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Abstract

High-bandwidth TCP/IP networking places a significant burden on end hosts. We argue that this

issue should be addressed by integrating simple network interface controllers (NICs) more closely with

host CPUs, not by pushing additional computation out to the NICs. We present a simple integrated NIC

design (SINIC) that is significantly less complex and more flexible than a conventional DMA-descriptor-

based NIC but performs as well or better than the conventional NIC when both are integrated onto the

processor die. V-SINIC, an extended version of SINIC, provides virtual per-packet registers, enabling

packet-level parallel processing while maintaining a FIFO model. V-SINIC also enables deferring the

copy of the packet payload on receive, which we exploit to implement a zero-copy receive optimization

in the Linux 2.6 kernel. This optimization improves bandwidth by over 50% on a receive-oriented

microbenchmark.

1 Introduction

As 10 Gbps Ethernet (10GigE) network components drop in price, they are being more widely deployed

in data centers and compute clusters as well as in network backbones. Coupled with the iSCSI protocol,

10GigE is also serving as a storage-area network (SAN) fabric. With 1 Gbps Ethernet effectively the default

for current desktop systems, 10GigE connections will be required to avoid contention at any local-area

server shared by a reasonable number of these clients [Fra04].

Although users can now plug 10 Gbps Ethernet links into their server systems, getting those systems

to keep up with the bandwidth on those links is challenging. One proposed solution is to perform much of

the required protocol processing on an intelligent network interface controller (NIC), referred to as a TCP
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offload engine (TOE). This offload approach reduces host CPU utilization and, perhaps more importantly,

reduces the frequency of costly interactions between the CPU and NIC across the relatively high-latency

I/O bus. Due to the high transfer rate and the complexity of the TCP protocol, a 10 Gbps TOE requires a

substantial amount of general-purpose processing power.

This trend of pushing more intelligence out to the NIC brings to mind Myer and Sutherland’s “wheel of

reincarnation” [MS68]. They observe that a peripheral design tends to accrue more and more complexity un-

til it incorporates general-purpose processing capabilities, at which point it is replaced by a general-purpose

processor and a simple peripheral, corresponding to a full turn of the wheel. Providing computational re-

sources via an additional symmetric CPU imparts more flexibility and generality than using a dedicated,

asymmetric, special-purpose processing unit.

In this paper, we propose a system architecture for 10GigE servers that completes the turn of the wheel

for NIC design. We strip the NIC down to its most basic components—a pair of FIFOs—supplemented

only by a block copy/checksum unit. All other processing is performed by the device driver on a general-

purpose host CPU. The driver directly initiates individual transfers between the FIFOs and main memory—

a task typically performed by a DMA engine in even the most basic NICs, but which requires non-trivial

computational resources at 10 Gbps [WKRP05]. A key factor in enabling this design is the integration of

the NIC on the processor die, providing low-latency interaction between the CPU(s) and the NIC control

registers.

Using detailed full-system simulation, we show that our Simple Integrated NIC (SINIC) provides perfor-

mance comparable to a conventional DMA-descriptor-based NIC design when the latter is also integrated

onto the processor die, even though SINIC does not provide asynchronous DMA. Both of these designs

provide significantly higher performance than a DMA-based off-chip NIC due to their lower CPU access

latency and their ability to place incoming DMA data into the on-chip cache [HIT05, BHS+05].

A key potential benefit of exposing the NIC FIFOs to the host CPUs is that kernel software can control

the memory destination of each packet explicitly. To illustrate this flexibility, we describe a modest set of

Linux kernel extensions that allow the protocol stack to defer copying payload data out of the receive FIFO

until the packet’s protocol header has been processed. If the receiving user process has posted a receive

buffer (e.g., by calling read()) before the packet’s arrival, the packet payload can be copied directly from

the NIC FIFO to the user’s buffer, achieving true “zero copy” operation.

Because the base SINIC design presents a plain FIFO model to software, each packet must be copied out
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of the FIFO before the following packet can be examined. This restriction significantly limits packet-level

parallelism when the deferred copy technique is applied. We remove this restriction by adding virtual per-

packet control registers to the SINIC model. This extended interface, called V-SINIC, enables overlapped

packet processing in both the transmit and receive FIFOs, including lockless parallel access to the FIFOs on

chip multiprocessors.

The remainder of the paper begins with a qualitative case for a simple integrated network interface,

followed by a description of our SINIC design and a discussion of related work. We then describe our

evaluation methodology and present our results. Finally we offer conclusions and a discussion of future

work.

2 The Case for a Simple Network Interface

In this section, we provide qualitative arguments for architecting a simple, low-level network interface for

high-bandwidth TCP/IP servers. At the lowest level, a network interface controller is a pair of FIFOs (trans-

mit and receive) plus some control information. The only components beneath this interface are the medium

access control (MAC) and physical interface (PHY) layers, which are dependent on the physical intercon-

nect. Our basic proposal is to expose these FIFOs directly to kernel software. Injecting programmability

at the lowest possible layer allows a common hardware platform to adapt to a variety of external networks

and internal usage models. Just as software-defined radio seeks to push programmability as close to the

antenna as possible, we seek to push programmability as close to the wire as possible to maximize protocol

flexibility.

We first discuss the case for integrating the NIC on a processor die, a prerequisite for our simple NIC

structure. We then contrast our approach with two alternatives: current conventional NIC designs and the

TCP offload engine approach that represents a contrasting vision of future NIC evolution.

2.1 The Case for NIC Integration

A high-bandwidth NIC requires significant amounts of closely coupled processing power in any design. The

key enabler for our simple NIC approach is the ability to have one or more general-purpose host CPUs pro-

vide that power. This coupling is easily achieved by integrating the NIC on the same die as the host CPU(s).

Although this integration is not common on high-performance servers today, there are numerous examples
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in the embedded space (e.g., from Broadcom [Bro03]). Each BlueGene/L node incorporates an integrated

1 Gbps Ethernet NIC for I/O [O+05]. Given available transistor budgets, the potential performance bene-

fits [BHS+05], and the importance and ubiquity of high-bandwidth Ethernet, NIC integration is an obvious

evolutionary step in the high-performance domain as well. Future revisions of Sun’s Niagara product line

are rumored to include one or more integrated 10GigE NICs [Dem04].

For our simple NIC, only the heads of the respective FIFOs and their associated control logic need be

integrated on the die. Additional FIFO buffer space and the physical link interface (PHY) can be off-chip.

A single processor product with an integrated NIC could thus support multiple physical media (e.g., copper

or fiber).

2.2 Simple Versus Conventional NICs

The interface to a conventional Ethernet NIC also consists of a pair of FIFOs plus control and status in-

formation. The control and status information is typically exchanged with the CPU through uncached,

memory-mapped device registers. A conventional NIC resides on a standard I/O bus (e.g., PCI) that is phys-

ically distant from and clocked much more slowly than the CPU, so these uncached accesses may require

thousands of CPU cycles to complete [BHS+05]. Providing access to the network data FIFOs via these

memory-mapped device registers is impractically slow, so the NIC uses DMA to extend its hardware FIFOs

into system memory.

To give the operating system some flexibility in memory allocation, the memory-resident FIFOs are

divided into multiple non-contiguous buffers. The address and length of each buffer is recorded in a DMA

descriptor data structure, also located in main memory. The transmit and receive FIFOs are represented as

lists of DMA descriptors.

To transmit a packet, the device driver creates a DMA descriptor for each of the buffers that make up

the packet (often one for the protocol header and one for the payload), writes the DMA descriptors to the in-

memory transmit queue, then writes a NIC control register to alert it to the presence of the new descriptors.

The NIC then performs a DMA read operation to retrieve the descriptors, a DMA read for each data buffer

to copy the data into the NIC-resident hardware FIFOs, then a DMA write to mark the descriptors as having

been processed. The device driver will later reclaim the DMA descriptors and buffers.

The device driver constructs the receive queue by preallocating empty buffers and their associated DMA

descriptors. The NIC uses DMA read operations to fetch the descriptors, DMA writes to copy data from
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its internal receive FIFO into the corresponding buffers, and further DMA writes to mark the descriptors as

containing data. In most cases the NIC will also signal an interrupt to the CPU to notify it of the data arrival.

The device driver will then process the DMA descriptors to extract the buffer addresses, pass the buffers up

to the kernel’s protocol stack, and replenish the receive queue with additional empty buffers.

Though this process of fetching, processing, and updating DMA descriptors is conceptually simple, it

incurs a non-trivial amount of memory bandwidth and processing overhead, both on the NIC and in the

device driver. Willmann et al. [WKRP05] analyzed a commercial 1 Gbps Ethernet NIC that implements this

style of DMA queue in firmware, and determined that an equivalent 10 Gbps NIC must sustain 435 MIPS to

perform these tasks at line rate, assuming full 1518-byte frames. They proceed to show how this throughput

can be provided in a power-efficient way using a dedicated six-way 166 MHz embedded multiprocessor.

Note that, other than possibly calculating checksums, this computational effort provides no inspection or

processing of the packets whatsoever; it merely serves to extend the network FIFOs into system memory

where abundant buffering can hide the high latency of CPU/NIC communication. Although these functions

could be implemented more efficiently in an ASIC than in firmware, this approach bears the traditional

ASIC burdens of cost, complexity, and time to market for no additional functional benefit.

In contrast, a simple NIC that directly exposes the hardware FIFOs to software does not require DMA

descriptors at all, avoiding the management overhead. On transmit, the device driver merely copies the

packet from the data buffer(s) into the FIFO. As soon as the copy completes, the buffers are free to be

reused. On receive, the host CPU is notified via an interrupt if necessary, and the driver copies data from

the receive FIFO into a buffer. Our SINIC design, described in detail in Section 3, includes a simple block

copy engine to make these copies more efficient, but little else. The reduced latency afforded by on-chip

integration allows the NIC to operate without the expanded buffer space provided by the DMA descriptor

queues.

A further advantage of the simple NIC approach is that the payload data buffer used on receive can

be selected dynamically by the device driver based on the packet header, unlike the DMA descriptor model

where receive buffers must be populated by the driver in advance.1 In Section 3.3, we describe a set of kernel

modifications that take advantage of this feature to provide true zero-copy receives—where data is copied

directly from the NIC FIFO into the user’s destination buffer—for unmodified socket-based applications.
1Some higher-end NICs provide multiple receive queues and a hardware packet classification engine that selects a queue based

on protocol header matching rules, but these NICs are more complex and limited both in the number of queues and in the number
of matching rules.
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2.3 Simple NICs Versus TCP Offload Engines

Rather than integrating the NIC near the CPU, systems can closely couple processing with the NIC by

leaving the NIC on an I/O bus and adding processing power to it. An extreme example of this approach is a

TCP offload engine (TOE), in which the NIC itself is responsible for most or all of the TCP and IP protocol

processing [Ala, Bro04].

One disadvantage of the TOE approach is that the associated processing power is dedicated for a single

purpose and cannot be reallocated. In contrast, using a general-purpose CPU for protocol processing means

that that resource can be used for other purposes when the network is not saturated.

Another disadvantage of TOEs is a lack of flexibility. Protocol implementations are not accessible

to system programmers and are not easily changed. As existing protocols evolve and new protocols are

developed, users must wait not only for protocol support not only from their operating system but also from

their NIC vendor, and for both of these to happen in a coordinated and compatible fashion. Although the

Internet seems stable, new protocols are not uncommon; consider IPv6, IPSec, iSCSI, SCTP, RDMA, and

iSER (iSCSI Extensions for RDMA). This situation will be particularly problematic if the update in question

is a fix to a security vulnerability rather than a mere performance issue.

A corollary of this lack of flexibility is that TOEs are not easily customized for or tightly integrated with

particular operating systems. The fact that the code controlling copies out of the SINIC receive FIFO is part

of the device driver, and thus has immediate access to the full kernel code and data structures, is critical to

achieving our zero-copy extensions in Section 3.3.

Other arguments against this direction include the inability of TOEs to track technology-driven perfor-

mance improvements as easily as host CPUs [Mog03, RMI+04] and the fact that TOEs provide significant

speedups only under a limited set of workload conditions [SC03].

3 The Simple Integrated Network Interface Controller (SINIC)

This section describes the detailed design of one possible low-level NIC interface—our simple integrated

NIC (SINIC)—and its associated device driver. SINIC by itself is not intended to provide higher perfor-

mance than a similarly integrated conventional NIC. Instead, its design provides comparable performance

with added flexibility and reduced implementation complexity. Because SINIC adheres to a strict FIFO

model, it limits the amount of packet-level parallelism the kernel can exploit. We extend SINIC to enable
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this parallelism by providing virtual per-packet registers, a design we call V-SINIC. Finally we describe

how we used V-SINIC to implement zero-copy receives in Linux 2.6.

3.1 Base SINIC Design

As discussed in Section 2, conventional NICs provide a software interface that supports the queuing of mul-

tiple receive and transmit buffers via a DMA descriptor queue. Due to its close proximity to the host CPUs,

SINIC is able to achieve comparable performance without a queuing interface and without scatter/gather

DMA.

The core of the SINIC interface consists of four memory-mapped registers: RxData, RxDone, TxData,

and TxDone. The CPU initiates a copy operation from the receive FIFO to memory by writing to the RxData

register, and conversely from memory to the transmit FIFO by writing to TxData. In both cases, the address

and length of the copy are encoded into a single 64-bit data value written to the register. The TxData value

encodes two additional bits. One bit indicates whether this copy terminates a network packet; if not, SINIC

will wait for additional data before forming a link-layer packet. The other bit enables SINIC’s checksum

generator for the packet.

SINIC operates entirely on physical addresses. Because it is designed for kernel-based TCP/IP process-

ing, it does not face the address translation and protection issues of user-level network interfaces.

The RxDone and TxDone registers provide status information on their respective FIFOs. Each register

indicates the number of packets in the FIFO, whether the associated copy engine is busy, whether the last

copy operation initiated on the FIFO completed successfully, and the actual number of bytes copied. (This

last value is useful as it allows the driver to provide the allocated buffer size as the copy length to the receive

FIFO and rely on SINIC to copy out only a single packet even if the packet is shorter than the buffer.)

TxDone also indicates whether the transmit FIFO is full. RxDone includes several additional bits. One

bit indicates whether there is more data from the current packet in the FIFO. Another set of bits indicates

whether the incoming packet is an IP, UDP, or TCP packet, and whether SINIC’s calculated checksum

matched the received packet checksum.

SINIC implements a single copy engine per FIFO.2 As a result, the CPU must wait for the previous copy

to complete before initiating another copy. Because individual buffer transfers are relatively fast, the driver

simply busy waits when it needs to perform multiple copies. SINIC enables more efficient synchronization
2These engines share a single cache port, so only one can perform a transfer in any given cycle.
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through two additional status registers, RxWait and TxWait. These registers return the same status informa-

tion as RxDone and TxDone, respectively, but a load to either of these registers is not satisfied by SINIC

until the corresponding copy engine is free. Thus a single load to RxWait replaces a busy-wait loop of loads

to RxDone, reducing memory bandwidth and power consumption.

In addition to these six registers, SINIC has interrupt status and mask registers and a handful of config-

uration control registers.

Like a conventional NIC, but unlike a TOE, SINIC interfaces with the kernel through the standard

network driver layer. SINIC’s device driver is simpler than conventional NIC drivers because it need not

deal with allocation of DMA descriptors, manage descriptors and buffers (e.g., reclaim completed transmit

buffers), nor translate the kernel’s buffer semantics (e.g., Linux sk buffs) into the NIC’s DMA descriptor

format. With SINIC, there are no descriptors. When a packet must be transmitted, the device driver simply

loops over each portion of the packet buffer initiating a transmit with a programmed I/O (PIO) write to

TxData, busy waiting on the result with a PIO read to TxWait. For the final portion of the packet, the driver

does not wait on the copy to complete; instead, it allows the copy to overlap with computation, and verifies

the engine to be free before initiating the next packet transmission.

3.2 Virtualizing SINIC for Packet-Level Parallelism

As long as each packet is copied to (or from) memory in its entirety before the next packet is processed,

a single blocking copy engine per FIFO is adequate. However, there are situations—such as the zero-copy

optimization described in the following section—where it is useful to begin processing a packet before the

preceding packet is completely copied into or out of the FIFO. This feature is particularly desirable for chip

multiprocessor systems, where packet processing can be distributed across multiple CPUs.

We extend the SINIC model to enable packet-level parallelism by providing multiple sets of RxData,

RxDone, TxData, and TxDone registers for each FIFO and dynamically associating different register sets

with different packets. We call this the virtual SINIC (V-SINIC) model, as it gives each in-process packet

its own virtual interface. For brevity, we will refer to a single set of virtual per-packet registers as a VNIC.

V-SINIC still has only one copy engine per direction, but each engine is multiplexed dynamically among

the active VNICs. V-SINIC supports one outstanding copy per VNIC; once a copy is initiated on a VNIC,

that VNIC will be marked busy until it acquires the copy engine and completes the copy.
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Although the V-SINIC extensions to both the receive and transmit FIFOs are conceptually similar, they

differ slightly in details and significantly in usage. On the transmit side, V-SINIC is used to allow concurrent

lockless access from multiple CPUs in a CMP. Each CPU is statically assigned a VNIC. If two CPUs attempt

to transmit packets simultaneously, V-SINIC’s internal arbitration among the VNICs will serialize the trans-

missions without any synchronization in software. To avoid interleaving portions of different packets on the

link, once a VNIC acquires the copy engine it maintains ownership of the engine until a complete packet

is transferred, even across multiple individual copy requests (e.g., for the header and payload). This policy

applies to the transmit FIFO only; as will be described shortly, the receive FIFO is specifically designed to

allow interleaving of headers and payloads from different packets as they are copied out.

On the receive side, V-SINIC enables two optimizations. First, the driver can pre-post buffers by initiat-

ing copy operations to different buffers on multiple VNICs, even if the receive FIFO is empty. As packets

arrive, the copy operations are triggered on each VNIC in turn. The driver then uses the per-VNIC RxDone

registers to determine the status of each packet.

The second receive-side optimization is deferred payload copying. Because VNICs are bound to packets,

once part of a packet is received via a particular VNIC, the remaining bytes of that packet can only be

retrieved by a subsequent copy request to the same VNIC. For a given packet, the low-level driver can

copy just the header to memory, examine the header, then hand off the VNIC to another CPU for further

processing. At some later point in time, the other CPU can initiate the copy of the packet payload out of the

FIFO. In the interim, the driver continues to process additional headers from subsequent packets using other

VNICs. If packets are quickly copied into kernel buffers, the additional parallelism exposed by deferred

copying is minimal. However, the deferred copy capability is critical for our implementation of zero-copy

receives described in the following section.

3.3 Implementing Zero-Copy Receives on V-SINIC

The overhead of copying packet data between kernel and user buffers is often a significant bottleneck in

network-intensive applications. This overhead can be avoided on the receive side by copying data directly

from the NIC FIFO into the user buffer. Unfortunately, this “zero-copy” behavior is practically impossible

to achieve with a conventional DMA-descriptor-based NIC, as receive packet buffers must be posted to the

NIC before the driver has any idea for which connections the arriving packets will be destined.
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V-SINIC’s deferred-copy capability enables a straightforward implementation of zero-copy receives in

the Linux 2.6 kernel. We enhanced Linux’s sk buff structure to be able to indicate that the referenced

data was resident in the V-SINIC FIFO (including the appropriate VNIC index). We also modified the

skb copy bits() and skb copy datagram iovec() kernel functions—which copy the contents

of an sk buff to a kernel or user buffer, respectively—to recognize this encoding and request the copy

directly from the FIFO via the VNIC.

4 Related Work

On-chip integrated network interfaces have appeared before in the context of fine-grain massively parallel

processors. Henry and Joerg [HJ92] investigated a range of placement options, including on- and off-chip

memory-mapped NIs and a NI mapped into the CPU’s register file. Other machines with on-chip network

interfaces include the J-Machine [DCC+87], M-Machine [FKD+95], and *T [NPA92] research projects,

and IBM’s BlueGene/L [O+05]. Mukherjee and Hill [MH98] also argue for tighter coupling between CPUs

and network interfaces for storage-area and cluster networks. They focus placing the NIC in the coherent

memory domain but not on physical integration with the CPU. In all of these cases, the primary goal is low

user-to-user latency using lightweight protocols and hardware protection mechanisms. In contrast, TCP/IP

processing has much higher overhead and practically requires kernel involvement to maintain inter-process

protection. Our work continues in the spirit of this research, but focuses on optimizing the NIC interface for

what the kernel would like to see for TCP/IP processing.

In the TCP/IP domain, a few other groups have investigated alternatives to offloading. Binkert et

al. [BHS+05] investigated the benefit of integrating a conventional DMA-based NIC on the processor die,

but did not consider modifying the NIC’s interface to exploit its proximity to the CPU. Intel announced an

“I/O Acceleration Technology” (I/OAT) initiative [LSSW05] that explicitly discounts TOEs in favor of a

“platform solution” [GGR05]. Intel researchers proposed a “TCP onloading” model in which one CPU of

an SMP is dedicated to TCP processing [RMI+04]. Our SINIC model is complementary to this approach:

the dedicated CPU would likely benefit . Another Intel paper describes “direct cache access” I/O [HIT05],

in which incoming DMA data from an external NIC is pushed up into the CPU’s cache. Placing incoming

network data in the on-chip cache is natural when the NIC is on the same chip, and we see similar benefits

from this effect.
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Zero-copy (more accurately single-copy) receives have been implemented in other contexts [Cha02].

The most common technique is page flipping, where the buffer is copied from the kernel to the user address

space by remapping a physical page. Unfortunately, this technique is challenging to apply as it requires

packets to be as large as physical pages and suitably aligned. In addition, the required page-table manipu-

lations, while faster than an actual page copy, are not quick in an absolute sense. Zero-copy behavior can

also be achieved using “remote DMA” (RDMA) protocol extensions, where the receiving application pre-

registers receive buffers in such a way that the NIC can identify them when they are referenced in incoming

packets. In addition to requiring sophisticated NIC support, RDMA is a significant change to both appli-

cations and protocols, and requires support on both ends of a connection. Our V-SINIC approach is most

closely related to that of Afterburner [DWB+93], an experimental NIC that combined significant on-board

buffering with a modified protocol stack such that copying packet payloads off of the NIC could be deferred

until the destination user buffer was known. The amount of buffer space required is proportional to the

product of the network bandwidth and the CPU/NIC latency, and quickly becomes significant. Although

Afterburner was relatively closely coupled to the CPU (plugging into a graphics card slot on an HP work-

station), it had 1 MByte of on-board buffering for a 1 Gbps network. The extremely low latency afforded

by on-chip integration allows SINIC to support a similar technique on a 10 Gbps network with substantially

less buffering.3

5 Methodology

We evaluated the SINIC design by running TCP/IP-based micro- and macrobenchmarks on an appropri-

ately modified full-system simulator. The following subsections discuss the simulation environment and the

benchmarks in turn.

5.1 Simulation Environment

Much of the execution time spent by an network intensive benchmark is not running application code, but

rather kernel code such as device drivers and the TCP/IP stack. This distribution prevents the use of a sim-

ulator that functionally emulates syscalls from providing meaningful results for a network benchmark. To

mitigate this issue we turn to a full-system simulator called M5 [BHR03]. This simulator models the Alpha
3Our simulated implementation has up to 380 KB of space in the receive FIFO—256 VNICs times 1514 bytes per packet—but

we believe that our performance will not suffer with a smaller FIFO. We intend to experiment with this parameter in the near future.
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Frequency 2 GHz or 4 GHz
Fetch Bandwidth Up to 4 instructions per cycle
Branch Predictor Hybrid local/global (e.g. EV6)
Instruction Queue Unified int/fp 64 entries
Reorder Buffer 128 Entries
Execution BW 4 insts per cycle
L1 Icache/Dcache 128KB, 2-way set assoc, 64B blocks, 16 MSHRs. 1 cycle inst hit; 3 cycle data hit.
L2 Unified Cache 8MB, 8-way set assoc. 64B block size, 25 cycle latency, 40 MSHRs.
L1 to L2 64 bytes per CPU cycle
L2 to Memory 4 bytes per CPU cycle
HyperTransport 8 bytes, 800 MHz
Main Memory 50ns

Table 1: Simulated System Parameters

Tsunami platform with enough fidelity to boot an unmodified Linux 2.6 kernel and run Alpha PALcode. Ad-

ditionally it has been validated against a real Alpha XP1000 (a member of the Tsunami family) [SBHR05].

The memory and I/O system in a network simulation are key to the performance the system can achieve.

M5 has a simple bus model that can be used to model interconnect of configurable width and speed. Addi-

tionally a bus bridge exists that can join any two busses together, even ones of different speed. With these

simple components a I/O system can be created that can model a device hanging off an I/O bridge, such as

a commodity network controller today.

For our experiments that use a commodity NIC M5 models a National Semiconductor DP83820 [Nat01]

Gigabit Ethernet device. The model is of a high enough fidelity to support the standard Linux driver for this

device, however a bug is fixed both in the device model and driver that allows the NIC to DMA to unaligned

addresses. Because of the high interrupts rate possible at 10Gbps a fixed delay scheme is used in the NIC to

bound the rate of interrupts that the CPU can generate to one every 10us. This Ethernet device is connected

to another Ethernet device using an lossless Ethernet link that has 10Gbps of bandwidth.

Table 1 lists the other parameters we used for our simulation. Since the memory system we are modeling

is similar to that of a Opteron system, we configured the latency memory, bus bridges and peripheral devices

to match numbers measured on an AMD Opteron server.
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5.2 Benchmarks

All of the benchmarks used to evaluate the performance of our SINIC design were simulated in a client-

server configuration where the system under test, either client or server depending on the benchmark, was

modeled in detail and the stresser was modeled functionally with a perfect memory system so as to not be

the bottleneck.

Netperf [Hew] is a network microbenchmark suite developed at Hewlett-Packard. It contains a variety

of microbenchmarks for testing the bandwidth characteristics of sockets on top of TCP or UDP. Out of

the available tests, we use the TCP stream benchmark, a transmit benchmark as well as the TCP maerts

benchmark, a receive benchmark. In both these cases after setting up a socket one machine generates data

as fast as possible by calling send(). Normally this call returns as soon as the data is copied out of the

userspace buffer, however if the socket buffer is full the call will block until space is available. In this

way the benchmark is self-tuning. Similarly the second machine attempts to sink data as fast as possible

by calling receive() as fast as possible. In general the time spent executing the benchmarks code is

minimal, and most of the CPU time is spent in the kernel driver managing the NIC or processing the packet

in the TCP/IP stack.

In addition to the standard stream and maerts benchmark we created two variants that each use more

than one connection, writing and reading data from them in a round-robin fashion. These benchmarks

which we term stream-multi and maerts-multi provide more streams for the kernel and NIC to manage

while guaranteeing that they are all of similar bandwidth. With several independent streams this isn’t the

case, because one stream could end up getting the majority of the available bandwidth making it harder to

draw conclusions from the this microbenchmark.

SPEC WEB99 [Sta] is a popular benchmark that is used for evaluating the performance of webservers.

The benchmark simulates multiple users accessing a combination of static and dynamic content using HTTP

1.1 connections. In our simulations we used Apache 2.0.52 [Apa] with the mod specweb99 CGI scripts.

These scripts replaced the reference implementation, with a more optimized implementation written in C

and are frequently used in the results on the SPEC website.

The standard SPEC WEB99 client isn’t well suited for a simulation environment. A standard SPEC

WEB99 score is based on the maximum number of simultaneous clients that the server can support while

meeting some minimum bandwidth and response time guarantees. Each client requests a small amount
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Benchmark Warm-up Time Sampling Time
Netperf Single-stream 100M 50M
Netperf Multi-stream 500M 100M
SPECWEB99 1B 400M
iSCSI 1B 100M

Table 2: Simulated System Parameters

of data and thus a SPEC WEB99 score is normally obtained by a large testbed of clients and an interactive

tuning process find the maximum number of clients for a particular server configuration. This approach isn’t

practical for our tests because of the large slowdown simulation incurs. For our purposes we aren’t concerned

with the SPEC WEB99 score attainable by the machine under test, but rather are simply interested in the

performance characteristics of a web server workload. To this end we chose to use a different client based

on the Surge traffic generator [BC98] that preserves the same statistical distribution as the original client,

but is able to scale it’s performance up to a point that it can saturate the server.

iSCSI [SSCZ04] is a new standard to use the SCSI protocol on top of a TCP/IP connection allowing a

initiator (client) to access a target (server) in a similar manner as it would locally with a SCSI host adapter

connected to a SCSI device. Because of its use of TCP/IP as a connection layer protocol and Ethernet as a

link layer protocol it is much cheaper than previous network storage systems (e.g. FibreChannel).

In our tests we used the Open-iSCSI initiator and the Linux iSCSI Enterprise target. The target was

configured to not have a real I/O backing store, and instead just return data immediately. This simplification

is reasonably in our test since we are not concerned with disk I/O performance. On top of the iSCSI client we

run a custom benchmark that uses Linux’s asynchronous I/O(AIO) facilities to continuously have multiple

outstanding reads to the iSCSI disk in-flight at once. As soon as a read completes, a new location to read

is selected and it is reissued to the disk. We benchmark both the target and the initiator. In each case the

better system can provide responses faster or with less overhead allowing more requests to be sent and thus

increasing the bandwidth seen on a link between client and server.

For the experiments in this paper we used a 1500 byte maximum transfer unit (MTU) as it is the standard

on the Internet today. Although changing it is reasonable in a controlled environment, it won’t be used for

commodity traffic on the Internet and thus we fix it in our experiments.

Running the above workloads to completion in simulation is infeasible due to the massive slowdown

encured. Thus we turn to standard fast-forwarding, warm-up and sampling techniques to gather data on
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different NIC configurations. Our benchmarks have been modified to inform the simulator when they are

at a programmatically good point to checkpoint. At this point the simulator checkpoints all program state

and can then restore this state at a later time, warm-up the caches and TLB, and switch to a detailed model

to gather results. For our experiments we warmed-up and then simulated as listed in table 2. The warm-up

period is of a lower effective performance than the detailed simulation so that the TCP protocol can adjust

quickly change from simple to detailed simulation [HSBR05].

6 Results
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Figure 1: Micro-Benchmark Bandwidth - Measurements of achieved bandwidth of the various micro-
benchmarks with CPUs running at 4GHz.

In this section, SINIC with direct attachment to the on-chip last level cache is compared to a conventional

NIC with various points of attachment. Additionally, we explore the effectiveness of the zero-copy optimiza-

tion. To set a baseline, measurements are taken with a conventional NIC attached to a PCI Express-like bus,

which is connected to the CPU by way of an I/O bridge chip using a HyperTransport-like interconnect. The

on-chip configurations of a conventional NIC include attachment on the far-side of the last level of on-chip

cache, giving it DMA access to the on-chip memory controller, but not the cache and attachment to the

near-side of the last level of on-chip cache, giving it access to the last level cache. SINIC is always attached

to the near-side of the last level cache.
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Figure 1 shows the performance of these configurations when running the Netperf microbenchmarks.

The Commodity NIC (CNIC) attachments clearly show that tighter integration of the NIC in the system

increases performance showing a better than 60% improvement in all cases. There are two main reasons for

this. First, accessing the device has a much lower latency and the device can place data directly into the last

level of cache, thus reducing the amount of memory traffic and cache misses. Second, placing data directly

in the cache can reduce the number of cache misses per kilobyte of data transmitted from one per block to

zero [BHS+05, HIT05].
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Figure 2: Micro-Benchmark CPU Utilization Breakdown - Breakdown of CPU utilization for the various
micro-benchmarks with CPUs running at 4GHz.

In Figure 1 we also see that SINIC, which is attached on the near side of the cache, outperforms the more

complex CNIC attached at the same position. As mentioned above, CNIC designers implement a DMA

descriptor mechanism for managing copies to and from the network. SINIC doesn’t have this overhead even

though the data copies must be initiated with programmed I/O. The device’s close attachment to the CPU

makes the latency tolerance that the DMA descriptors provide unnecessary.

In Figure 2 we show a breakdown of where the CPU spent its time. Note the reduction in driver time

seen when comparing the PCI Express attached NIC and the other attachments. Because the device is closer,

accessing its device registers is a far cheaper operation, providing more CPU time for processing the data.

When considering more complex macro-workloads, which are often more compute bound, one may

worry that pushing the NIC state machine into the device driver would incur an unacceptable overhead
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Figure 3: Macro-Benchmark Bandwidth - Measurements of achieved bandwidth of the various macro-
benchmarks with CPUs running at 4GHz.

when compared to a DMA engine doing the work. Figure 3 shows that this is not the case. The increased

computation due to managing the state machine is offset by the removal of the the descriptor management

code from the device driver because these two functions are actually similar. Thus, even for more complex

workloads, including CPU bound ones like SPECWeb99, we do not observe a decrease in performance.

We show the overall performance results of the zero-copy optimization in Figure 4. Repeating the result

shown in Figure 1, SINIC is able to saturate the network with a large (4-8 MB) L2 cache, because its cache

placement of incoming network data makes the buffer copies efficient cache-to-cache operations. However,

for smaller L2 cache sizes, the SINIC network buffers overflow into main memory. The overhead of the

resulting DRAM-to-cache buffer copies causes significant bandwidth degradation (a 40% reduction down

to 6 Gbps with a 1 MB cache). Without the zero-copy optimization, V-SINIC provides similar performance

characteristics, though at a slightly reduced performance level due to additional overheads in the device

driver.4 In contrast, the zero-copy optimization eliminates the buffer copy entirely, making performance

insensitive to the cache size, and allowing the system to saturate the network in every configuration. Figure 5

shows that the number of cache misses is strongly correlated to network performance. While SINIC’s cache

data placement coupled with a sufficiently large cache drives the cache miss rate of the buffer copies to zero,

the zero-copy V-SINIC model incurs practically no cache misses because network data is read directly from
4We expect that it will be possible to reduce or eliminate these overheads with more careful driver optimization.
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Figure 4: Zero-Copy Bandwidth - Achieved bandwidth for the receive microbenchmark with CPUs running
at 4GHz.
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Figure 5: Zero-Copy Cache Miss Rates - Cache miss rate in misses per kilobyte of data transferred for the
receive microbenchmark with CPUs running at 4GHz.
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SINIC V-SINIC Zero-Copy V-SINIC
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Figure 6: Zero-Copy CPU Utilization Breakdown - Breakdown of CPU utilization for the receive mi-
crobenchmark with CPUs running at 4GHz.

the FIFO rather than from the memory system. Figure 6 shows that, as a result of dramatically reduced copy

time, the zero-copy V-SINIC system can spend more time in the TCP/IP stack processing packets. The copy

time shown for the zero-copy V-SINIC case corresponds to the time the CPU spends setting up and waiting

on the V-SINIC copy engine to copy data from the FIFO to the user buffer.

7 Conclusion and Future Work

We have described a simple network interface—SINIC—designed to be integrated onto the processor die

to support high-bandwidth TCP/IP networking. SINIC is simpler than conventional NICs in that it avoids

the overhead and complexity of DMA descriptor management, instead exposing a raw FIFO interface to the

device driver. In spite of its simplicity, detailed full-system simulation results show that SINIC performs as

well as or better than a conventional NIC given the same level of integration.

We also presented a novel approach to extending SINIC’s FIFO-based interface to allow packet-level

parallelism both on transmit and receive. By associating a set of “virtual” FIFO registers to each packet,

the V-SINIC interface allows lockless concurrent packet transmission on multiprocessors and enhanced

parallelism in receive packet processing. V-SINIC also enables a deferred-copy technique that supports a

straightforward implementation of zero-copy receive handling, which we have implemented in the Linux

2.6 kernel. This zero-copy implementation can provide a more than 50% performance improvement on
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cache-constrained systems.

We believe that simple NICs closely coupled with general-purpose host CPUs, as exemplified by SINIC

and V-SINIC, provide far more flexibility and opportunity for optimization than systems in which dedicated

processing is shipped out to a NIC residing on an I/O bus. In SINIC, the movement of packets into and

out of the network FIFOs is controlled directly by the device driver, meaning that these critical operations

can be optimized and customized to work with specific operating systems, limited only by the ingenuity of

kernel developers. Our Linux zero-copy implementation is a significant optimization but we believe it is not

likely to be the only one enabled by SINIC.

Our future work includes evaluation of SINIC and V-SINIC on additional networking benchmarks, and

further exploration of the SINIC/V-SINIC design space, including sensitivity analysis of the SINIC access

latency and number of VNICs available for V-SINIC. Open issues include how best to support encryption

and decryption of network traffic and how to virtualize SINIC for virtual-machine systems.
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