
CooperativeReVirt: AdaptingMessageLoggingfor IntrusionAnalysis 1

Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis

Murtaza Basrai and Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
http://www.eecs.umich.edu/CoVirt

Abstract: Virtual-machinelogging andreplayenablessystemadministratorsto analyzeintrusionsmore
completelyandwith greaterintegrity thantraditionalsystemloggers.Onechallengein thesetypesof sys-
temsis theneedto log apotentiallylargevolumeof network traffic. CooperativeReVirt addsmessage-log-
ging techniquesto ReVirt to reducethe amountof network traffic that needsto be logged.Cooperative
ReVirt adaptsmessage-loggingtechniquesto addressthechallengesof intrusionanalysis,suchastheneed
to work in thepresenceof network attacksandunreliablenetworks,theneedto supportasymmetrictrust
relationshipsamongcomputers,and the needto supportdynamictrust and traffic patterns.Cooperative
ReVirt is ableto reducethelog volumeneededto replaya computerby anaverageof 70%for a varietyof
distributedcomputingbenchmarks,while addinglessthan7% overhead.Measurementsof a live network
indicate that Cooperative ReVirt would be able to avoid logging 85% of the received network data.

1. Introduction

Making computersperfectlysecureappearsto beunachievable,at leastin theshortterm.Thesteady
streamof securityalerts,patches,andincidentsover thepastfew yearsindicatesthatcomputerbreak-ins
will bewith us for the foreseeablefuture.Given this, an importantcomponentof defensive strategy is to
analyzeattacksafter they occur. Post-attackanalysisis usedto understandanattack,fix thevulnerability
that allowed the compromise, and repair any damage caused by the intruder.

Most computersystemsenablesomeanalysisof intrusionsby loggingvariousevents[Anderson80],
suchaslogin attempts,TCPconnectionrequests,andwebserver logs.Unfortunately, thesetypesof audit
logs are inadequate in terms of integrity and completeness.

Currentsystemloggerslack integrity becausethey assumethe operatingsystemkernel is trustwor-
thy—a badassumptiongiventhesize,complexity, andtrackrecordof modernoperatingsystems.Attack-
erswho compromisetheoperatingsystemcanforgemisleadinglog recordsor preventusefullog records
from beingsavedafterthey compromisetheoperatingsystem;they mayevenbeableto deletelog records
thatwerewrittenbeforethepointof compromise.Theabsenceof usefullog recordsafterthepointof com-
promise makes it very difficult to assess and fix the damage incurred in the attack.

Currentsystemloggerslack completenessbecausethey do not log sufficient informationto recreate
or understandall attacks.Typical loggerssaveonly a few typesof systemevents,andtheseeventsareoften
insufficient to determinewith certaintyhow thebreak-inoccurredor whatdamagewasinflicted after the
break-in.Instead,the administratoris left to guesswhat might have happened,andthis is a painful and
uncertain task.

A recently developed system called ReVirt addressesthe problems in current system loggers
[Dunlap02].To improve theintegrity of thelogger, ReVirt encapsulatesthetargetsystem(boththeoperat-
ing systemandtheapplications)insideavirtual machine,thenplacestheloggingsoftwarebeneaththisvir-
tual machine.Runningthe loggerin a differentdomainthanthe target systemprotectsthe loggerfrom a
compromisedapplicationor operatingsystem.ReVirt continuesto log theactionsof intrudersevenif they
replace the target boot block or the target kernel.



CooperativeReVirt: AdaptingMessageLoggingfor IntrusionAnalysis 2

To improve the completenessof the logger, ReVirt usescheckpointingand logging techniquesto
enablereplay-driven intrusionanalysis.Ratherthanprovide thesystemanalystwith adhoc,partial infor-
mation,ReVirt is ableto replaythecomplete,instruction-by-instructionexecutionof thevirtual machine,
even if thatexecutiondependson non-deterministiceventssuchasinterruptsanduserinput. An adminis-
tratorcanusethis typeof replayto answerarbitrarilydetailedquestionsaboutwhattranspiredbefore,dur-
ing, andafteranattack.For example,becauseReVirt canreplayinstruction-by-instructionsequences,the
administratorcanseethe completestateof registers,memories,anddisk driveson arbitrary instruction
boundaries.

To enablereplay-driven intrusion analysis,ReVirt logs all non-deterministicevents (viz. external
input andinterrupttiming), thelargestcomponentof which is incomingnetwork data.This paperseeksto
applymessage-loggingtechniquesto reducetheamountof datathatReVirt needsto log. Wecall theresult-
ing systemCooperative ReVirt, becauseit leveragescooperationbetweencommunicatingcomputersto
reducethesizeof ReVirt’s log. CooperativeReVirt reducesthesizeof ReVirt’s log by 70%for avarietyof
distributedsystembenchmarkswhile addinglessthan7% overhead.Measurementsof a live network indi-
cate that Cooperative ReVirt would be able to avoid logging 85% of the received network data.

The restof the paperis organizedasfollows. Section2 presentsan overview of the virtual machine
and logging functionality usedby ReVirt. Sections3 and4 describehow Cooperative ReVirt leverages
message-loggingtechniquesto reducetheamountof datathatReVirt mustlog. Section5 evaluatesCoop-
erative ReVirt in termsof the log spaceit savesandthetime overheadit adds.Section6 discussesrelated
work, and Section 7 concludes.
2. ReVirt

2.1. Virtual machine

ReVirt is a replayservicethat works in the context of a virtual machinemonitor (Figure1). A vir-
tual-machinemonitor (VMM) is a layer of softwarethat emulatesfaithfully the hardwareof a complete
computersystem[Goldberg74].Theabstractioncreatedby theVMM is calledavirtual machine.Themain
benefitof implementingthereplayservicein theVMM is thesmallsizeof theVMM. A VMM is several
ordersof magnitudesmallerthana normaloperatingsystemandthusmakesa bettertrustedcomputing
base.

ThecurrentReVirt prototypeusesa virtual machinecalledFAUmachine(formerly calledUMLinux)
[Buchacker01]. In FAUmachine,the hostplatform on which the VMM runsis anotheroperatingsystem,
which we refer to asthehost operatingsystemto distinguishit from theguest operatingsystemthat runs
inside the virtual machine.

FAUmachineprovides a software analogto eachperipheraldevice in a normal computersystem.
Table 1 shows the mappingfrom eachhost componentor event to its software analogin the virtual

Figure 1: FAUmachine virtual machine and ReVirt replay service. ReVirt is a virtual-machinereplay
service.Ourversionof theFAUmachinevirtual machineis implementedasa loadablekernelmodulein the
host Linux operatingsystem.The device and interrupt drivers in the guestoperatingsystemusehost
services such as system calls and signals.

host operating system

VMM kernel module + ReVirt

guest operating system

guest
application

guest
application

guest
application

host hardware



CooperativeReVirt: AdaptingMessageLoggingfor IntrusionAnalysis 3

machine.The mostrelevant peripheralfor this paperis the network card.FAUmachineemulatesthe net-
work card with a TUN/TAP virtual Ethernetcard in Linux. The guestoperatingsystemsendsEthernet
framesto theTUN/TAP driver in thehostoperatingsystem,which thenroutesit to the intendedreceiver
like any other packet. Similarly, if anothercomputersendsa packet to the guestoperatingsystem’s IP
address,thehostoperatingsystemreceivesthis andforwardsit to theTUN/TAP driver, which canthenbe
received by the guest operating system.
2.2. Logging and replay

To enablereplayof the original execution,ReVirt mustcheckpointthe stateof the virtual machine,
then log all non-deterministiceventsthat affect the virtual machine’s execution.The checkpointedstate
includesregisters,memory, and disk; it doesnot include the processor’s microarchitecturalstate(e.g.,
pipelinestate),asthisstatedoesnotaffect thesoftwarerunningon thevirtual machine.Thenon-determin-
istic eventsthat mustbe loggedarekeyboardinput, network input, and interrupt timing. Note that disk
input neednot be logged.Becausethe disk is checkpointedanddisk writes arereplayed,disk readswill
returnthesamedataasduringtheoriginal run. Interrupttiming is themostdifficult event to replay. Inter-
ruptsareemulatedby softwaresignals,andthesemustbereplayedat theexactsameinstructionasduring
theoriginal run [Bressoud96,Slye98].ReVirt usesthex86 performancecountersto countthenumberof
branches.Thecombinationof branchcountandtheaddressof the interruptedinstructionuniquelyidenti-
fies the point in the instruction stream where the signal was delivered.

ReVirt hasbeenshown to addreasonabletime andspaceoverhead.Themaintime overheadis dueto
virtualization,whichadds14-35%in run time for avarietyof benchmarkssuchasSPECweb99anda local
kernel build [King03]. Virtualizationoverheadwill vary with the specificvirtual machineplatform; for
example,the Xen virtual machine[Barham03]slows the machineby only a few percent.The time over-
headfor loggingis nominalfor thesebenchmarks,rangingfrom 4-8%[Dunlap02].Spaceoverheadof log-

Table 1: Mapping between host components and FAUmachine equivalents.

Host component or
event

Emulation mecha-
nism in FAUmachine

hard disk host raw partition

CD-ROM host /dev/cdrom

floppy disk host /dev/floppy

network card
TUN/TAP virtual
Ethernet device

console host stdout

video card
none (display to
remote X server)

current privilege level VMM variable

system calls SIGUSR1 signal

timer interrupts
timer + SIGALRM

signal

I/O device interrupts SIGIO signal

memory exception SEGV signal

enable/disable interrupts mask signals



CooperativeReVirt: AdaptingMessageLoggingfor IntrusionAnalysis 4

ging is minimal for local applications.For examplea local kernelbuild added80 MB/day of log space.
However, log volumecanbemuchgreaterfor network-intensiveworkloads.Building thekerneloveranet-
work file systemin thesystemmeasuredby [Dunlap02]generated1.2GB/dayof log volumeon theclient,
andSPECweb99generated1.4GB/dayof log volumeon thewebserver. At currentpricesandsizes,mod-
erndiskscanstorethisvolumeof log dataat reasonablecost;howeverworst-casescenariosaremoretrou-
bling. If a computerreceived an intensive messagestreamfrom a computerat LAN speeds(say, 100
Mb/second),thelog couldgrow atarateof 1 TB/day!This rateof log growth wouldstrainboththestorage
capacity and bandwidth of modern disks.

The purposeof this paperis to reducethe volume of datathat must be loggedby ReVirt. Ideally,
Cooperative ReVirt would reduce the log volume from LAN speeds to WAN speeds.
3. Expanding the unit of replay

ReplaysystemssuchasReVirt canbe viewed asa perimeterarounda unit of replay. This unit of
replaycanbechosenarbitrarily, aslong asseveralconditionsaremet.First, thestateof theunit of replay
mustbecheckpointed.Second,theinputcominginto theunit of replayfrom outsidetheperimetermustbe
logged.Third, theunit of replaymustexecutedeterministicallywith respectto any stateor actionsvisible
to an external observer.

In ReVirt, theperimeteris drawn arounda singlevirtual machine(Figure2a),soReVirt mustlog all
incomingmessages.Thevolumeof loggeddatacanbereducedby expandingtheunit of replayto include
several computers(Figure 2b). We usethe term “replay set” to describethe set of computersthat are
enclosedasasinglereplayunit. Loggingaclusterof computersasasingleunit of replayalwaysgenerates
lesslog datathanlogging eachcomputerindividually (input from outsidethe clustermustbe loggedin
eithercase,whereasmessagesbetweenmachinesin theclusterneedonly beloggedif theunit of replayis
individual computers).In eithercase,a checkpointmustincludethe stateof all computersin the cluster.
Evenif oneis only interestedin replayingasinglecomputer, it maystill save log volumeto expandtheunit
of replayto includeseveral computers,dependingon whetherthe input into the extra computers(which
now mustbe logged)outweighsthe messagesfrom the extra computersto the original computer(which
now need not be logged).

As a specificexample,imaginethatanadministratorseeksto provide replaycapabilityto all comput-
erson a LAN. Loggingandreplayingeachcomputerrequireseachcomputerto log messagesfrom other
computerson theLAN (aswell asmessagesfrom computersoutsidetheLAN). Themaximumrateof the
network messageportionof the log on sucha configurationis equalto theaggregatebandwidthbetween
all machineson theLAN. If sheexpandstheunit of replayto includeall computerson theLAN, the log-
ging systemno longerneedsto log messagesbetweencomputerson the LAN, andthe maximumrateof
the network messageportion of the log dropsto the bandwidthcomingfrom outsidethe LAN, which is
likely ordersof magnitudelessthantheaggregateLAN bandwidth.Of course,therearelimits to how large
theunit of replaycanbe.For instance,computersfrom differentadministrative domains(suchasa home
machine and an e-commerce web server) cannot form a single unit of replay.

Therearemany considerationswhendecidingwhich computersto includein the unit of replay. As
discussedabove, themainadvantageof addinga computerto theunit of replay(ratherthanreplayingthe
computerseparately)is thereductionin log volume.Themaindisadvantageis theneedfor bothcomputers
to cooperatein orderto replayanexecutionfor intrusionanalysis.Thisdisadvantagecanbeamelioratedby
conductingthereplayon non-productioncomputersor clonedvirtual machines,but replayinga cooperat-
ing setof computersis still morecomplex than replayinga singlecomputer. A sideeffect of requiring
cooperationin replayis an increasedlevel of vulnerability. If the loggingsystemon any computerwithin
theunit of replayis compromised,thenit will not bepossibleto replayany computerin thereplaysetthat
received a message from the one with the compromised logging system.

Thesedisadvantagesimply thatmultiple computersshouldbeincludedin a singleunit of replayonly
if they communicatefrequentlyandarepartof thesametrustdomain.Goodcomputersto includein a cli-



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 5

ent’s replay set are the servers that the client communicates with frequently, such as the client’s mail
server, file server, and web server.
4. Design and Implementation of Cooperative ReVirt

Cooperative ReVirt leverages the above reasoning to reduce the total volume of logging needed to
replay a set of computers. This section describes various aspects of the design of Cooperative ReVirt. The
first two aspects of the design (coordinated checkpointing and message ordering) have been explored in
traditional applications of message-logging techniques. The last three aspects (tolerating network attacks,
asymmetric trust, and dynamic replay sets) are new issues that arise because we are applying message-log-
ging techniques for the new purpose of intrusion analysis.

network

(a) Three separate replay units

network

(b) One combined replay unit

Figure 2: Units of replay. The original ReVirt system assumed each computer would replay as an
individual unit, which forced each computer to log all incoming messages. Expanding the unit of replay to
encompass multiple computers reduces the volume of data that must be logged to support replay. The
disadvantage to expanding the unit of replay in this manner is an increased trust of (and therefore an
increased vulnerability to errors in) other computers in order to analyze intrusions.



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 6

4.1. Checkpointing a multi-computer replay unit

Because Cooperative ReVirt replays a set of computers, it must start from a checkpoint of that set of
computers. There are numerous ways to handle this issue, including coordinated checkpointing, uncoordi-
nated checkpointing, and communication-induced checkpointing [Elnozahy02]. Our goal was to focus on
the new issues that arise for intrusion analysis, so we chose to use the simplest strategy, which was to com-
bine sender-based logging with a two-phase coordinated checkpoint [Elnozahy94]. We envisage a usage
model in which periodic coordinated checkpoints are taken to bound the time period over which replay for
intrusion analysis takes place.
4.2. Tolerating unreliable networks

A common issue that arises for message-logging systems is how to deal with unreliable networks.
Networks can change a sequence of messages by re-ordering them, duplicating them, dropping them, or
corrupting them. These changes lead to differences between the message sequence received during logging
and the message sequence received during replay. We address this issue by adding a reliable communica-
tion protocol under Cooperative ReVirt [Johnson89]. Rather than building a custom reliable communica-
tion protocol, we take the Ethernet frames that are sent by FAUmachine (over the virtual Ethernet device)
and send them over a TCP stream to the receiving computer (Figure 3). A proxy process on the receiving
computer then unpacks the Ethernet frames and sends them to the receiving virtual machine’s TUN/TAP
device. During replay, the receiving computer’s proxy provides the data to the replay manager via a pipe.
4.3. Tolerating network attacks

Applying message-logging techniques to intrusion analysis raises several issues that do not exist for
the traditional fault-tolerance uses of message logging. One of those issues is the need to defend against
attackers trying to mislead the replay system into using a different message stream during replay than it
used during the logging run. While sending the Ethernet frames over TCP protects the system against acci-
dental changes to the message stream, it does not defend against a malicious modification of the message
stream.

Cooperative ReVirt uses two techniques to defend against network attacks. First, we add a crypto-
graphic hash to each Ethernet frame to defend against modification of the source address and payload
inside the Ethernet frame. To compute this cryptographic hash, we compute the SHA-1 hash of the Ether-
net header and payload, then encrypt the resulting hash value using a symmetric key encryption algorithm
(AES). The symmetric key is unique to each pair of computers and is specified in our system in a configu-
ration file. An alternative solution would have been to use the IPsec-AH patch to the Linux operating sys-
tem on the host (adding our own hash turned out to be easier). This cryptographic hash protects both the
data being sent and the source address. Protecting the source address is important because the receiver
must be able to reliably identify if the sender is in its replay set and, if so, which computer sent the mes-
sage. If an attacker were able to fool the receiver into thinking the message was sent from a cooperating
computer, the receiver would neglect to log a message it needed for replay.

Second, we add a sequence number to the Ethernet frame to defend against replay attacks (note that a
replay attack is different from the replay service that Cooperative ReVirt is trying to provide). The
sequence number increases monotonically for messages for each (sender, receiver) pair. The sequence
number that we add must also be included in the data protected by the cryptographic hash, otherwise the
attacker could simply manufacture a new sequence number for an old message.
4.4. Asymmetric trust

A second consideration that arises in the context of intrusion analysis is the issue of trust between
replaying computers. With traditional message logging, all computers in the system trust each other as they
jointly perform rollback-recovery. In contrast, with intrusion analysis, not all computers in the system trust
each other. Further, it is likely that even if computer A trusts computer B, computer B may not trust com-
puter A. For example, a client may be willing to depend on its file server to enable replay, but the file server



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 7

may not be willing to rely on the client. Instead, an administrator may want to enable the file server to
replay without any help from its clients, especially if the logging layer of the clients is more likely to be
compromised than the logging layer of the file server.

These types of asymmetric trust relationships lead to asymmetric (or non-commutative) sets of
replaying computers. If computer A is willing to depend on computer B to perform replay, then B will be
in A’s replay set. At the same time, if computer B is not willing to depend on computer A to perform
replay, then A will not be in B’s replay set.

Even if the trust relationship between computers is symmetric, the tradeoffs (complexity vs. log sav-
ings) of adding another computer to a replay set may dictate asymmetric replay sets. Consider a situation
in which computer A sends many messages to computer B, but B sends only a few messages to A. In this
situation, B may find it worthwhile to add A to its replay set, but A may not find it worthwhile to add B to
its replay set.

Our implementation of Cooperative ReVirt allows an administrator to specify arbitrary replay sets for
individual computers. Replay sets may be symmetric or asymmetric depending on trust relationships and
expected traffic patterns.

guest operating system

1. guest OS sends Ethernet

host operating system

frame to host TUN/TAP driver

sender proxy

2. send frame
to proxy via pipe

3. add Cooperative
ReVirt information,
send frame over
network via TCP

guest operating system

5. guest network driver

host operating system

receives Ethernet frame

receiver proxy

4. parse TCP stream to get
Ethernet frame; send to receiver’s
TUN/TAP driver

SENDER

RECEIVER

Figure 3: Host-host TCP provides reliable transport for guest Ethernet frames. Cooperative ReVirt
provides a reliable communication channel for network packets between virtual machines by forwarding
them over a TCP connection between hosts.



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 8

4.5. Dynamic replay sets

A third distinguishing feature of using message logging for intrusion analysis is the generality of
applications that must be supported. Message logging has traditionally been used to provide fault tolerance
for long-running, scientific computations. In contrast, intrusion analysis focuses on replaying a general set
of applications on client and server computers.

One consequence of using message logging for general-purpose workloads is the possibility that traf-
fic patterns may change. Including computer B in computer A’s replay set may make sense one day but not
another. For example, if B is a local web server, A may use it heavily one day but not another.

Consider how one might want to change computer A’s replay set. If A starts receiving a lot of data
from computer B, A might choose to add B to its replay set. Adding B to A’s replay set immediately allows
A to stop logging messages received from B (assuming B is running Cooperative ReVirt, of course). A
slightly trickier case is if computer A wants to remove computer B from its replay set, presumably because
A wants to not depend on B during replay. Unfortunately, A will still depend on B to regenerate all mes-
sages from the beginning of the current checkpoint interval until A started logging B’s messages. Hence
the benefit of removing B from A’s replay set will not materialize until the next coordinated checkpoint is
taken.

Cooperative ReVirt supports the ability to dynamically change a computer’s replay set. To effect a
change to the replay set, Cooperative ReVirt takes a coordinated checkpoint, reads the membership of the
new replay set from its configuration file, and continues executing from the checkpoint.
5. Evaluation

Cooperative ReVirt reduces log volume for each computer by avoiding the need to save messages
from other computers in that computer’s replay set. In this section, we measure this reduction in log vol-
ume for a variety of benchmarks. We assess how effectively Cooperative ReVirt would reduce log volume
for actual use by measuring the network traffic for several real computers. Finally, we measure the time
overhead added by our prototype implementation of Cooperative ReVirt. The experimental setup used for
these measurements was a network of computers connected via a 100 Mb/s Ethernet switch. Experiments
involving two computers used two AMD Athlon XP 2200+ computers. Experiments involving three com-
puters (SPECweb99) used two Athlon XP 2200+ computers and one 3 GHz Pentium 4 computer.

We measure performance of Cooperative ReVirt on several benchmarks. The first benchmark is com-
piling the Linux kernel from scratch, where the kernel source tree is stored on a remote NFS server. The
second benchmark is PostMark, which was designed to approximate the workload of a file server used for
electronic mail, netnews, and web based services [Katcher97]. PostMark creates a large pool of continually
changing files. The third benchmark is SPECweb99, which is designed to measure the performance of a
web server. For SPECweb99, we use one web server running Apache and two client computers.

Table 2 shows the log volume generated by each benchmark by ReVirt and two configurations of
Cooperative ReVirt. Log savings are presented for asymmetric and symmetric replay sets. Cooperative
ReVirt is able to reduce log volume by an average of 70% for both clients and servers. Asymmetric config-
urations of Cooperative ReVirt realize this log savings for computers that are willing to depend on other
computers to assist in replay.

We next assess how effectively Cooperative ReVirt would reduce log volume for actual use. We mea-
sured the volume of network traffic for three desktop computers, belonging to users in three different
research groups in the EECS Department at the University of Michigan. Our first goal was to evaluate how
large the replay set for each computer would need to be in order to reduce dramatically the log volume due
to network traffic. Our second goal was to evaluate how much of the incoming network traffic was from
computers in the same administrative domain (in our case, computers in the eecs.umich.edu domain).

Table 3 shows the results of our measurements. While each of the computers received data from
numerous (several hundred to several thousand) sources, the incoming network data was dominated by
only a few sources. In fact, for each computer, most of the data received came from a single computer, and



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 9

the top three sources accounted for at least 85% of the total network data received. The top source of data
differed for the different computers. For vaniti, the top source was from an NFS-mounted file server that
stored the user’s home directory. For quantify, the top source was from a computer that stored many of the
user’s files but not the user’s home directory (which was on the local disk). For tapi, the top source was
from the computer responsible for backing-up tapi’s local disk. The high volume of data received by tapi
from the backup server was due to a huge number of small query messages used in the backup protocol
(rsync). For each computer we measured, over 85% of incoming network data was from machines in the
eecs.umich.edu domain. These results indicate that Cooperative ReVirt would be able to drastically reduce
the volume of logged network data by cooperating with a couple machines, all within the same administra-
tive domain.

Finally, we measure the time overhead added by Cooperative ReVirt on the distributed benchmarks
(Figure 4). These measurements assume a configuration with symmetric replay sets (all computers are in
each other’s replay set). Asymmetric replay sets would add less overhead, because some messages would

Table 2: Log savings fr om Cooperative ReVirt. Symmetric Cooperative ReVirt reduces the log space
required to replay by an average of 70% for the three benchmarks across clients and servers. Asymmetric
Cooperative ReVirt yields this log savings for the client because it is willing to depend on the server during
replay.

ReVirt
Symmetric Coopera-

tive Revirt

Asymmetric
Cooperative ReVirt
(server is in client’s

replay set;
client is not in

server’s replay set)

NFS kernel
compile

client: 2.8 GB/day
server: 5.7 GB/day

client: 1.0 GB/day
server: 0.9 GB/day

client: 1.0 GB/day
server: 5.7 GB/day

PostMark client: 10.2 GB/day
server: 14.3 GB/day

client: 3.0 GB/day
server: 3.6 GB/day

client: 3.0 GB/day
server: 14.3 GB/day

SPECweb99 client: 13.9 GB/day
server: 1.4 GB/day

client: 0.7 GB/day
server: 1.0 GB/day

client: 0.7 GB/day
server: 1.4 GB/day

Table 3: Log savings fr om Cooperative ReVirt for actual usage.For each computer we measured
(vaniti, quanity, tapi), most of the network data received came from a single host, and the top three sources
accounted for over 85% of all network data received. In each case, these sources were in the same
administrative domain. These results indicate that Cooperative ReVirt would be able to drastically reduce
the volume of logged network data in the measured environment.

Fraction of network data received from top N computers

N=1 N=2 N=3

vaniti.eecs.umich.edu 75% 81% 86%

quantify.eecs.umich.edu 91% 94% 95%

tapi.eecs.umich.edu 76% 82% 86%



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 10

avoid the processing added by the proxy (adding a secure hash and forwarding over TCP). Cooperative
ReVirt adds less than 7% overhead to ReVirt for all benchmarks we ran.

These benchmarks show that Cooperative ReVirt is able to reduce the volume of log data substan-
tially. The additional overhead is reasonable and will drop further if encryption hardware becomes more
commonplace.
6. Related work

ReVirt is based on prior work by Bressoud and Schneider on hypervisor-based fault tolerance
[Bressoud96]. Bressoud and Schneider use a virtual machine for the PA-RISC architecture to interpose a
software layer between the hardware and an unchanged operating system, and they log non-determinism to
reconstruct state changes from a primary computer onto its backup. While ReVirt shares several mecha-
nisms with Hypervisor, ReVirt uses them to achieve a different goal. Hypervisor is intended to help tolerate
faults by mirroring the state of a primary computer onto a backup. ReVirt takes some of the techniques
developed for fault tolerance and applies them to provide intrusion analysis. This difference in goals leads
to different design choices. For instance, Hypervisor only seeks to restore the backup to the last saved state
of the primary and so discards log records after each synchronization point. In contrast, ReVirt enables
replay over long periods (e.g. months) of the computer’s execution, so it must save all log records over the
period.

Cooperative ReVirt draws on several techniques from the fault-tolerance community, especially from
prior work on rollback-recovery [Elnozahy02]. Cooperative ReVirt uses standard rollback-recovery tech-
niques such as coordinated checkpointing and logging of non-deterministic events [Elnozahy94]. Coopera-
tive ReVirt adapts message logging in several ways to make it suitable for the domain of intrusion analysis.
The first adaptation is adding a cryptographic hash of the IP header, payload, and sequence number to
defend against network attacks during logging or replay. The second adaptation is allowing asymmetric
cooperation between hosts to reflect asymmetric trust or traffic patterns. The third adaptation is allowing
dynamic membership in each participant’s replay set.

Figure 4: Time overhead of Cooperative ReVirt. Cooperative ReVirt adds 0-6% overhead to ReVirt for
the three benchmarks we ran. Sources of overhead are forwarding packets over TCP via a host-host proxy
process, computing the SHA-1 hash over the packet header and data, and encrypting the SHA-1 hash with
AES.

NFS kernel compile PostMark SPECweb99
0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 r
un

tim
e

Cooperative ReVirt
(Symmetric)
ReVirt



Cooperative ReVirt: Adapting Message Logging for Intrusion Analysis 11

7. Conclusions

ReVirt allows one to analyze intrusions in arbitrary detail by replaying the execution of a virtual
machine instruction by instruction. The dominant portion of the log data needed to support this replay is
incoming network data. Cooperative ReVirt enhances ReVirt with techniques from the message-logging
community to reduce the amount of data that must be logged. Using sender-based message logging and
coordinated checkpointing, multiple computers running ReVirt can be logged and replayed as a single unit.
Cooperative ReVirt adapts message-logging techniques to address the challenges of intrusion analysis.
Cooperative ReVirt adds a cryptographic hash of the network header and data to defend against network
attacks, allows asymmetric cooperation between hosts to reflect asymmetric trust or traffic patterns, and
allows dynamic membership in replay sets to reflect the dynamic nature of general-purpose computing.
Cooperative ReVirt is able to reduce the volume of log data by an average of 70% for a variety of distrib-
uted computing benchmarks, while adding less than 7% overhead. Measurements of a live network indi-
cate that Cooperative ReVirt would be able to avoid logging 85% of the received network data.
8. References

[Anderson80] James P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical re-
port, James P. Anderson Co., April 1980. Contract 79F296400.

[Barham03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings of
the 2003 Symposium on Operating Systems Principles, October 2003.

[Bressoud96] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM Trans-
actions on Computer Systems, 14(1):80–107, February 1996.

[Buchacker01] Kerstin Buchacker and Volkmar Sieh. Framework for testing the fault-tolerance of systems
including OS and network aspects. In Proceedings of the 2001 IEEE Symposium on High As-
surance System Engineering (HASE), pages 95–105, October 2001.

[Dunlap02] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. In Proceedings of
the 2002 Symposium on Operating Systems Design and Implementation (OSDI), pages
211–224, December 2002.

[Elnozahy94] E. N. Elnozahy and W. Zwaenepoel. On the Use and Implementation of Message Logging.
In Proceedings of the 1994 International Symposium on Fault-Tolerant Computing (FTCS),
pages 298–307, June 1994.

[Elnozahy02] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of roll-
back-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408, September 2002.

[Goldberg74] Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer, pages 34–45,
June 1974.

[Johnson89] David B. Johnson. Distributed System Fault Tolerance Using Message Logging and Check-
pointing. Technical Report COMP TR89-101, Rice University, December 1989. Ph.D. thesis.

[Katcher97] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical Report TR3022, Net-
work Appliance, October 1997.

[King03] Samuel T. King, George W. Dunlap, and Peter M. Chen. Operating System Support for Virtual
Machines. In Proceedings of the 2003 USENIX Technical Conference, pages 71–84, June
2003.

[Slye98] J. Hamilton Slye and E. N. Elnozahy. Support for Software Interrupts in Log-Based Rollback-Re-
covery. IEEE Transactions on Computers, pages 1113–1123, October 1998.


