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Abstract

We compare two weakly supervised graph-based classificalimwrithms:
spectral partitioning and tripartite updating. We providsults from empir-
ical tests on the problem of number classification. Our tesaobicate (a)
that both methods require minimal labeled data, (b) that bo¢thods scale
well with the number of unlabeled examples, and (c) thaatftife updating
outperforms spectral partitioning.

1 Introduction

Information extraction (IE) systems analyze unrestridted in order to extract in-
formation about pre-specified types of events, entitieelationships. Tradition-
ally, IE systems [9, 4, 7] have focused on the extraction dsbkdication of entities
into major categories like people, places, organizationmbers, and dates. Many
applications such as Question Answering (QA) [17, 13] regmiuch finer grained
entity categories (up to 100 and more phrase types oveaailt)entify candidate
phrases for answers to factual questions. In such apgitathigh-level classifi-
cation is only partially helpful.

In this paper, we consider the problem of number classiinatihich has been
somehow overlooked in the literature on IE. Number clasgifio is particularly
important in question answering systems. There are moredtdozen types of
numbers which can be used to answer different question {ggs “What is the
temperature in Phoenix?”, “What year did Columbus reach hga@”, “What is
the value of the Dow Jones index?”, etc). We will compare tymes of graph-
based algorithms for weakly supervised classification, emgbirically evaluate
their performance on number classification. Our machinenieg approaches are
based on a minimal amount of supervision with only a small len®(1) of la-



beled examples. Such algorithms are known in the literataneeakly supervised
algorithms.

2 Related work

2.1 Weakly-supervised learning

One of the earliest papers on bootstrapping for NLP prohld&1d presents an

unsupervised learning algorithm for word sense disamiiguahat, when trained

on unannotated English text, rivals the performance of siged techniques that
require time-consuming hand annotations. The algorithpased on two powerful

constraints — that words tend to have one sense per discandsene sense per
collocation — exploited in an iterative bootstrapping maare. Tested accuracy
exceeds 96%.

Blum and Mitchell [5] introduced co-training for the probieof classifying
Web pages based on two views including different types dfifea (one based on
the words in the pages themselves and another on the worde dryperlinks of
the pages pointing to them). Their main contribution is tovehow two views can
iteratively train each other to label a set of data.

Collins and Singer [7] discuss the use of unlabeled exanfplethe problem
of named entity classification. They develop a techniqué wksas only 7 man-
ually labeled “seed” examples to classify entities inteethclasses plus “other”.
Their approach works because given a particular instanatagsify, many fea-
tures correlate with any particular class and one can tlenatitely augment the
set of features associated with a given class. Two algosithre presented. The
first method uses a decision list algorithm similar to thg2a{, with modifications
motivated by [5]. The second algorithm extends ideas frowsbiog algorithms,
designed for supervised learning tasks, to the framewaygested by [5].

Recent theoretical results can be found in [1], who refinesatialysis of co-
training, defines and evaluates a new co-training algoritiemh gives a theoretical
justification for the Yarowsky algorithm [21], and showsttlea-training and the
Yarowsky algorithm are based on different independencenaissons.

Nigam et al. [15] show that the accuracy of text classifiers loa improved
by adding large collections of unlabeled documents. Thieastuse an algorithm
based on a combination of Expectation Maximization (EM) Biaize Bayes. The
initial classifier is trained on labeled data and then usethbel the unlabeled
set. The next classifier uses the large pool as part of itsitighiprocess. After
some iterations, the algorithm converges. Some of the im@mnents on this basic
algorithm, proposed by Nigam et al. include adding a werghfactor to determine
the contribution of the unlabeled data and the use of maltipixture components
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for each class. The paper reports a reduction in classdicairor on three real-
world tasks by up to 30%.

Collins and Singer [7] also investigate EM as a weakly supet/learning
algorithm for the application of named entity classificatid he performance was
shown to be not as good as the Co-boosting algorithm progmgséte authors.

2.2 Graph-based classification and clustering

Graph-based methods for clustering and classification baisted for decades.
A classic example is graph partitioning (see e.qg., [11])atTdgorithm is used to
identify groups of nodes in a graph that are more stronglyeoted internally than

to each other. Kernighan and Lin’s method is based on brdadttiraversal of a
graphG and splits it into two components; andG, such thatG = G; U G2 and
|G1| = |G2| = |G|/2 such that the cost of the partitioning, which is equal to the
number of edges that cross the partitioniag=£ | E(G1, G2)|), is minimal.

Other techniques for graph partitioning are based on thetspe (set of all
eigenvectors) of the graph. Spectral partitioning (a.kiaection) uses the Lapla-
cian of a graphG. The Laplacian is symmetric and the values of all rows and
columns add up to zero. The second smallest eigenvalue béfiiacian \2(L(G)),
is known as the algebraic connectivity of the graph. Theoreobrresponding to
it is called the Fiedler vector. If a grapi consists of two subgraph@; andGs
such that there are relatively few eddetweenz; andGs compared to the num-
ber of edgesvithin each of them, then the Fiedler vector is effectively a twassl
classifier. Iff; and f; are two components of the Fiedler vector, then

fix f; >0 <= elements and; of G' correspond to the same subgragh (
or Go).

while

fi* [; <0 <= elementg andj of G correspond to different subgraphs.

Graph-based partitioning methods can in general be apjliere than 2-way
classification, although their accuracy is not very higthéd@ tinderlying data differ
significantly from the assumed distribution. One such methecursive spectral
bisection, is described in detail in [16].

A bipartite graph consists of two components of differingdtionality. Edges
exist only across components and not within a single compuofpartite graphs
are very popular in information retrieval and social netevanalysis. For example,
one of the subgraphs can represent a set of documents airaoset of terms
in them or one of the components may be people and the otherchubs in which
they belong. Bipartite graphs are a very useful repredentdbr classification
problems. Several incarnations of methods based on ligartiphs exist. Klein-
berg’'s HITS algorithm [12] modelsubs(Web pages that contain a lot of pointers



to important pages) arauthorities(the important pages that are pointed to by the
hubs). For example, a list of bookmarks on sports is a hubawwhé home pages of
sports organizations and teams such as FIFA or Manchesterd Are authorities.
The HITS algorithm uses an iterative method to compute thednd authority
scores of each page. In his modHl,is the vector of the hub scores addis the
vector of the authority scores. The iterative process @zddtand A in turn as
follows: A = GTH andH = GA. This process converges to the stationary values
of H and A.

In [3], Beeferman and Berger describe a method for analymsey transac-
tions on an Internet search engine to discover clusterseariepiand URLs. Their
model uses information about each user query as well as th@rdnt that the
user clicked on from the list presented by the search endméhis case, one of
the components of the bipartite graph corresponds to thieguend the other one
to the URLs. Beeferman and Berger apply an agglomerativ&aring method to
identify groups of related queries and groups of relate@pagihis method doesn't
use any information about the textual content of the quenigsages and instead,
makes all of its decisions based on the link information @lon

In [22], the authors propose a method for bipartite graphtehing that is based
on the singular value decomposition (SVD) of the associatigke weight matrix
of the bipartite graph. They apply their technigue succalysbn document clus-
tering.

[23] describe a classification method based on the Gausaiziom field
model. The represent labeled and unlabeled data as veiriiees/eighted graph
with edge weights representing the similarity between dett@nces. They apply
belief propagation methods to identify the labeled nodéithelosest based on the
graph topology to a given unlabeled instance. Results oih dagsification are
very promising.

[14] present a simple spectral clustering algorithm impated in a few lines
of matlab. They analyze the algorithm based using matritupeation theory and
determine the conditions under which it can be expected twalbin theory.

In Natural Language Processing, [6] describe an applicatf@pectral cluster-
ing [14] to the problem of unsupervised clustering of Germarbs. They present
results comparing the output of the spectral algorithm told gtandard.

Vert and Kanehisa [20] present an algorithm to extract festdrom high-
dimensional gene expression profiles, based on a grapmtliaafes which genes
are known to participate together in reactions in metaljmithways.

To classify a large number of unlabeled examples, [19] &tam a small num-
ber of labeled examples and implement a Markov random wagk the unlabeled
examples. Results are shown on synthetic examples andléssification prob-
lems.



2.3 Numbers

Number classification has been traditionally overlookeitheéNLP literature. A re-
cent paper [18] discusses numbers in the context of nomatdriwords” (NSWSs)
which include time expressions, dates, currency amoubitsesiations, and acronyms.
They indicate that such words are actually quite commonxituté documents and
furthermore (coming from a speech perspective) there astammlard approaches
to generate pronunciations for them automatically. Nume@uestion Answer-
ing papers (e.g., [17, 13]) show that identifying and cdiyelabeling numerical
expressions can significantly help question answeringal&) point out the per-
vasiveness of numerical expressions on Web pages and tediezir importance
in document retrieval. More specifically, Agrawal et al. dscon the problem
of retrieving documents with particular attribute-valiegrp (e.g., power=660mWw,
speed=18ns, etc.) without having the attributes for eachb@au annotated. They
claim that the distributions of numbers for each possitigbate overlap very lit-
tle and that one can infer the correct attribute with reaslenaccuracy purely by
looking at the number itself.

3 Number classification

Our goal is to classify numbers (integers) automaticaltyasted from a text cor-
pus (the APW section of the AQUAINT corpus distributed by tixC). The APW

section is 731 MB large and contains 113M word tokens, howexehave only
used a small portion of it (as described below) for our experits.

A cursory analysis of our corpus indicates that there areentivein a dozen
significant classes of numbers.

Numbers are a special type of entity with many interestimgperties, e.g., if
the numbers under investigation are not entirely randonsbotehow socially or
naturally related, the distribution of the first digit is notiform. More accurately,
digit D appears as the first digit with the frequency prooril to log10(1 + 1/D).
In other words, one may expect 1 to be the first digit of a randamber in about
30% of cases, 2 will come up in about 18% of cases, 3 in 12%, 44n3in 8%,
etc. This is known as Benford’s Law. While we don't use this Ia this paper, we
have empirically validated its applicability to the APW pas. For example, there
are 53,107 instances of “1”, 45,090 instances of “2”, 34,88fances of “3”, etc.

For our experiments, we consider the following four typesiaierical enti-
ties: quantity, time, money, and miscellaneous, effeltiveerging many of the
classes above into a single class “Miscellaneous”.

e Quantity: numbers used for counting physical objects aisysuch as “1,012



Class Example

Quantity 25 people

Money 167 3/8

Time 8 a.m., Sept. 17
Score 510 2, 4-under-par 68
Age Kozlov, 24

Address 201 Pennsylvania Ave
Duration 12 years

Percent 25 percent
Temperature | Highs of 28 to 32
Distance 4 feet

Telephone (212) 555-1902
Stockindex 10000

Measure 10 mph
Miscellaneous| Women’s 100, No. 9, Game 4

Table 1: Sample numbers extracted from the APW corpus.

people”, “160 miles”, etc.
e Time: any number that represents the notion of time, sucleas gate, etc.

e Money: all numbers that represent monetary value, suchH0"$“2 mil-
lion dollars”, etc.

e Miscellaneous: all other numbers that don't fall into théegaries above,
such as rate, percentage, address, phone number, etc.

4 Classification algorithms based on bipartite graphs

Both algorithms that we use for number classification aredbas bipartite graphs.

We are considering a set of obje&svhich is split into two classes, labeldd
and unlabeled’.

We are considering joint binary featurgg F;, S) which is 1 if featureF;
holds on objectS,. For example,f; may be a feature that corresponds to the
word to the left of an object. In that case, given the word sega “today 5
people”, the following two features can be defingd(“today”, “5") = 1 while
f1(“yesterday”, “5") is 0.

The representation is illustrated in Figure 1.

The following notation is used:

e [: the set of features



Figure 1: Bipartite representation



L: the set of labeled (positive) examples

U: the set of unlabeled examples

T : the connectivity matrix (represented by the bold linegpeenF and L

Ty: the connectivity matrix (represented by the dashed lihesyeenF and
U.

The initial values are set as follows¥'| is equal to the number of distinct
features associated with eithbror U; each component; is set to 0.5; the initial
values of L; are all 1; and the initial values df; are all 0.5. The idea is that
a 1 represents a certain connection between a feature onandénce with the
positive class and a 0 indicates a certain connection witlmégative class.

In this paper, each feature is based on the following higikmrgach objeciv;:

hi = {wi—2, wi—1, Wi, Wit1, Wiy, T(w;)}

wherer(w;) is therangeof a numberq; < 3,3 < w; < 10, 10 < w; < 30,
30 < w; < 100), etc. This feature is based on an idea by Jerry Hobbs [10] who
claims that humans tend to group numbers into “half-ordéraagnitude”.

In the rest of this chapter we will describe in turn two grdg@sed classification
algorithms, Tripartite Updating and Spectral Partitignin

4.1 Tripartite Updating

This is the novel algorithm that we introduce in this papeis essentially a bipar-
tite method, however we call it tripartite for reasons thatidd be evident in the
rest of this subsection. Tripartite updating is relatedht principal eigenvector
of a stochastic Markov process. This algorithm is a varidthe HITS algorithm
(it uses a bipartite underlying structure and its statigrsanution is computed it-
eratively), though it differs from it in three important way(a) the “right-hand”
component of the graph is split into two groups: labeled amidheled data in-
stances — therefore the name “tripartite”, (b) there is &ralrassignment of values
for the labeled examples, and (c) the scores of the labekethjgbes are not allowed
to change with time.
The actual algorithm is described here.

FO —7I'p + Ft-Y
v® =1,rp®)  yt-1)
FO+D) — TQTU(t) + F®
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This process iteratively updatds andU. Note thatL is not updated during
this process.
The finalU vector is then normalized according to the following foraul

U=U=x0.5x|U|

4.2 Spectral Partitioning

We use an implementation of Spectral Partitioning (see ithp)emented as part
of themeshparipackage developed by Gilbert et al.[8].

4.3 Four-way classifier

We built individual classifiers for each of the four binarysea (money:yes/no,
time:yes/no, quantity:yes/no, miscellaneous:yes/nojhé four-way classification
scheme, we assign an unlabeled data instance into the olagwefclassifier that
gives it the highest score. An example is shown in Figure 2e fistory-based
features are marked as followsh is the wordbefore-beforaw; (that is, it isw;_s),
bisw;_1,aisw;y; andaais w;ys. The final two features are the Hobbs range of
the number and the number itself (not shown in the Featureseptation column
in the Figure). Note that sometimes the context is incorapliet., some features
(e.g., both words on the left af;;) are not defined. This is due to the way that
we extracted context. Instead of picking out entire semerfcom the corpus,
we limited ourselves to (approximately) 80-byte subssifrgm the documents as
formatted in the original SGML files (that is, each senteneg span several lines
but we would look at one line at a time).

The column labeled “Correct class” indicates the gold saathdor this word
and the column “Assigned class” shows the output of the Weay-classifier (based
on the largest of the values in the four per-class columns).

5 Experimental results

We used two disjoint sets of numbers for the experimentseléabdata L) and
unlabeled datal{). We limited ourselves to 5,000 unlabeled examples (etadac
randomly, with replacement), of which 300 were manually ciated (only for
evaluation purposes). We also marked up 200 labeled exanigdit into four
classes). Again, the labeled examples and the unlabeledpdes are drawn inde-
pendently and don’t overlap. The frequencies of these etaa®e shown in Table 2.
The classes are very unevenly distributed with the majaldgs (miscellaneous)



Nb | Feature representation Correct class | Money | Quantity | Time | Misc Assignec
2 bb 300,000 hto a_ aamillion. 0_3 Money 0.4776 | 0.4543 0.6387| 0.5231| Time

10 | bb.of b_every a aaacres 410 Quantity 0.4773 | 0.4731 0.6390| 0.4873| Time

18 | bb_.14 hto a aacents 1030 Money 0.3671 | 0.6241 0.4461| 0.5059| Quantity
8 bb.game bat a aap.m. 410 Time 0.4774 | 0.4356 0.6393| 0.4873| Time
202 | bb_of b_the a aaproperties 101300 Quantity 0.3629 | 0.5292 0.4376| 0.3976| Quantity
17 | bbthe hSept. aaadeath 1030 Time 0.3666 | 0.6053 0.6426| 0.5237| Time

27 | bb5b24a aa301030 Misc 0.3662 | 0.5864 0.4446| 0.5057| Quantity
12 | bb_runs hand a aahits 1030 Misc 0.3665 | 0.5865 0.4451| 0.5058| Quantity
218 | bb_to b_get a aasignatures 10800 Quantity 0.3624 | 0.4916 0.4369| 0.3975| Quantity
56 | bb.athleastaaa 31100 Quantity 0.9375 | 0.6055 0.4504| 0.5420| Money
199 | bb._rounds hin a8, aaon 101300 Misc 0.0021 | 0.1317 0.0039| 0.0003| Quantity
22 | bb_squads kexecuted aaapeople 1030 | Quantity 0.3662 | 0.5864 0.4445| 0.5057| Quantity

Figure 2: The four-way tripartite classifier illustrated.

labeled as Miscellaneous. We will report classificatiomltssunder two conditions

(similar to [7]): (a) including and (b) ignoring the miscatleous (noise) category.

Class Frequency | Percentage
Money 13 6.5%
Quantity 72 36.0%
Time 16 8.0%
Miscellaneous 99 49.5%

Table 2: Frequencies of the four classes among the 200 ther@mples.

5.1 Evaluation Measures

We will report a number of measures of performance: ovecallieacy (how many
numbers were classified into each of the four classes), dshvegber-class Preci-
sion and Recall scores for the four classes.

We will report these measures under two conditions. In tist gmse, we will
include the items labeled as “miscellaneous” in the goladdad while we will
ignore them in the second case.

5.2 Results

Tables 3 and 4 show our final results.

The 4-way classification results are very interesting. antipe Updating out-
performs Spectral Partitioning. None of the two methodsrezkto change its
performance when given 200 instead of 50 training (labete@mples. This is
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50 training examples| 200 training examples
Tripartite | Spectral | Tripartite | Spectral

Accuracy 0.28 0.29 0.28 0.08
1000 Money P/R | 0.06/0.33 0/0 0.07/0.33| 0.05/0.67
unlabeled| Quantity P/R| 0.47/0.61| 0.38/0.39| 0.46/0.61| 0.75/0.08
examples| Time P/R 0.19/0.67| 0.04/0.33| 0.17/0.67| 0.06/0.83
Misc P/R 0/0 0.45/0.29 0/0 0.25/0.02

Accuracy 0.28 0.24 0.28 0.17

5000 Money P/R | 0.06/0.33| 0.06/0.67| 0.07/0.33 0/0

unlabeled| Quantity P/R| 0.47/0.61 0/0 0.46/0.61 0/0
examples| Time P/R 0.19/0.67 0/0 0.17/0.67| 0.03/0.33
Misc P/R 0/0 0.58/0.75 0/0 0.51/0.71

Table 3: Comparative evaluation of Tripartite Updating &péctral Partitioning
on 100 data points from a set of 1000 or 5000 unlabeled datdspdihe numbers
in this figure are for 4-way classification.

encouraging as it indicates the power of even a minimal nurobtaining exam-
ples. Finally, going from 1000 to 5000 unlabeled examplés’'tiseem to change
performance either. This is an encouraging indication tinese two methods are
scaleable to large amounts of unlabeled data.

The 3-way classification results were obtained by ignorhrggMiscellaneous
category. The classifier decision was based only on the thireey classifiers
for the other three classes while all instances labeled asélaneous in the gold
standard are ignored from the computation. The idea helaidr the future one
could write classifiers for the classes currently lumped a#llaneous and avoid
the awkward class frequency distribution that makes Mianebus as likely as
the other three classes combined. The overall performam8eveay classification
(0.58 accuracy) is significantly higher than 4-way clasatfan (0.28).

6 Conclusion and future work

We presented and compared two weakly supervised graphtalgsrfor number
classification. The results are quite encouraging for &utxploration. We found
out that both algorithms don’t require large amounts ohireg examples and that
they appear to scale well to different ratios between thebarrof labeled training
examples and the number of unlabeled examples. Futureieges are needed
to verify these properties. We are also particularly irgtrd in applying similar
techniques to other problems such as word sense disambiguaamed entity
classification, and document classification. We will als@gtigate the algorithmic
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50 training examples| 200 training examples
Tripartite | Spectral | Tripartite | Spectral
Accuracy 0.58 0.46 0.48 0.17
1000 Money P/R | 0.17/0.33 0/0 0.17/0.33| 0.10/0.67
unlabeled| Quantity P/R| 0.85/0.61| 0.72/0.58| 0.81/0.61| 0.80/0.11
examples| Time P/R 0.40/0.67| 0.13 0.50| 0.44/0.67| 0.12/0.83
Accuracy 0.58 0.13 0.58 0.13
5000 Money P/R | 0.17/0.33| 0/0.13 | 0.17/0.33 0/0
unlabeled| Quantity P/R| 0.85/0.61| 0.50/0.03| 0.81/0.61 0/0
examples| Time P/R 0.40/0.67 0/0 0.44/0.67| 0.13/1

Table 4: Comparative evaluation of Tripartite Updating &péctral Partitioning
(3-way classification).

properties of these methods by comparing them to knownighges such as Naive
Bayes and Co-training. We are currently working on an endaxent of tripartite
updating with active learning.
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