ∇β)])

=
1
γ2

(
γ∇γ − 1

k
γ2−kkγk−1∇γ − γ2−k

k
∇β

)
= − 1

kγk
∇β

= − 1
kγk

∑
(i,j)∈Q0

β̄ij∇βij (23)

Lemma E.5 ϕ̂ = γk

β , ∀b ∈ Cϕ̂, kβ∇γ = γ∇β

Proof: By Lemma E.3,

β∇γk = γk∇β
Expanding the lhs and simplifying

kβγk−1∇γ = γk∇β
kβ∇γ = γ∇β (24)

�

Lemma E.6 ϕ̂ = γk

β , ∀b ∈ Cϕ̂,

D2ϕ̂ =
γk−2

β2

(
kβ

(
γD2γ + (k − 1)∇γ∇γT )− γ2D2β

)
Proof: Using Lemma E.3, at a critical point, D2ϕ̂ is computed to be

D2ϕ̂ =
1
β2

(
βD2γk − γkD2β

)
(25)

Substituting D2γk = kβ
(
γD2γ + (k − 1)∇γ∇γT ) in the rhs of eq. 25

D2ϕ̂ =
γk−2

β2

(
kβ

(
γD2γ + (k − 1)∇γ∇γT )− γ2D2β

)
(26)

�

Lemma E.7

D2ϕ
∣∣
Cϕ =

1
(γk + β)2/k

(
(γk + β)1/k2I2p − γD2(γk + β)1/k

)

Proof: By definition (eqn. 9), ϕ = γ
(γk+β)1/k

. Using Lemma E.3 and noting that D2γ = 2I2p,

D2ϕ
∣∣
Cϕ =

1
(γk + β)2/k

(
(γk + β)1/k2I2p − γD2(γk + β)1/k

)
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�

Define L0i
�
= − 1√

β0i

(
I2 ⊗ eTi

)
, ∀i ∈ P and Lij

�
= 1√

βij

(
I2 ⊗ cTij

)
, ∀(i, j) ∈ Q Let L0 be the 2p× 2p matrix

L0
�
=

[
LT01 . . . L

T
0p

]
and L1 be the 2p× 2q matrix L1

�
=

[
LT12 . . . L

T
p−1,p

]
. Let L be the 2p× 2(p+ q) matrix

L
�
= [L0L1] and o be the (q + p) × 1 vector o

�
=

⎡
⎣−1 . . . − 1︸ ︷︷ ︸

p

, 1 . . . 1︸ ︷︷ ︸
q

⎤
⎦T . Let M be the 2(p + q) × (p + q)

matrix,

M
�
=

⎡
⎢⎢⎢⎢⎣
L01b 0 · · · 0

0
. . .

...
. . .

0 Lp−1,pb

⎤
⎥⎥⎥⎥⎦

Lemma E.8 L has rank 2p.

Proof: By definition, L
�
=

[
LT01 . . . L

T
0pL

T
12 . . . L

T
p−1,p

]
has at most rank 2p. Moreover, note that rank L ≥

rank L0. Furthermore observe that by definition L0 = I2 ⊗

⎡
⎢⎢⎢⎢⎢⎣

− 1√
β01

0 · · · 0

0
. . .

...
. . .

0 − 1√
β0p

⎤
⎥⎥⎥⎥⎥⎦ where I2 is rank

2 and the second matrix is of rank p. Hence, from definition, L0 is of rank 2p. Hence the result. �

Next, Lemmas E.9-E.12 presented. These lemmas are used in lemma E.13. Note the following: By defi-
nition, βij =

∥∥(I2 ⊗ cTij
)
b
∥∥2−ρ2

ij and β0i(b) = ρ2
0i−

∥∥(I2 ⊗ eTi
)
b
∥∥2. Then, ∇βij = 2 (I2 ⊗ cij)

(
I2 ⊗ cTij

)
b and

D2βij = 2 (I2 ⊗ cij)
(
I2 ⊗ cTij

)
, ∀(i, j) ∈ Q; ∇β0i = −2 (I2 ⊗ ei)

(
I2 ⊗ eTi

)
b andD2β0i = −2 (I2 ⊗ ei)

(
I2 ⊗ eTi

)
,

∀i ∈ P .

Lemma E.9 ∑
(i,j)∈Q0

∇βij
βij

= 2LMo

Proof:

∑
(i,j)∈Q0

∇βij
βij

=
∑
i∈P

∇β0i

β0i
+

∑
(i,j)∈Q

∇βij
βij

=
∑
i∈P

−2 (I2 ⊗ ei)
(
I2 ⊗ eTi

)
b√

β0i

√
β0i

+
∑

(i,j)∈Q

2 (I2 ⊗ cij)
(
I2 ⊗ cTij

)
b√

βij
√
βij

= −2
∑
i∈P

LT0iL0ib+ 2
∑

(i,j)∈Q
LTijLijb

= 2LMo

�

Lemma E.10 ∑
(i,j)∈Q0

D2βij
βij

= 2L1L
T
1 − 2L0L

T
0
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Proof:

∑
(i,j)∈Q0

D2βij
βij

=
∑
i∈P

D2β0i

β0i
+

∑
(i,j)∈Q

D2βij
βij

=
∑
i∈P

−2 (I2 ⊗ ei)
(
I2 ⊗ eTi

)
√
β0i

√
β0i

+
∑

(i,j)∈Q

2 (I2 ⊗ cij)
(
I2 ⊗ cTij

)√
βij

√
βij

= −2
∑
i∈P

LT0iL0i + 2
∑

(i,j)∈Q
LTijLij

= −2L0L
T
0 + 2L1L

T
1

�

Lemma E.11 ∑
(i,j)∈Q0

∇βij∇βTij
β2
ij

= 4LMMTLT

Proof:

∑
(i,j)∈Q0

∇βij∇βTij
β2
ij

=
∑
i∈P

∇β0i∇βT0i
β2

0i

+
∑

(i,j)∈Q

∇βij∇βTij
β2
ij

=
∑
i∈P

(
−2 (I2 ⊗ ei)

(
I2 ⊗ eTi

)
b√

β0i

√
β0i

)(
−2 (I2 ⊗ ei)

(
I2 ⊗ eTi

)
b√

β0i

√
β0i

)T

+
∑

(i,j)∈Q

(
2 (I2 ⊗ cij)

(
I2 ⊗ cTij

)
b√

βij
√
βij

)(
2 (I2 ⊗ cij)

(
I2 ⊗ cTij

)
b√

βij
√
βij

)T

= 4
∑
i∈P

LT0iL0ib(LT0iL0ib)T + 4
∑

(i,j)∈Q
LTijLijb(L

T
ijLijb)

T

= 4LMMTLT

�

Lemma E.12

∑
(i,j)∈Q0

(l,n) �=(i,j)∑
(l,n)∈Q0

∇βij∇βTln
βijβln

= 4LMooTMTLT − 4LMMTLT

Proof:

∑
(i,j)∈Q0

(l,n) �=(i,j)∑
(l,n)∈Q0

∇βij∇βTln
βijβln

=
∑

(i,j)∈Q0

∇βij
βij

∑
(i,j)∈Q0

∇βTij
βij

−
∑

(i,j)∈Q0

∇βij∇βTij
β2
ij

By lemmas E.10-E.11,

∑
(i,j)∈Q0

(l,n) �=(i,j)∑
(l,n)∈Q0

∇βij∇βTln
βijβln

= 2LMo(2LMo)T − 4LMMTLT

= 4LMooTMTLT − 4LMMTLT
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�

The following lemma is used to derive the hessian of D2ϕ̂ restricted to Cϕ̂ ∩ F1(ε). It is used in Proposi-
tions D.2 and C.4.

Lemma E.13 ∀b ∈ Cϕ̂ ∩ F1(ε),

β

2γk
D2ϕ̂ =

k

γ
I2p + 2LMMTLT − 2

k
LMooTMTLT − L1L

T
1 + L0L

T
0

Proof: By Lemma E.6, D2ϕ̂ computed at a critical point, is equal to:

D2ϕ̂ =
γk−2

β2

(
kβ

(
γD2γ + (k − 1)∇γ∇γT )− γ2D2β

)
(27)

Using Lemma E.5, kβ∇γ = γ∇β. Take the outer-product of the both sides, (kβ)2 ∇γ∇γT = γ2∇β∇βT .
Assuming b �= g, substitute this on the right-hand side of eqn. 27,

D2ϕ̂ =
γk−1

β2

(
kβD2γ +

(
1 − 1

k

)
γ

β
∇β∇βT − γD2β

)

Note D2γ = 2I2p and write the equivalent expanded terms for ∇β and D2β as:

β2

γk−1
D2ϕ̂ = 2kβI2p +

(
1 − 1

k

)
γ

β

⎛
⎝ ∑

(i,j)∈Q0

β

βij
∇βij

⎞
⎠

⎛
⎝ ∑

(l,n)∈Q0

β

βln
∇βTln

⎞
⎠

−γ
⎛
⎝ ∑

(i,j)∈Q0

β

βij
D2βij +

∑
(i,j)∈Q0

(l,n) �=(i,j)∑
(l,n)∈Q0

β

βijβln
∇βij∇βTln

⎞
⎠

Note that ∀b ∈ F1(ε), γ �= 0 as g �∈ F1(ε). By Lemma E.9,∑
(i,j)∈Q0

∇βij
βij

= 2LMo

By Lemma E.10,

∑
(i,j)∈Q0

D2βij
βij

= 2L1L
T
1 − 2L0L

T
0

By Lemma E.12,

∑
(i,j)∈Q0

(l,n) �=(i,j)∑
(l,n)∈Q0

∇βij∇βTln
βijβln

= 4LMooTMTLT − 4LMMTLT

Using these equalities and the definitions of L1, L0, L and M , with some simplifications,

β2

γk−1
D2ϕ̂ = 2kβI2p +

(
1 − 1

k

)
γ

β
(2βLMo)(2βLMo)T

−γ [
β(2L1L

T
1 − 2L0L

T
0 ) + β(4LMooTMTLT − 4LMMTLT )

]
= 2kβI2p +

(
1 − 1

k

)
4γβLMooTMTLT + 2γβL0L

T
0

−2γβL1L
T
1 − 4γβLMooTMTLT + 4γβLMMTLT

= 2kβI2p − 4
k
γβLMooTMTLT + 2γβL0L

T
0

−2γβL1L
T
1 + 4γβLMMTLT
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Divide both sides by 2γβ and collect terms together,

β

2γk
D2ϕ̂ =

k

γ
I2p + 2LMMTLT − 2

k
LMooTMTLT − L1L

T
1 + L0L

T
0

�

The following lemma is used in Lemma E.15.

Lemma E.14

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
= (2pz−4)

∑
(l,n)∈Qz

αlnδln+(pz−1)
∑

(i,j)∈Q∗
z

αijδij

Proof: Recalling that P = Pz ∪ P ′
z , we can expand the summations on the rhs as:

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
=

∑
l∈Pz

n>l∑
n∈Pz

i<l∑
i∈Pz

αilδil +
∑
l∈Pz

n>l∑
n∈Pz

i>l,i�=n∑
i∈Pz

αliδli +
∑
l∈Pz

n>l∑
n∈Pz

i<n,i�=l∑
i∈Pz

αinδin +
∑
l∈Pz

n>l∑
n∈Pz

i>n∑
i∈Pz

αniδni

+
∑
l∈Pz

n>l∑
n∈Pz

i<l∑
i∈P ′

z

αilδil +
∑
l∈Pz

n>l∑
n∈Pz

i>l∑
i∈P ′

z

αliδli +
∑
l∈Pz

n>l∑
n∈Pz

i<n∑
i∈P ′

z

αinδin +
∑
l∈Pz

n>l∑
n∈Pz

i>n∑
i∈P ′

z

αniδni

Next change the order of summations in the rhs consecutively,

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
=

∑
i∈Pz

l>i∑
l∈Pz

n>l∑
n∈Pz

αilδil +
∑
l∈Pz

i>l∑
i∈Pz

n>l,n �=i∑
n∈Pz

αliδli +
∑
i∈Pz

n>i∑
n∈Pz

l<n,l �=i∑
l∈Pz

αinδin +
∑
n∈Pz

i>n∑
i∈Pz

l<n∑
l∈Pz

αniδni

+
∑
i∈P ′

z

l>i∑
l∈Pz

n>l∑
n∈Pz

αilδil +
∑
l∈Pz

i>l∑
i∈P ′

z

n>l∑
n∈Pz

αliδli +
∑
i∈P ′

z

n>i∑
n∈Pz

l<n∑
l∈Pz

αinδin +
∑
n∈Pz

i>n∑
i∈P ′

z

l<n∑
l∈Pz

αniδni

Next change the indices of the summations in the rhs,

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
=

∑
l∈Pz

n>l∑
n∈Pz

m>n∑
m∈Pz

αlnδln +
∑
l∈Pz

n>l∑
n∈Pz

m>l,m �=n∑
m∈Pz

αlnδln +
∑
l∈Pz

n>l∑
n∈Pz

m<n,m �=l∑
m∈Pz

αlnδln +
∑
l∈Pz

n>l∑
n∈Pz

m<l∑
m∈Pz

αlnδln

+
∑
i∈P ′

z

j>i∑
j∈Pz

m>j∑
m∈Pz

αijδij +
∑
i∈Pz

j>i∑
j∈P ′

z

m>i∑
m∈Pz

αijδij +
∑
i∈P ′

z

j>i∑
j∈Pz

m<j∑
m∈Pz

αijδij +
∑
i∈Pz

j>i∑
j∈P ′

z

m<i∑
m∈Pz

αijδij

Collecting similar terms into one summation,

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
=
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∑
l∈Pz

n>l∑
n∈Pz

2
m �=l,n∑
m∈Pz

αlnδln +
∑
i∈P ′

z

j>i∑
j∈Pz

m �=j∑
m∈Pz

αijδij +
∑
i∈Pz

j>i∑
j∈P ′

z

m �=i∑
m∈Pz

αijδij

Grouping the summations and simplifying rhs,

∑
(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)
=

∑
(l,n)∈Qz

2(pz − 2)αlnδln +
∑

(i,j)∈Q∗
z

(pz − 1)αijδij

�

The following lemma is used in Proposition C.4.

Lemma E.15 If

k > max
b∈F1(ε)

⎧⎨
⎩

γ(|Pz| − 1)
(
ρ0|Pz | +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

)
[∑

(l,n)∈Qz ‖gln‖ −
∑

(l,n)∈Qz δln − 2|Pz |−2
ρ′ ‖vz‖2

]
ε

⎫⎬
⎭

then
∑

(i,j)∈Qz
γ

kβij
δ2ij − ‖vz‖2 > 0.

Proof: By Lemma E.5, kβ∇γ = γ∇β. Expanding the terms ∇γ and ∇β respectively,

2kβ(b− g) = γ
∑

(i,j)∈Q

2β
βij

(I2 ⊗ cij) dij − γ
∑
j∈P

2β
β0j

(I2 ⊗ ej) bj

Now let αij
�
= γ

kβij
, ∀(i, j) ∈ Q, and α0j

�
= γ

kβ0j
, ∀j ∈ P . Manipulating the β and k terms and replacing the

γ
kβij

and γ
kβ0j

terms by αij and α0j respectively,

∑
i∈P

(bi − gi) ⊗ ei =
∑

(i,j)∈Q
αij (I2 ⊗ cij) dij −

∑
j∈P

α0j (I2 ⊗ ej) bj

Both sides are multiplied by
(
I2 ⊗ cTln

)
where l < n and simplified as:

(
I2 ⊗ cTln

)∑
i∈P

(bi − gi) ⊗ ei =
(
I2 ⊗ cTln

) ∑
(i,j)∈Q

αij (I2 ⊗ cij) dij

− (
I2 ⊗ cTln

) ∑
j∈P

α0j (I2 ⊗ ej) bj

∑
i∈P

(bi − gi) ⊗ cTlnei =
∑

(i,j)∈Q
αij

(
I2 ⊗ cTlncij

)
dij −

∑
j∈P

α0j

(
I2 ⊗ cTlnej

)
bj

Using Lemmas E.1 and E.2, both sides are simplified as:

dln − gln = 2αlndln +
i<l∑
i∈P

αildil +
i>l,i�=n∑
i∈P

αlidli +
i<n,i�=l∑
i∈P

αindin +
i>n∑
i∈P

αnidni − α0lbl + α0nbn

−gln = (2αln − 1)dln +
i<l∑
i∈P

αildil +
i>l,i�=n∑
i∈P

αlidli +
i<n,i�=l∑
i∈P

αindin +
i>n∑
i∈P

αnidni − α0lbl + α0nbn
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Summing gln terms over Qz and using triangular inequality,∑
(l,n)∈Qz

‖gln‖ ≤
∑

(l,n)∈Qz
|2αln − 1|δln

+
∑

(l,n)∈Qz

(
i<l∑
i∈P

αilδil +
i>l,i�=n∑
i∈P

αliδli +
i<n,i�=l∑
i∈P

αinδin +
i>n∑
i∈P

αniδni

)

+
∑

(l,n)∈Qz
(
γ

kβ0l
‖bl‖ +

γ

kβ0n
‖bn‖)

Let pz
�
= |Pz |. Using Lemma E.14 and noting that for ∀b ∈ F1(ε), β0i > ε, ∀i ∈ P and ‖bi‖ < ρ0. ,∑

(l,n)∈Qz
‖gln‖ ≤

∑
(l,n)∈Qz

|2αln − 1|δln + (2pz − 4)
∑

(l,n)∈Qz
αlnδln

+(pz − 1)
∑

(i,j)∈Q∗
z

αijδij +
γρ0

kε
pz(pz − 1)

LetQz = Q′
z∪Q′′

z whereQ′
z andQ′′

z are defined as: Q′
z

�
=

{
(l, n) ∈ Qz

∣∣αln ≥ 1
2

}
andQ′′

z
�
=

{
(l, n) ∈ Qz

∣∣αln < 1
2

}
.

The summation terms are then decomposed with respect to Q′
z and Q′′

z :∑
(l,n)∈Qz

‖gln‖ ≤
∑

(l,n)∈Q′
z

(2αln − 1)δln +
∑

(l,n)∈Q′′
z

(1 − 2αln)δln + (2pz − 4)
∑

(l,n)∈Q′
z

αlnδln

+ (2pz − 4)
∑

(l,n)∈Q′′
z

αlnδln + (pz − 1)
∑

(i,j)∈Q∗
z

αijδij +
γρ0

kε
pz(pz − 1)

Next note that ∀(i, j) ∈ Q∗
z, βij > ε and δij

βij
≤

√
ρ2ij+ε

ε . Using these bounds and simplifying,

∑
(l,n)∈Qz

‖gln‖ +
∑

(l,n)∈Q′
z

δln −
∑

(l,n)∈Q′′
z

δln ≤ (2pz − 2)
∑

(l,n)∈Q′
z

αlnδln + (2pz − 6)
∑

(l,n)∈Q′′
z

αlnδln

+
γ(pz − 1)

kε

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε+

γρ0

kε
pz(pz − 1)

Let ρ′
�
= min(i,j)∈Q {ρij}. Multiply both sides by ρ′

2pz−2 and collecting terms together,

ρ′

2pz − 2

⎛
⎝ ∑

(l,n)∈Qz
‖gln‖ −

∑
(l,n)∈Qz

δln

⎞
⎠ ≤

∑
(l,n)∈Q′

z

αlnδlnρ
′ +

∑
(l,n)∈Q′′

z

pz − 3
pz − 1

αlnδlnρ
′

+
γρ′

2kε

⎛
⎝ρ0pz +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

⎞
⎠

Following note ∀(l, n) ∈ Q, ρ′ ≤ δln. Using the lower bound in the rhs,

ρ′

2pz − 2

⎛
⎝ ∑

(l,n)∈Qz
‖gln‖ −

∑
(l,n)∈Qz

δln

⎞
⎠ ≤

∑
(l,n)∈Q′

z

αlnδ
2
ln +

∑
(l,n)∈Q′′

z

αlnδ
2
ln

+
γρ′

2kε

⎛
⎝ρ0pz +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

⎞
⎠
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Subtract the term ‖vz‖2 from both sides and re-group terms as:

ρ′

2pz − 2

⎛
⎝ ∑

(l,n)∈Qz
‖gln‖ −

∑
(l,n)∈Qz

δln − 2pz − 2
ρ′

‖vz‖2

⎞
⎠

︸ ︷︷ ︸
A

− γρ′

2kε

⎛
⎝ρ0pz +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

⎞
⎠

≤
∑

(l,n)∈Qz
αlnδ

2
ln − ‖vz‖2

If g is chosen according to Assumption 1, then term A > 0. If k is chosen as,

k > max
∀b∈F1(ε)

⎧⎨
⎩

γ(pz − 1)
(
ρ0pz +

∑
(i,j)∈Q∗

z

√
ρ2
ij + ε

)
[∑

(l,n)∈Qz ‖gln‖ −
∑

(l,n)∈Qz δln − 2pz−2
ρ′ ‖vz‖2

]
ε

⎫⎬
⎭

then
∑

(l,n)∈Qz αlnδ
2
ln − ‖vz‖2 > 0. �

Lemma E.16 is used in Proposition C.5.

Lemma E.16 If b ∈ F2(ε), then

√
γ‖∇β‖
2β

≤ max∀b∈F2(ε){
√
γ}

ε

⎛
⎝ ∑

(i,j)∈Q

√
2
√
ρ2
ij + ε+

∑
i∈P

√
ρ2
0i − ε

⎞
⎠

Proof: Expanding the term ∇β and using triangular inequality,
√
γ‖∇β‖
2β

≤
√
γ

2

∑
(i,j)∈Q0

‖∇βij‖
βij

Using ∇βij = 2 (I2 ⊗ cij)
(
I2 ⊗ cTij

)
b and ∇β0i = −2 (I2 ⊗ ei)

(
I2 ⊗ eTi

)
b,

√
γ‖∇β‖
2β

≤
√
γ

2

⎛
⎝ ∑

(i,j)∈Q

‖2 (I2 ⊗ cij) dij‖
βij

+
∑
i∈P

‖2 (I2 ⊗ ei) bi‖
β0i

⎞
⎠

Taking the norm of the vectors and using ‖dij‖
βij

≤
√
ρ2ij+ε

ε and ‖bi‖
β0i

≤
√
ρ20i−ε
ε in F2(ε),

√
γ‖∇β‖
2β

≤ max
∀b∈F2(ε)

{√γ}
⎛
⎝ ∑

(i,j)∈Q

√
2

√
ρ2
ij + ε

ε
+

∑
i∈P

√
ρ2
0i − ε

ε

⎞
⎠

≤ max∀b∈F2(ε){
√
γ}

ε

⎛
⎝ ∑

(i,j)∈Q

√
2
√
ρ2
ij + ε+

∑
i∈P

√
ρ2
0i − ε

⎞
⎠

�

Lemmas E.17, E.18, E.19 are used in Proposition C.4.

Lemma E.17

‖LT1 vz‖2 =
∑

(i,j)∈Qz

δ2ij
βij

+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

‖bj − ḡz‖2

βji
+

j>i∑
j∈Pz

‖bj − ḡz‖2

βij

⎤
⎦
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Proof: By definition,

‖LT1 vz‖2 =
∑

(i,j)∈Q
‖Lijvz‖2

Expanding right-hand side by using the definitions of Lij and vz,

‖LT1 vz‖2 =
∑

(i,j)∈Q

∥∥∥∥∥ 1√
βij

(
I2 ⊗ cTij

) ∑
n∈Pz

J(bn − ḡz) ⊗ en

∥∥∥∥∥
2

Using the Kronecker product property that (a⊗ b)(c⊗ d) = ac⊗ bd,

‖LT1 vz‖2 =
∑

(i,j)∈Q

1
βij

∥∥∥∥∥ ∑
n∈Pz

J(bn − ḡz) ⊗ cTijen

∥∥∥∥∥
2

Collecting the terms of Qz and P ′
z separately, and using Lemma E.2,

‖LT1 vz‖2 =
∑

(i,j)∈Qz

1
βij

‖J(bi − ḡz) − J(bj − ḡz)‖2

+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

1
βji

‖J(bj − ḡz)‖2 +
j>i∑
j∈Pz

1
βij

‖J(bj − ḡz)‖2

⎤
⎦

Simplifying the terms and using the definition of δij ,

‖LT1 vz‖2 =
∑

(i,j)∈Qz

δ2ij
βij

+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

‖bj − ḡz‖2

βji
+

j>i∑
j∈Pz

‖bj − ḡz‖2

βij

⎤
⎦

�

Lemma E.18

‖LT0 vz‖2 =
∑
j∈Pz

‖bj − ḡz‖2

β0j

Proof: By definition,

‖LT0 vz‖2 =
∑
j∈P

‖L0jvz‖2

Expanding right-hand side by using the definitions of L0j and vz ,

‖LT0 vz‖2 =
∑
j∈P

∥∥∥∥∥ 1√
β0j

(
I2 ⊗ eTj

) ∑
n∈Pz

J(bn − ḡz) ⊗ en

∥∥∥∥∥
2

Using the Kronecker product property,

‖LT0 vz‖2 =
∑
j∈P

1
β0j

∥∥∥∥∥ ∑
n∈Pz

J(bn − ḡz) ⊗ eTj en

∥∥∥∥∥
2

Using Lemma E.1,

‖LT0 vz‖2 =
∑
j∈Pz

1
β0j

‖J(bj − ḡz)‖2

=
∑
j∈Pz

‖bj − ḡz‖2

β0j

�

29



Lemma E.19

‖MTLT vz‖2 =
∑
j∈Pz

1
β2

0j

[
bTj Jḡz

]2
+

∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

1
β2
ji

[
dTjiJ(bj − ḡz)

]2
+

j>i∑
j∈Pz

1
β2
ij

[
dTijJ(bj − ḡz)

]2⎤⎦

Proof: By definition,

‖MTLT vz‖2 =
∑

(i,j)∈Q0

(
bTLTijLijvz

)2

Expanding right-hand side by using the definitions of Lij and vz,

‖MTLT vz‖2 =
∑

(i,j)∈Q

[
1
βij

bT (I2 ⊗ cij)
(
I2 ⊗ cTij

) ∑
n∈Pz

J(bn − ḡz) ⊗ en

]2

+
∑
j∈P

[
1
β0j

bT (I2 ⊗ ej)
(
I2 ⊗ eTj

) ∑
n∈Pz

J(bn − ḡz) ⊗ en

]2

Using the definition of dij and Kronecker product property,

‖MTLT vz‖2 =
∑

(i,j)∈Q

1
β2
ij

[
dTij

∑
n∈Pz

J(bn − ḡz) ⊗ cTijen

]2

+
∑
j∈P

1
β2

0j

[
bTj

∑
n∈Pz

J(bn − ḡz) ⊗ eTj en

]2

Collecting the terms of Qz and P ′
z separately, and using Lemmas E.1 and E.2,

‖MTLTvz‖2 =
∑

(i,j)∈Qz

1
β2
ij

(
dTijJ [(bi − ḡz) − (bj − ḡz)]

)2

+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

1
β2
ji

[
dTjiJ(bj − ḡz)

]2
+

j>i∑
j∈Pz

1
β2
ij

[
dTijJ(bj − ḡz)

]2⎤⎦
+

∑
j∈Pz

1
β2

0j

[
bTj J(bj − ḡz)

]2
Simplifying the terms,

‖MTLT vz‖2 =
∑

(i,j)∈Qz

1
β2
ij

(
dTijJdij

)2
+

∑
j∈Pz

1
β2

0j

[
bTj Jḡz

]2

+
∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

1
β2
ji

[
dTjiJ(bj − ḡz)

]2
+

j>i∑
j∈Pz

1
β2
ij

[
dTijJ(bj − ḡz)

]2⎤⎦

=
∑
j∈Pz

1
β2

0j

[
bTj Jḡz

]2
+

∑
i∈P ′

z

⎡
⎣ j<i∑
j∈Pz

1
β2
ji

[
dTjiJ(bj − ḡz)

]2
+

j>i∑
j∈Pz

1
β2
ij

[
dTijJ(bj − ḡz)

]2⎤⎦
�
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