
1

CIDS: Causality-based Intrusion Detection System
Samuel T. King, Z. Morley Mao, and Peter M. Chen

Department of Electrical Engineering and Computer Science
University of Michigan�

kingst, zmao, pmchen � @umich.edu

Abstract— This paper presents a new style of intrusion de-
tection system, CIDS, that links network and host based intru-
sion detection systems together using causal dependencies. This
combination provides a number of benefits. First, combining
alerts reduces false positives for both network and host based
approaches. Second, host based intrusion detection systems have
significantly less data to process since they only act on processes
and files that are causally linked to a suspicious network packet.
Third, alarms are associated with a specific network service,
allowing system administrators to act accordingly after detecting
a compromise.

To show the utility of this new system, we describe how
several existing intrusion detection systems benefit from using our
platform, and we introduce a new host based intrusion detection
system that leverages the full power of causal dependency
tracking.

I. INTRODUCTION

Significant time and resources are spent making software
more secure, yet the Internet continues to be plagued by
malicious activity. As a result, even the most diligent system
administrators must cope with the reality of computer break-
ins. One way system administrators combat attacks is by using
intrusion detection systems (IDS). There are a number of
intrusion detection systems available at both the network and
host level, and each type balances different advantages and
disadvantages, but none are perfect. Network IDS has the
advantage of a network-wide view for detecting anomalous
traffic patterns. Host IDS has detailed knowledge of applica-
tion behavior.

We propose combining network based intrusion detection
systems (NIDS) with host based intrusion detection systems
(HIDS) to increase the effectiveness of both. Specifically,
when a NIDS detects a suspect packet, we track the effects of
that packet on the host by following the causal dependencies
that result from an application reading or writing the packet.
Tracking causal dependencies results in a set of processes and
files on the host that are affected by that network packet. Then,
host based intrusion detection techniques are applied to the set
of files and processes found to determine if the packet did in
fact lead a successful break-in. We call this new method of
intrusion detection CIDS.

CIDS provides a number of benefits when compared to
existing methods. First, CIDS significantly reduces the number
of false positives generated by both signature and anomaly
based intrusion detection systems. Second, CIDS cuts down
the amount of data HIDS have to examine by only highlighting
the subset of processes and files that are affected by a
specific network packet. Finally, CIDS aids in determining the
exploited network service after detecting an attack.

Suspect
Packet
Found

Network

NIDS

Host

network

process

process
compromised

helper

service

Fig. 1. Overall CIDS architecture. The NIDS queries the host upon detecting
a suspicious network packet. The host then follows the causal dependencies
resulting from the packet and applies HIDS rules to each of the files and
processes in the set. The process deemed bad by the HIDS is highlighted.

This paper describes the benefits of combining host and
network intrusion detection systems. Then, we discuss how
causal tracking on the host works, followed by a descrip-
tion of several possible combinations of host and network
intrusion detection systems. Finally, we describe a novel host
anomaly detector, our prototype implementation, and CIDS
performance for several attacks encountered on a honeypot
system.

II. CIDS ARCHITECTURE

CIDS combines network and host based intrusion detection
systems using the causal tracking available via BackTracker
[11] and ForwardTracker. The NIDS identifies suspect packets,
then queries the host that read the packet to determine if it led
to a break-in (Figure 1). For now, packets are tracked using
the TCP sequence numbers and IP addresses, but [20] outlines
methods suitable for tracking general network packets in our
system in the presence of IP spoofing.

CIDS tracks both incoming and outgoing network packets.
Suspect incoming network packets are indicative of an attack
on an existing network service. The effects of that packet are
followed through the host and malicious activity is detected. In
addition, suspicious outgoing network packets might show that
a node has already been broken into. For example, if the NIDS
detects a node launching attacks on other computers, CIDS is
used to determine where the malicious outgoing packets came
from.

This architecture is suitable for both real-time and forensic
detection of intrusions, but there are trade-offs between the
two methods. Real-time detection can stop an attacker before
they leave lasting effects on the system. However, an attack
that is detected at the network level, but has a delayed effect
on the host, might be difficult to detect. Forensic, or post-
intrusion analysis does not have trouble with delayed attacks.



2

However, sufficient amounts of network and host data must be
stored to analyze the full attack.

III. BENEFITS OF CIDS
There are a number of benefits to combining NIDS and

HIDS. In this section we evaluate the benefits of CIDS
compared to stand-alone network based intrusion detection
systems, host based intrusion detection systems, and the cur-
rent efforts to combine the two.

A. NIDS

The CIDS architecture provides network based intrusion
detection systems with an unparalleled level of semantic
information. By querying the host, NIDS detect exactly which
processes and files are directly affected by a specific net-
work packet. Several different NIDS attempt to infer this
information based solely on network data, where as CIDS
actually monitors it directly at the host. This alleviates the
need for inferring which network services handles a request
and eliminates an entire class of NIDS evasion techniques. As
a result, CIDS helps network based intrusion detection systems
in a number of ways which we elaborate in Section V; one of
the most promising is reducing false positives.

False positives are a problem with both signature and
anomaly based NIDS. Signature based NIDS generate alarms
regardless if the attack actually succeeded and anomaly based
NIDS trigger false alarms by design. For example, we ran
snort, an open source signature-based NIDS, on a /24 network
in our department. After only three hours, we received alarms
for every active IP address. None of the XXX machines that we
were able to check had actually been broken into. Furthermore,
we ran snort for 48 hours on the departmental web / MySQL
server. Again there were 11956 alerts generated, none of which
succeeded. In addition to tests run on our local network using
snort, [16] discusses problems with commercial NIDS and
false positives in detail.

These false alarms create an overwhelming amount of data
for a system administrator to process and can eventually lead
to a false sense of security. Although it appears that NIDS are
difficult to use, they do provide some benefits. All systems had
alarms associated with them, but only XX% of the packets
were deemed bad. This significantly reduces the amount of
data that host based intrusion detection systems must evaluate
when using CIDS.

CIDS provide important feedback regarding the accuracy
of the signature regardless of whether it is behavior based
or signature rule based knowing the success of the attack. We
propose to continuously refine the network signatures in NIDS
using the host response information provided from HIDS.

B. HIDS

CIDS reduces the number of false positives generated by
host based intrusion detection systems. Any processes or files
examined by the HIDS directly result from a specific network
packet that has been deemed bad. Combining the two alerts
gives system administrators higher confidence that a break-in
actually occurred.

httpd

sh, bash

backdoor

tarwget

/tmp/.xploit/backdoor.tgz

tar, gzip

pipe

/tmp/.xploit/backdoor

192.168.2.1:443

141.213.4.18:1025

Fig. 2. Dependency graph for httpd attack. Processes are shown as boxes
(labeled by program names called by execve during that process’s lifetime);
files are shown as ovals; sockets are shown as diamonds. BackTracker can
also show process IDs and file inode numbers. The detection point is shaded.
Note: httpd’s parent processes (initlog, rc, init, swapper) are
not shown in the interest of space. Please refer to [11] for examples of full
BackTracker graphs.

In addition to reducing false positives, CIDS presents the
HIDS with significantly less data to process. CIDS allows
slower HIDS to be effective since it only highlights the subset
of files and processes affected by the network packet. This
subset is significantly smaller than the total activity on the
system.

Finally, CIDS connects host alarms with specific network
services. Some HIDS, like tripwire which periodically scans
binaries looking for Trojans, detect intrusions but cannot
connect the alarm with the actual break-in. CIDS provides
this connection since actions detected are associated with
a network packet, and thus a network service. Determining
the exploited network service is important for system ad-
ministrator so they can take action and either apply a patch
to the service, or shut it down all together to avoid future
compromises.

C. Combine IDS

Some commercial IDS vendors have combined network
alerts with host alarms. However, they seem to simply combine
alarms into a single administrative console. Because there is
nothing other than IP address linking the alarms together, the
false positive problem could become even worse since the
administrator would view alarms from both the host and the
network.

UCLog[14] links alarms using temporal data. However, the
benefits from this are limited; it is possible to have two
unrelated alarms close in time and delayed attacks would not
be linked. Also, nothing links the alarm to a specific network
service, leaving the possibility for future attacks.



3

IV. BACKTRACKER AND FORWARDTRACKER

BackTracker and ForwardTracker used within CIDS start
from incoming and outgoing network packet respectively, and
provide a graph of all relevant objects. In this section we
describe how BackTracker and ForwardTracker use causal
dependencies to link various operating system objects together.
First, we describe BackTracker and causal dependencies.
Second, we talk about ForwardTracker and how it varies
from BackTracker. Please refer to [11] for a more detailed
discussion of BackTracker.

A. BackTracker

BackTracker automatically identifies potential sequences
of steps that occur in an intrusion. Starting with a single
detection point (e.g., a suspicious outgoing network packet),
BackTracker identifies files and processes that could have
affected that detection point and displays chains of events in
a dependency graph.

1) Tracking Dependencies: Dependency graphs are created
by tracking various operating system events (system calls) and
objects (files, processes). Events create causal dependencies
between different operating system objects. For example, a
write system call results in a causal dependency from the
process that does the writing to the file that is written to. Also,
fork system calls result in a causal dependency from the
parent process to the child. Using causal events, BackTracker
reduces the number of objects in a graph by focusing on
events that are likely to be part of the attack. For example if a
NIDS identifies a packet that is likely to be part of an attack,
BackTracker starts with that packet and traverses backward
in time beginning with the process that wrote the packet.
BackTracker adds that process to the list of tainted objects and
continues examining past events until the dependency graph
is complete.

Figure 2 shows a BackTracker graph for an attack on a
web server. The detection point for this particular attack is the
backdoor application, which triggered an alarm from the
HIDS being used. After detecting the intrusion, BackTracker
uses this process as the starting point for the graph. Starting at
the backdoor process and moving backward, BackTracker
shows that the application runs using the executable file
/tmp/.xploit/backdoor. This file is written by tar which
unpacks an archive downloaded using wget. All of these
applications launch from a bash shell which spawned from
the httpd process as the result of a successful attack. By
using causal dependencies, BackTracker filters out significant
amounts of non-related events and objects present on the
system during the attack, resulting in orders of magnitude less
data to examine [11].

B. ForwardTracker

In addition to following causal dependencies backward
in time, we modified BackTracker to track forward. In
essence, rather than answering the question, “how did this
get here”, ForwardTracker answers the question “what effect
did this have”. Conceptually, ForwardTracker is similar to

BackTracker and they both use the same causal events. How-
ever, ForwardTracker starts from an incoming network packet,
rather than an outgoing network packet, and tracks the effects
of the process that read the packet.

V. NETWORK SENSORS

In this section, we describe in more details the state of the
art of NIDS and the gained improvement using CIDS. Network
intrusion detection inherently suffers from problems of false
positives due to the impossibility of complete emulation of
host behavior and the lack of full knowledge of which packets
will actually be seen by the host. This is due to the fact that
without external knowledge, NIDS does not typically know
how hosts and applications are configured, how exactly appli-
cations will interpret a sequence of bytes, and how internal
networks between the NIDS and the hosts are structured to
determine reachability. These fundamental limitations have
long been pointed out by Ptacek and Newsham [19]. In this
section, we first describe several related efforts to remedy this
fundamental flaw of NIDS, problems associated with these
approaches, and how our approach of CIDS correct some
of these problems. We use the term monitor to refer to the
network intrusion detection system that observes the traffic to
and from hosts and may alter the traffic as needed to reduce
false alarms. We show that CIDS is complementary to existing
approaches but enhances traditional NIDS with the ability to
accurately disambiguate application protocol behavior. Given
the ability to disambiguate relatively cheaply by the host to
reduce false positives, CIDS is a promising new approach to
improve NIDS by constructing a broader class of signatures
to also lower false negatives.

A. Existing Approaches for Disambiguation
One existing proposal to deal with ambiguities at transport

and network layer is traffic normalization [8]. It eliminates
potential ambiguities before traffic is seen by the monitor to
reduce evasion opportunities. For instance, it inserts a TCP
“keep-alive” message when a RST packet is seen to ensure
proper synchronization of the two TCP peers in the case of
an open connection and to eliminate the ambiguity whether
the TCP session is indeed closed. There are several semantic
and performance problems associated with the approach of
normalization. It undermines end-to-end protocol semantics;
in effect it is still guessing how traffic should be seen by
applications. This approach is very expensive, as it requires
examining each packet possibly resulting in end-to-end per-
formance slow down. The normalizer sits on the forwarding
path and thus needs to be extremely reliable. It is susceptible to
attacks such as stateholding and CPU overload attacks. Finally,
traffic normalization is limited to ambiguities at only the
network and transport layers; it can’t remove all ambiguities,
e.g., those of applications semantics, which CIDS can address
without any ambiguities. In effect, CIDS also encompasses the
functionality of the traffic normalization without any of the
above disadvantages, since the host sensors have direct access
to protocol state above the network and transport layers.

Bifurcation analysis [17] is a related technique that splits
the analysis context int multiple threads, one for each possible



4

interpretation. Analysis proceeds separately for each context
in parallel. This can easily lead to the explosion of the number
of analysis contexts, and is thus unscalable as a general
disambiguation method.

A recent related work, Shield [25], uses host-based net-
work filters targeting specific application vulnerabilities before
software patches are properly installed. Positioned between
the transport layer and applications, it filters traffic based on
known vulnerabilities independent of exploits, thus greatly
reducing false positives. The HIDS part of our CIDS frame-
work is similar to Shield, but CIDS additionally makes use of
alarms generated by NIDS to first identify suspicious traffic.
Moreover, the ForwardTracker and BackTracker further disam-
biguate the behavior of the applications to reduce both false
positive and false negatives of Shield which is complementary
to our framework.

Traffic normalization relies on the specified transport and
network protocol behavior as published by standards such as
RFCs for the purpose of disambiguation. It may disrupt end-
to-end protocol semantics, as not all implementations follow
the standards and some ambiguities are inherently difficult to
resolve due to differences in the semantics of application using
TCP. For example, there exist application level parameters af-
fecting the TCP/IP stack. The use of TCP “urgent” pointer can
result in data delivered either via a signal or inline to the user
process. Another related approach to deal with ambiguities
or false positives is Active Mapping [21] which refers the
technique of keeping a database cataloging the detailed be-
havior of individual end system protocol implementation and
network topology. Based on the information in the database,
the network monitor can resolve some but not all ambiguities
at the transport and network layer. However, this approach is
expensive and would require automatic update to the database,
so that the information does not ever become out of date.
Even if automation is possible, it is difficult to make it timely
triggered by any changes relevant to the information in the
database. Furthermore, for a large enterprise network, mapping
individual hosts do not scale well. Information collected can
be quickly out of date due to new software, OS upgrades, and
network topology changes. Similar to traffic normalization,
Active Mapping also only focuses on TCP/IP based ambigui-
ties. It requires active probing. Arguable the information can
be gathered via passive monitoring, but it would take much
longer and may be less accurate. Other shortcomings of active
mapping include user-controlled parameter in tcp stack, new
semantics, non-deterministic packet drops, NAT, DHCP, TCP
Wrappers, and potential attacks on the active mapper for the
purpose of evasion.

Another proposal to reduce false positives of traditional
NIDS is contextual signatures [22] focused on improving
traditional string-based signature matching by augmenting the
matching process with low-level context using regular ex-
pressions and high-level context. Examples include matching
requests with replies, step-wise attacks, exploit scans. These
types of signatures can make use of dependencies between
existing signatures in so-called interdependent signatures. The
disadvantages of these techniques include tedious manual
instrumentation of signatures to consider additional context.

Such a tedious process can miss some important contexts and
thus do not completely eliminate false positives. A signature
consisting of a request and a reply for example can be easily
evaded if the attacker manages to the compromise the machine
the single request and make the reply to evade the signature
matching.

B. CIDS Advantages for NIDS

Given the shortcomings of the existing approaches to deal
with the false positive issue of traditional NIDS, we now
classify a set of attacks that would benefit from combining
host and network IDS. One type are those OS or application
version specific attacks that are difficult to generalize without
trigger large number of false positives. These attacks depend
on the OS or application configurations. To encompass all such
attacks, the signatures or behavior-based alarms in the NIDS
are required to be general, fundamentally resulting in many
false positives. Active mapping can help deal with some of
these problems; however, it is difficult for the database to be
exhaustive. CIDS can be considered as a way to automatically
update the Active Mapping database, whose entries should be
timed out regularly to prevent staleness.

CIDS can handle those attacks much better than NIDS if
attacks are more easily described by specifying which process
is invoked in response to the sequence of network packets
and host’s subsequent behavior. For example, polymorphic
shellcode detection [2] is difficult due to the changing exploit
signatures. The state of the art of recommended detection
techniques [23] suggest to set NOP NUMBER to detect no-
effect instructions to be between 80 and 90 to avoid too many
false positives. Such a setting is truly ad-hoc and can also
result in false negatives. Attackers knowing these threshold
settings can easily evade the detection. Using CIDS, a general
signature for detecting NOPS section is used and the host
sensor can subsequently eliminate false positives by examining
the host behavior. Similarly, attacks such as cross site scripting
attacks [4] where malicous code is contained in HTML Tags in
client Web requests are more easily diambiguated using CIDS
given the inherent difficult of interpreting host’s reponse to a
sequence of code.

Another type of attacks that CIDS deal better with are those
targeted at services using non-fixed ports. For example, for
services using port knocking to obscure the port numbers by
providing a stealthy method of authentication and information
transfer to a networked machine that has no open port, it is
difficult to identify which application protocol will receive
the observed network packets. With the assistance from the
host sensors, the process and application is easily identified
and NIDS can perform retrospective network-level detection
to analyze the traffic when needed.

NIDS themselves are also inherently vulnerable to attacks.
Adversaries can structure network traffic that require NIDS
keep significant state, e.g., record information on multiple data
packets in succession. This imposes much overhead on the
Network IDS, making it vulnerable to resource exhaustion and
crash attacks. NIDS can offload some of such state-intensive
analysis to host sensors in order to improve robustness and
accuracy. Even when NIDS are overloaded and overlooks



5

some of the suspicious traffic, it could transition in the default
case of marking all traffic as potentially suspicious, leaving
host sensors for further analysis. This will prevent attackers
from successfully exploiting overload attacks.

One major advantage of CIDS is that we can now identify
which attacks are actually successful. Those successful and
failed attacks are invaluable for upgrading network signatures
to refine the signature database of NIDS over time. It also pro-
vides a way to automatically generating context for contextual
signatures.

VI. HOST SENSORS

We now examine from the perspective of host intrusion
detection systems the benefit of using NIDS alarms. There are
numerous types of HIDS used to detect compromises. Tripwire
[10] detects modified system files, LIDS [9] prevents various
system files from being modified, Sandboxing tools look for
unusual system calls [18][5][1][7] or system call sequences
[6], and [24][13][15] detect injected code attacks, just to name
a few.

In this section, we introduce three example services that
combine existing HIDS with causal tracking. These ser-
vices show how existing HIDS can be enhanced by using
CIDS. Then, we discuss a novel HIDS anomaly detector,
CausalTrace, that leverages the full power of causal tracking
rather than simply combining it with an existing HIDS.

A. Static Analysis

Static Analysis [24] statically determines all possible se-
quences of system calls an application can go through by
forming a number of different models of the application.
Static analysis is especially promising because it traverses all
code paths at compile time and does not rely on profiling or
system administrator configuration. However, the static models
incur significant runtime overhead, making them infeasible for
system-wide operation or on production level systems.

CIDS helps mitigate the runtime overhead of running static
analysis. When the network component of CIDS highlights
either an incoming or outgoing suspect network packet, For-
wardTracker or BackTracker returns a set of causally linked
processes and files. This set is several orders of magnitude
smaller than the total number of objects on the system [11] and
even separates out individual server instances. Static Analysis
can then be applied to the subset of relevant objects, reducing
the amount of data it must process. This reduction of data
allows Static Analysis to perform system wide analysis or
even work for enterprise servers despite the runtime overhead
incurred for checking each individual process instance.

B. Sandboxing HIDS

There are currently a number of different sandboxing HIDS
[18][5][1][7][6]. Sandboxing HIDS vary widely, but all share
one common theme: detect unexpected system calls. Profiles of
known good behavior are either specified by hand or through
a training period, but each system monitors how applications
and children processes interact with the underlying operating
system.

This style of anomaly detector defines good behavior and
triggers an alarm when bad behavior is encountered. Defining
good behavior allows sandboxing HIDS to detect unknown
attacks, but also allows for false positives. For example, if not
all code paths are traversed while profiling, an alarm triggers
when a new, yet correct, code path is taken for the first time.

CIDS reduces the number of false positives resulting from
Sandboxing HIDS by linking the alarm with a network alert.
If a suspect network packet causes a NIDS alarm, the effects
of the packet are tracked on the host and the resulting set of
files and processes are evaluated by the Sandboxing HIDS.
Because BackTracker and ForwardTracker separate out only
the processes and files directly affected by the specific network
packet, system administrators have higher confidence that the
suspect network packet actually lead to an intrusion and that
the host alarm is a true positive.

C. LIDS

LIDS hardens the Linux kernel and grants root users fewer
privileges than a standard root user in UNIX systems. LIDS
restricts system wide activities and can be configured to
disallow non-trusted kernel modules and prevent modifications
of system binaries. This level of protection prevents attackers
from installing Trojan binaries, even when they get root access
to the machine. However, the detection occurs downstream
from the intrusion. For example, if an attacker breaks into a
web server, spawns a bash shell, and attempts to install a root
kit using a cron script, LIDS will prevent the root kit from
being installed but cannot determine which network service
was exploited. Fortunately, CIDS is able track the effects of a
network packet and can link the attempted root kit installation
with an exploited network service.

D. CausalTrace

In addition to using existing methods of host intrusion
detection, we developed a new host anomaly detector based on
BackTracker and ForwardTracker graphs called CausalTrace.
BackTracker and ForwardTracker graphs provide a system-
wide view of the attack and capture information that is not
available to other HIDS. For example, a typical HIDS would
most likely allow network services to write files in /tmp.
However, if an attacker corrupts data in /tmp that is used by
other applications, typical HIDS do not follow the causal link.
Fortunately, BackTracker and ForwardTracker graphs capture
the tainting information and use it as a means for detecting
suspicious activity. The main observation is that attacks on
network services interact differently with the operating system
than typical network services.

Typical network services tend to have specific interactions
with the underlying operating system. For example ftpd,
smbd, and other file servers read and write files; httpd reads
files, launches CGI scripts, and communicates with databases;
and instant messaging clients relay text messages to various
servers. These interactions are captured by CausalTrace and
used to constrain attackers. Figure 3 shows the ForwardTracker
graph for a typical instance of a ftp server. The ftp server writes
files and uses helper processes that pipe information back to



6

socket

ftpd

/ftpspace/afile.txt ls pipe

Fig. 3. ForwardTracker Graph for a typical instance of the wu ftpd ftp
server.

the main server process. As a result, a successful attack on
the ftp server would be constrained to performing only the
actions shown on this graph. Typical exploits are constrained
to begin with (e.g., limited stack space for buffer overflows), so
limiting attackers further helps prevent hackers from gaining
full control of the system, even after a successful attack.

In addition to constraining hackers, CausalTrace detects
attacks against CIDS itself. One possible way a hacker could
attack CIDS is by forcing everything on the system to be
tainted. However, this is not typical behavior for network
services and is easily detected by CausalTrace.

1) Prototype Implementation: To implement CausalTrace,
we use a set of policy rules for each process in a causal
dependency graph. These rules define allowed causal events
for each process and are used to enforce the constraints of
a BackTracker or ForwardTracker graph. For example, the
ftpd process shown in figure 3 would only be allowed to call
fork, write to /ftpspace/afile.txt and read from a pipe. Also,
the forked process could only call exec on ls and write to
a pipe. As a result, constraints placed on the causal graph are
almost identical to full graph matching, but algorithmically
more efficent to compute.

To support CausalTrace, we implemented policies that are
predicated based on the fork chain of each individual process.
Applying different rules to children processes is similar to
Sandboxing HIDS like MAPbox [1] and BlueBoX [5]. Child-
boxes from MAPbox and inherited policies for BlueBoX apply
different rules to children processes, however, our approach
allows for even more fine grained control. For example, if a
Web server uses bash for both a CGI script and a helper
process for a different CGI script, the two bash instances
have distinct privileges.

Furthermore, fork chains can have various root processes
depending on the causal relationship. Most processes will have
the specific network service for the root process in the fork
chain. However, if a process that is not a direct descendant of
the network service is causally related to the network service,
it will have a different root process. Having a range of root
processes allows CausalTrace to profile processes based on the
full causal relationship.

As a result, existing processes within the causal graph are
constrained using rules predicated on the location within the
graph. If the behavior of these processes varies, an alarm is
raised. Also, any unknown fork chains are flagged. This style
of sandboxing is a good approximation of a full BackTracker

or ForwardTracker graph. Since files do not have rules applied
to them, there is the possibility for ambiguities. However, there
are still significant additional constraints placed on the system
and it is effective at detecting attacks.

VII. REMAINING CHALLENGES

CIDS is a working prototype that is effective for many dif-
ferent cases. However, several unanswered research questions
remain. First, we have to address network service interaction.
For example, a single computer may double as a web server
and a ftp server. Users upload web files using ftp, then the
web server reads these files using the local file system. This
scenario may lead to significant tainting of the system for cer-
tain network packets. One simple approach is to isolate various
network services using virtual machines. Virtual machines add
little or no overhead [12][3][26] and can be used to isolate the
actions of network services from one another. This is just one
possible solution, other methods might also be effective.

Many network services we examined (ftp, smbd, named,
and httpd) have specific interactions with the operating
system that can be summarized by a ForwardTracker or Back-
Tracker graph. One exception is the sshd network service.
sshd is a general purpose secure remote login application.
Making an accurate ForwardTracker CausalTrace signature
requires allowing behavior that is so general, it would be trivial
for an attacker to hide within it. Fortunately, sshd is the only
network service we encountered with this level of generality.
There are heuristics that could allow sshd to benefit from the
added constraints imposed by CIDS, but this is the topic of
ongoing research.

VIII. CONCLUSIONS

Both host and network based intrusion detection systems are
prone to having false positives. By using CIDS, network and
host alarms are causally linked, giving system administrators
more confidence that intrusions have actually occurred. NIDS
are able to query the host and have access to a level of semantic
information not previously available. HIDS have significantly
less data to evaluate, opening the door for more sophisticated
detection algorithms. By bridging the gap between network
and host based intrusion detection systems, CIDS introduces a
promising new technique in the defense of computer systems.

REFERENCES

[1] A. Acharya and M. Raje. Mapbox: Using parameterized behavior classes
to confine untrusted applications. In Proceedings of the 9th USENIX
Security Symposium, August 2000.

[2] K. H. at The SANS Institute. What is polymorphic shell code and
what can it do? . http://www.sans.org/resources/idfaq/
polymorphic_shell.php.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
Proceedings of the 2003 Symposium on Operating Systems Principles,
October 2003.

[4] C. C. Center. CERT Advisory CA-2000-02 Malicious HTML Tags
Embedded in Client Web Requests. http://www.cert.org/
advisories/CA-2000-02.html.

[5] S. N. Chari and P.-C. Cheng. Bluebox: A policy-driven, host-based
intrusion detection system. ACM Trans. Inf. Syst. Secur., 6(2):173–200,
2003.



7

[6] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense
of self for Unix processes. In Proceedings of 1996 IEEE Symposium on
Computer Security and Privacy, pages 120–128, 1996.

[7] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Secure
Environment for Untrusted Helper Applications. In Proceedings of the
1996 USENIX Security Symposium, pages 1–13, July 1996.

[8] M. Handley, C. Kreibich, and V. Paxson. Network Intrusion Detection:
Evasion, Traffic Normalization, and End-to-End Protocol Semantics . In
Proc. USENIX Security Symposium 2001.

[9] X. Huagang. Build a secure system with LIDS, 2000.
http://www.lids.org/document/build lids-0.2.html.

[10] G. H. Kim and E. H. Spafford. The design and implementation of
Tripwire: a file system integrity checker. In Proceedings of 1994 ACM
Conference on Computer and Communications Security (CCS), pages
18–29, November 1994.

[11] S. T. King and P. M. Chen. Backtracking Intrusions. In Proceedings
of the 2003 Symposium on Operating Systems Principles (SOSP), pages
223–236, October 2003.

[12] S. T. King, G. W. Dunlap, and P. M. Chen. Operating System Support
for Virtual Machines. In Proceedings of the 2003 USENIX Technical
Conference, pages 71–84, June 2003.

[13] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution Via
Program Shepherding. In Proceedings of the 2002 USENIX Security
Symposium, August 2002.

[14] Z. Li, J. Taylor, E. Partridge, Y. Zhou, W. Yurcik, C. Abad, J. J. Barlow,
and J. Rosendale. UCLog: A Unified, Correlated Logging Architecture
for Intrusion Detection. In Proceedings of the 12th International
Conference on Telecommunication Systems - Modeling and Analysis
(ICTSM), 2004.

[15] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting
of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 128–139.
ACM Press, 2002.

[16] D. Newman, J. Snyder, and R. Thayer. Cry-
ing wolf: False alarms hide attacks, 2002.
http://www.nwfusion.com/techinsider/2002/0624security1.html.

[17] V. Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. Computer Networks, 31(23-24):2435–2463, December 1999.

[18] N. Provos. Improving host security with system call policies. In
Proceedings of the 12th USENIX Security Symposium, August 2003.

[19] T. H. Ptacek and T. N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. Technical report, Secure
Networks, Inc., 1998.

[20] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network support
for ip traceback. In ACM/IEEE Transactions on Networking, 9(3), June
2001.

[21] U. Shankar and V. Paxson. Active Mapping: Resisting NIDS Evasion
Without Altering Traffic. In Proc. IEEE Symposium on Security and
Privacy.

[22] R. Sommer and V. Paxson. Enhancing Byte-Level Network Intrusion
Detection Signatures with Context. In Proc. ACM CCS 2003.

[23] N. G. S. Technologies. Polymorphic Shellcodes vs. Application
IDSs. http://www.cgisecurity.com/lib/polymorphic_
shellcodes_vs_app_IDSs.PDF, 21 Jan 2002.

[24] D. Wagner and D. Dean. Intrusion Detection via Static Analysis.
In Proceedings of 2001 IEEE Symposium on Computer Security and
Privacy, 2001.

[25] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known Vulnerabil-
ity Exploits. In Proc of ACM SIGCOMM 2004.

[26] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in
the Denali Isolation Kernel. In Proceedings of the 2002 Symposium
on Operating Systems Design and Implementation (OSDI), December
2002.


