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Abstract

In the recently-suggested dynamic spectrum allocation policy of cognitive radio networks
[1]–[3], sensing/monitoring of spectrum availability is identified as a key requirement. To meet
this requirement we address an important MAC-layer sensing issue: which of proactive and
reactive sensing is more energy-efficient? An algorithm is proposed to dynamically determine
which sensing mode to use. For proactive sensing, sensing-period adaptation to maximize dis-
covery of opportunities and optimal-ordering of channels to minimize the delay in finding an
available channel are proposed. Channel-usage patterns are also estimated. Our simulation results
demonstrate the efficacy of the proposed sensing scheme, as well as its performance improvements
over the previously-proposed schemes. The sensing-period adaptation discovers up to 98% of the
analytical maximum of spectral opportunities, regardless of choice of the initial sensing period.
For the testing scenario and simulation parameters we used, the proposed scheme is shown to
discover up to 20% more opportunities than the previous sensing schemes without sensing-period
adaptation. This improvement may become greater as the initial sensing period grows. The delay
in finding an idle channel with the proposed channel-ordering is around 0.02 second, which is a
half of the delay without channel-ordering, and the proposed scheme yields steady performance
over a wide range of the number of channels.

Index Terms

Cognitive radios, spectral agility, MAC-layer sensing, proactive and reactive sensing, channel-
usage patterns.
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I. I NTRODUCTION

There have been numerous protocol standards on wireless spectrum that rely on astatic
spectrum allocation policy, under which each licensed spectrum band is statically assigned
to the specific licensed service and its users. Once a spectrum band is assigned to a certain
service, its allocation is not allowed to be changed dynamically. However, a new concept of
dynamicspectrum allocation has become necessary to overcome critical limitations of the
traditional static-allocation scheme. Recent studies have shown that use of static spectrum
allocation has degraded spectral efficiency significantly [4]. Moreover, current standards
cannot guarantee prevention of unexpected interruptions by wireless network users [5].

To alleviate these problems, FCC has recently suggested a new concept of cognitive
radio networks that includes dynamic spectrum allocation. This requires the enhancement of
current PHY and MAC protocols to adopt spectral-agile features. The basic idea of spectral
agility is to allowsecondary(unlicensed) users to access licensed spectrum bands provided
it only incurs minimal tolerable interference toprimary (licensed) users. To achieve this
goal, secondary users should monitor each channel’s usage pattern by its primary users
to identify spectrum holesor opportunities[6] to utilize. Whenever secondary users/nodes
find a channel that can be utilized without interfering with its primary users, it is assigned
to a specific wireless data link. Secondary users are responsible for monitoring the return
of any primary user on that channel so that they can stop their transmission and vacate the
channel upon the primary user’s return.

This new concept of protocol has been given different names, such asDynamic Spectrum
Access(DSA) protocol [7] orneXt Generation(XG) protocol [1], [2]. However,sensingthe
status of each channel/spectrum is commonly recognized as the most fundamental element
due to its crucial role of discovering spectral opportunities. The PHY-layer sensing adapts
modulation schemes and parameters to measure and detect the primary users’ signals on
different channels. Several PHY-layer detection methods, such asenergy detection, matched
filter andfeature detection[8]–[10], have been proposed. Among them,feature detectionis
considered as a good candidate for detecting the primary user’s presence on a channel since
it differentiates the unique characteristics of modulation by usingcyclostationaryfeatures
[8]. The detection result on a channel would be one of the following three possibilities: (i)
the channel is idle, (ii) the channel is occupied by its primary users, but secondary users
are allowed to transmit their packets with some power constraints, or (iii) the channel is not
available to secondary users at all. On the other hand, the MAC-layer sensing determines
when a secondary user/node has to sense which channels. This type of sensing, despite its
importance, has received far less attention than other related topics.

In this paper, we focus on important issues of the MAC-layer sensing. Recently, many
MAC-layer researchers have considered fair channel allocation and secondary user coor-
dination under the assumption of the availability of sensing results. However, they have
not considered how the MAC-layer sensing works and which mode of sensing should be
used to efficiently discover spectrum opportunities. To address these important issues, we
first introduce two modes of MAC-layer sensing,reactiveandproactive, and then propose
an energy-efficient1 mechanism to determine the type of sensing to use. For the proactive
sensing, we also derive (i) the optimal sensing period that maximizes the discovery of

1A (proactive or reactive) sensing scheme A is said to be moreenergy-efficientthan another scheme B if A consumes
less energy while achieving the same performance as B. A more formal (mathematical) definition of energy-efficiency
will be given in Section III.
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opportunities, and (ii) the order of sensing channels that minimizes the delay in finding an
idle channel.

There have been a limited number of publications on the MAC-layer sensing. Chou
[11] proposed a non-adaptive proactive sensing algorithm that uses pre-determined sensing
periods. This approach did not consider how to maximize the chance of discovering op-
portunities since the assigned sensing periods are not optimal (in the sense of minimizing
the delay in locating an idle channel). Zhaoet al. [12] proposed a Decentralized Cognitive
MAC (DC-MAC) with reactive sensing. Their approach focused on slotted-time CSMA-
based channel access with synchronized slot information. Sankaranarayananet al. [13]
proposed an Ad-hoc Secondary system MAC (AS-MAC) which is intended solely for
TDMA/FDMA-based GSM cellular networks. AS-MAC is a proactive scheme with slotted-
time-based channel access. The authors of [12] and [13] did not consider the essential
tradeoff between reactive and proactive sensing, and they only targeted a specific type of
primary user networks.

The contributions of this paper are threefold. First, our approach provides a general
framework for the MAC-layer sensing which is not confined to any specific primary user
networks. Second, we highlight a fundamental tradeoff between reactive and proactive
sensing, and propose an energy-efficient sensing mode selection algorithm. Finally, we pro-
pose an optimal proactive sensing architecture with sensing-period adaptation and channel-
ordering techniques.

The rest of the paper is organized as follows. Section II presents a system overview and a
channel-usage model. Section III introduces reactive and proactive sensing modes, followed
by development of a sensing mode selection algorithm. Section IV presents sensing-period
adaptation and channel-usage pattern estimation for proactive sensing. Section V describes
how to determine the order of sensing channels so as to minimize the delay in locating
an idle channel. The MATLAB-based simulation results are presented and analyzed in
Section VI. Finally, we conclude the paper and suggest future directions in Section VII.

II. SYSTEM OVERVIEW

Before delving into the proposed techniques, we give an overview of the system un-
der consideration, state the assumptions and present the channel-usage model to be used
throughout this paper.

A. Network Topology

A wireless multi-hop ad-hoc network is considered as the network of secondary users.
A group of secondary users/nodes shareN licensed channels with their primary users. The
network topologies or protocols of primary users could be different from those of secondary
nodes. Although a multi-hop network is considered, packet transmission on the secondary
network is performed in a hop-by-hop fashion. This is because sensing and allocation of
channels should be done hop-by-hop due to the fact that primary users’ channel-usage
patterns may be observed differently depending on their locations.

In Figure 1, we therefore consider a secondary nodeN0 which hasM neighbors(N1, . . . , NM)
whereN licensed channels can be used byN0 when they are left unused by their primaries.
A data linkLj (j = 1, . . . , M ) is pre-assigned for communication betweenN0 andNj. We
assume that each secondary node is equipped with one widely-tunable antenna that covers
N licensed channels. This is to reduce hardware cost and RF-end complexity. Under this
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assumption, both sensing and data transmission cannot be done at the same time [10].
Moreover, a secondary node can sense only one channel at a time.

Each secondary node is responsible for sensingN licensed channels, and the availability
of a channel is determined based on the PHY-layer sensing result. The timing of sensing
and the channel to be sensed are controlled by the MAC-layer sensing. In caseN0 wants
to communicate with nodeNj, the two nodes have to exchange their sensing results via a
dedicated control channel and negotiate the channel assignment to linkLj. The channel-
allocation problem gets far more complicated when there exist fading channels or if there is
any conflict/interference in assigning channels to nearby data links. There have been many
proposed approaches to resolving these difficulties, often treating them as a secondary users
coordination problem [14]. Note, however, that the channel-allocation issue isnot within
the scope of this paper.

Fig. 1. The network topology used in sensing mode selection

B. Channel-Usage Model

“Sensing” mainly aims to check a channel’s availability. Hence each channel is modeled
as an ON-OFF source alternating between ON(busy) and OFF(idle) periods. An ON/OFF
period models a time period in which the primary user signals can/cannot be detected on a
channel.2 Secondary users can utilize any portion of OFF periods for their own transmission.
For a channeli, i = 1, 2, . . . , N ,3 the length of an ON (or OFF) period is described
by a random variableY i (or X i) which is governed by its random distribution function
fY i(y), y > 0 (or fXi(x), x > 0). ON/OFF periods are assumed to be independent and
identically distributed (i.i.d.), and ON and OFF periods are independent of each other. This
random process forms a continuous-time semi-Markov chain and can be analyzed with the
renewal theory [15]. A sample from an ON/OFF period corresponds to the value 1/0. Then,
sensing produces a binary random sequence for each channel. The channel utilization, or
load of channeli, ui, is given asui = E[Y i]/(E[Y i] + E[X i]). The channel-usage model
is illustrated in Figure 2.

III. SENSING MODE SELECTION

The status of a spectrum/channel can be sensedreactivelyor proactively, depending on
when the channel is sensed. In what follows, we will discuss the pros and cons of these

2Equivalently, an ON (or OFF) period can be considered as a time period in which the secondary users are prohibited
from accessing (or allowed to access) the channel.

3We will use i as the channel index throughout the paper.
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Fig. 2. The ON-OFF channel model

two sensing modes and then propose an algorithm for determining which sensing mode to
use for energy-efficiency.

A. Reactive vs. Proactive Sensing

1) Reactive Sensing:This is on-demand sensing; whenever a secondary user/node has a
packet to transmit/receive to/from its neighbor, it sequentially senses/monitors all licensed
channels until it finds an idle channel. The thus-discovered idle channel is assigned to
the wireless data link between itself and the neighbor. Although channel assignment must
be negotiated between the two nodes, its detailed treatment is beyond the scope of this
paper. Since packets arrive/depart randomly in time, it is difficult to process thus-collected
sensing results to predict a channel’s behavior. Without knowledge of channels’ behaviors,
one cannot determine their optimal order of sensing that minimizes the time required to
locate an idle channel. Thus, a secondary user has to sense channels in random order. This
scheme does not induce unnecessary sensing overheads, but incurs a greater channel-search
delay than the optimally-ordered sensing based on the estimation of channels’ behaviors.

2) Proactive Sensing:In theproactivesensing mode secondary users/nodes periodically
monitor channels with their own sensing periods in addition to their on-demand sensing of
likely-to-be-available channels.4 The periodically-collected information is used to estimate
channel-usage patterns so that a secondary node can determine the most desirable sensing
order of channels whenever it needs to locate an idle channel (i.e., on-demand sensing).
The periodic part of sensing operation can be considered as a common sampling procedure.
Channeli is being sensed with its ownsensing period(TP

i) and listening interval(TI
i)

which resemble sampling period and sampling interval, respectively. These parameters have
to be determined/adapted channel-by-channel since each channel may have its own unique
usage pattern. An example in which a secondary user periodically senses two channels is
illustrated in Figure 3.

The proactive sensing incurs a high sensing overhead since it periodically senses multiple
channels even when no data transmission is necessary. However, it can reduce the time to
search for an idle channel so that an end-to-end packet delay can be minimized.

B. Sensing Mode Selection

We now consider which of proactive and reactive sensing to choose to achieve high
energy-efficiency. To define energy-efficiency formally, we (i) assume the amount of con-
sumed energy to be proportional to the total sensing time; and (ii) consider the average

4Note that the on-demand sensing required in case of proactive sensing is the same as that of reactive sensing.
In addition, a discovered available channel during the process of periodic (not on-demand) sensing is not necessarily
assigned to a data link if there is no packet to transmit.
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Fig. 3. Periodic sensing of two channels by a secondary user

time taken in locating an idle channel as a performance metric. LetE be the average time
consumed for sensing per unit time, and letTidle denote the average time taken to locate
an idle channel per packet departure or arrival. Then,energy-efficiencyis defined as −E

1/Tidle

since the performance is proportional to1/Tidle. A sensing mode that achieves a larger
−E

1/Tidle
is considered to be more energy-efficient.

Intuitively, the proactive sensing consumes considerably more time than the reactive
counterpart, but it can help find an idle channel faster (hence smaller end-to-end packet
latency) by estimating and utilizing channel-usage patterns from the periodically-sensed
information. On the other hand, the reactive sensing requires more time to search for an
idle channel since no prior channel-usage information is available, and hence, it must rely on
a random sequential search of channels. There is, therefore, a tradeoff between the periodic
sensing overhead and the on-demand search overhead. This tradeoff must be optimized to
determine which of the two sensing modes to be used.

As introduced in Section II, a wireless multi-hop ad-hoc network is considered for this
optimization. It is assumed that the average packet inter-arrival time (Aj) and the average
packet inter-departure time (Dj) on a data linkLj are known. It is not difficult to estimateAj

andDj by recording and using packets’ timestamps. It is also assumed that the utilization,
or load of channeli, ui, can be estimated, so we letûi be the estimated utilization of
channeli.

Let Ep(Er) be the average time consumed for sensing per unit time in proactive(reactive)

sensing. In proactive sensing, on average a total of
N∑

i=1

T i
I

T i
P

per unit time is used for periodic

sensing. In addition,T p
idle must be spent everyAj or Dj units of time whereT p

idle denotes the
average idle channel search time per packet departure/arrival in proactive sensing. Hence,
Ep is given as

Ep =
N∑

i=1

T i
I

T i
P

+
M∑

j=1

(
T p

idle

Dj

+
T p

idle

Aj

)

Proactive sensing can minimizeT p
idle by optimally-ordering channels to search. This

optimization will be discussed in Section V. For now, we will assume that proactive sensing
sorts channels in ascending order of channel utilizations. Without loss of generality, we
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can assume that(1− û1) ≥ (1− û2) ≥ · · · ≥ (1− ûN). In such a case, channel 1 is sensed
first for T 1

I units of time. If it appears to be idle, with probability(1− û1), it is assigned
to the data link. If not, channel 2 is sensed next forT 2

I units of time and is assigned to the
data link with probabilityû1(1 − û2) (i.e., probability that channel 1 is busy and channel
2 is idle). This process will continue for the rest of channels. If all channels turn out to
be busy, with probabilitŷu1û2 · · · ûN , the packet is buffered and will be transmitted later.
Note thatDj andAj should reflect the effect of packet buffering. Then,T p

idle is given as

T p
idle = T 1

I ·
(
1− û1 · · · ûN

)
+ T 2

I · û1
(
1− û2 · · · ûN

)
+ · · ·

+ TN
I · û1 · · · ûN−1

(
1− ûN

)
+

N∑
i=1

T i
I · û1 · · · ûN−1

= T 1
I + û1 · T 2

I + û1û2 · T 3
I + · · ·+ û1 · · · ûN−1 · TN

I

= T 1
I +

N∑

k=2

{(
k−1∏
m=1

ûm

)
T k

I

}

In case of reactive sensing,T r
idle is spent everyAj or Dj units of time in whichT r

idle

denotes the average idle channel search time per packet departure/arrival in reactive sensing.
Hence,Er is given as

Er =
M∑

j=1

(
T r

idle

Dj

+
T r

idle

Aj

)

The derivation ofT r
idle is similar to that ofT p

idle. The only difference is that sensing
is performed in random order. Hence,N ! cases of all possible channel orders must be
considered. LetSk be thek-th set of ordered channels, amongN ! possible sets. For example,
S1 = {(1− û1) ≥ (1− û2) ≥ · · · ≥ (1− ûN)}. Let Sk(m) be the channel index of anm-th
element inSk. SinceSk can be chosen equally-likely with probability1

N !
, T r

idle is given as

T r
idle =

N !∑

k=1

T Sk
idle

N !

where T Sk
idle = T

Sk(1)
I +

N∑
n=2

{(
n−1∏
m=1

ûSk(m)

)
T

Sk(n)
I

}

Now, the sensing mode can be dynamically determined by comparing the energy-efficiency
of two schemes such that

−Er

1/T r
idle

reactive

≷
proactive

−Ep

1/T p
idle

.

Or equivalently,

Er · T r
idle

proactive

≷
reactive

Ep · T p
idle.
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IV. SENSING-PERIOD ADAPTATION

In proactive sensing, two sensing parameters (T i
P andT i

I ) must be determined.T i
I is deter-

mined by the PHY-layer sensing since it depends on the modulation scheme used to detect
primary users. Hence here we consider onlyT i

P and propose a sensing-period adaptation
technique to find the optimal sensing period of a channel to maximize the discovery of its
existing opportunities. The optimal sensing period is uniquely determined for each channel
according to its unique characteristics. For this optimization, channel-usage patterns must
be estimated first using the prior sensing results. Based on this estimation, optimal sensing
periods are determined and adapted repeatedly. The procedure is overviewed in Figure 4.

Fig. 4. System diagram of sensing-period adaptation

Since proactive sensing samples a channel’s state (busy or idle) at discrete time points,
it is not always possible to identify when an opportunity begins and ends. In fact, an
opportunity is discovered when an idle sample is collected from the channel. Therefore,
some opportunities may go undiscovered in case the sensing period is relatively large.
However, blindly reducing the sensing period is not desirable either, as it will increase
the sensing overhead, which is proportional toT i

I/T
i
P . This tradeoff must be captured in

building an equation to find an optimal period. So, we introduce two terms,Unexplored
Opportunity(UOPP i) andSensing Overhead(SSOH i). UOPP i is defined as the average
fraction of time during which channeli’s opportunities are not discovered. On the other
hand,SSOH i is defined as the average fraction of time during which channeli’s discovered
opportunities cannot be utilized due to the sensing of other channels. We assumed that a
secondary user/device is equipped with one widely-tunable antenna. Under this assumption,
the secondary user must stop utilizing a discovered channel while it is sensing one of the
other channels. In addition, a utilization factorui is defined as the average fraction of time
during which channeli is busy. So, the average total sum of opportunities per unit time is
(1− ui). Our objective function is then defined as

TP := (TP
1, ..., TP

N),
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Find TP
∗ = arg max

TP

{
N∑

i=1

{
(1− ui)− SSOH i − UOPP i

}
}

= arg min
TP

{
N∑

i=1

(
SSOH i + UOPP i

)
}

(1)

whereTP
∗ is a vector of optimal sensing periods.

To simplify our discussion, a few assumptions are made which render mathematical
tractability while addressing the heart of the problem. First, in case there exist simultaneous
opportunities on multiple but possibly non-adjacent channels, secondary users can assign
them selectively and simultaneously to one or more data links by using the OFDM technique
[11]. Second, we assume that every secondary user performs consistent transmission. That
is, there always exists an incoming/outgoing packet from/to a secondary node. In this case,
every discovered idle channel is assigned to one of the data links and is utilized until its
current idle period ends. The end of an idle period is detectable by theLISTEN-before-
TALK policy. That is, a secondary user is responsible for checking any primary user’s
reappearance on the channel before transmitting the next packet.

Note that throughout the analyses in Sections IV and V, the channel-usage model
introduced in Section II will be used.

A. Sensing-Period Adaptation

1) Analysis ofUOPP i: We defineT i
d(t) (d = 0, 1) as the average opportunities on

channeli during (ts, ts + t) provided a sampled is collected at timets. If ts is the end/start
time of an idle period, we usẽT i

d(t) instead ofT i
d(t). Four possible cases are illustrated

in Figure 5. Note thatT i
d(TP

i) implies the average amount of channel availability between
two consecutive samples in case the first sample isd.

Fig. 5. Illustration ofT i
d(t) and T̃ i

d(t)

In Figure 6, the distribution of̃X i, which is the remaining time of an OFF period at the
sampling timets, is given asFXi(x̃)/E(X i) [15]. HereFXi(x̃) = 1 − FXi(x̃). Similarly,
that of an ON period is given asFY i(ỹ)/E(Y i). Using these facts, the following equations
are derived.

T i
0(t) = t

∫ ∞

t

FXi(x)

E(X i)
dx +

∫ t

0

FXi(x)

E(X i)

(
x + T̃ i

1(t− x)
)

dx

T i
1(t) =

∫ t

0

FY i(y)

E(Y i)
T̃ i

0(t− y)dy
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Fig. 6. The distribution of remaining time of an OFF period

T̃ i
0(t) = t

∫ ∞

t

fXi(x)dx +

∫ t

0

fXi(x)
(
x + T̃ i

1(t− x)
)

dx

T̃ i
1(t) =

∫ t

0

fY i(y)T̃ i
0(t− y)dy

By performing Laplace transforms, we get

E(X i) · T i
0

∗
(s) =

FXi
∗(0)− FXi

∗(s)
s2

+ FXi
∗(s)T̃ i∗

1 (s)

E(Y i) · T i
1

∗
(s) = FY i

∗(s)T̃ i∗
0 (s)

T̃ i∗
1 (s) = fY i

∗(s)T̃ i∗
0 (s)

T̃ i∗
0 (s) =

fXi
∗(0)− fXi

∗(s)
s2

+ fXi
∗(s)T̃ i∗

1 (s)

Hence it follows that

T i∗
0 (s) =

1

E(X i) · s2
·
[
F∗Xi(0)− F∗Xi(s) · 1− f ∗Xi(0)f ∗Y i(s)

1− f ∗
Xi(s)f ∗Y i(s)

]

T i∗
1 (s) =

F∗Y i(s)

E(Y i) · s2
· f ∗Xi(0)− f ∗Xi(s)

1− f ∗
Xi(s)f ∗Y i(s)

Now, we develop an expression ofUOPP i in terms ofT i
0(t) and T i

1(t).
5 UOPP i

(d) is
defined as the average fraction of time during which usable opportunities are not discovered
between any sampled and its next sample. Then,UOPP i = UOPP i

(0) +UOPP i
(1). In case

d = 1 is collected at timets, the total opportunity ofT i
1(TP

i) units of time is not discovered
in (ts, ts + T i

P ) since there is no additional sensing during that period. Hence,

UOPP i
(1) = ui ·

[
T1(T

i
P )

T i
P

]

whereui is the probability that a sample 1 is collected from channeli [15].6 In cased = 0,
the opportunity is discovered at timets and it starts to be utilized until any primary user

5Note thatT̃ i
d(t) can be derived fromT i

d(t).
6A channel is assumed to be in its equilibrium state.
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reappears on the channel. If the opportunity lasts untilts+T i
P , the total opportunity ofT i

P is
discovered and utilized. However, if a primary user emerges atte, wherets < te < ts +T i

P ,
any opportunities in(te, ts + T i

P ) could not be explored. Hence,

UOPP i
(0) =

(
1− ui

) ·
[

1

T i
P

∫ T i
P

0

FXi(x)

E(X i)
T̃ i

1(T
i
P − x)dx

]

which completes the derivation ofUOPP i.
Two examples ofUOPP i are introduced here. For a channel with Erlang-distributed

ON/OFF periods such asfXi(x) = xe−x (x > 0) andfY i(y) = ye−y (y > 0), UOPP i is
given as

UOPP i =
1

2
− 3

4T i
P

+
e−T i

P

4

(
3

T i
P

+ 1

)
.

For a channel with exponentially-distributed ON/OFF periods such asfXi(x) = λXie−λXix (x >
0) andfY i(y) = λY ie−λY iy (y > 0), UOPP i is found to be

UOPP i = (1− ui)

{
1 +

1

λXiTP
i

(
e−λXiTP

i − 1
)}

.

Note that these results are reasonable in the sense thatlim
TP

i→∞
UOPP i = 1 − ui. As

TP
i →∞, no opportunity is discovered since no sensing is performed. Therefore,UOPP i

becomes(1− ui).
2) Analysis ofSSOH i: As defined earlier,SSOH i is the average fraction of time

during which channeli’s discovered opportunities cannot be utilized due to sensing on
other channels. Since it is assumed that a secondary user is equipped with one widely-
tunable antenna, the secondary user must stop utilizing a discovered channel to sense
another channel. This situation is depicted in Figure 7.

Fig. 7. Interruption of channel 1’s discovered opportunity due to sensing on channel 2

To expressSSOH i mathematically, we introduce theobservedchannel model. Since we
do not know if a channel is idle or not until sample 0 is collected, the observed channel
usage pattern is different from the real one. Hence, we consider a new channel-usage model
based on what we observe from samples. Figure 8 illustrates the concept of the observed
channel. This channel model has the modified channel utilizationũi which is given as
ũi = ui + UOPP i. Using the new model,SSOH i can be derived as

SSOH i = (1− ũi)
N∑

j=1
j 6=i

(
ũj · T j

I

T j
P

)
.
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Fig. 8. The observed channel model

3) Sensing-Period Adaptation Algorithm:Based on the derived expressions ofUOPP i

and SSOH i, optimal sensing periods can be determined. As shown in Figure 4, our
proposed algorithm adapts sensing periods asynchronously. That is, when one ofN sensing
periods is to be updated, we use most-recently determined sensing periods of other(N−1)
channels so that Eq. (1) becomes an equation with only one variable. Note thatui and other
channel parameters in Eq. (1) should be replaced with their estimates.

B. Channel-Parameter Estimation

The forms ofUOPP i andSSOH i are expressed with distribution functions of ON and
OFF periods which must be estimated beforehand. Here we introduce an estimation tech-
nique for exponentially-distributed ON/OFF periods. Although our objective is to estimate
λXi and λY i of each channel,λXi and ui will be estimated instead for simplicity. ML
estimation is used to achieve the goal since it is consistent and asymptotically unbiased.
Two estimators and the corresponding confidence intervals will be derived. The overall
estimation procedure works as follows. First, a likelihood function is built with most recent
ri samples that were collected with a fixed sensing periodT i

P . From the likelihood function,
λXi and ui are estimated. These estimates are used to adapt and produce a new sensing
period.ri is also adapted to maintain the designed level of confidence. Finally, using the
new ri and T i

P , the next stage of sample-collection/estimation/adaptation is started. This
process repeats itself forever.

Suppose we haveri samples,Z = (Z1, Z2, . . . , Zri), collected with the sensing-period
of TP

i. The joint probability mass function is expressed with four types of transition
probabilities:

θ = (ui, λXi)

L(θ) = P (Z; θ)

= Pr(Z1 = z1; θ)
ri∏

k=2

Pr(Zk = zk|Zk−1 = zk−1; θ)

= Pr(Z1 = z1; θ) ·[
P i

00(T
i
P )

]n0
[
P i

01(T
i
P )

]n1
[
P i

10(T
i
P )

]n2
[
P i

11(T
i
P )

]n3

where the Markovian property is applied.P i
d1d2

(t) denotes the probability that a sample
d1 is followed by a sampled2. The total occurrence of 4 different transition types such
as (d1, d2) = (0, 0), (0, 1), (1, 0), (1, 1), is counted and denoted byn0, n1, n2 andn3. The
renewal theory [15] says that for a renewal process alternating between state I (OFF) and
II (ON), the probabilityP i

00(t) that state I is in use at timet provided the process starts
from state I is given as

P i
00(t) =

λY i

λXi + λY i

+
λXi

λXi + λY i

e−(λXi+λY i )t.
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If we switch the role of two states,P i
11(t) is easily derived as

P i
11(t) =

λXi

λY i + λXi

+
λY i

λY i + λXi

e−(λY i+λXi )t.

Now, the derivation of four transition probabilities is trivial sinceP i
01(t) = 1− P i

00(t) and
P i

10(t) = 1− P i
11(t). They are given as

P i
00(t) = (1− ui) + ui · e−(λXi+λY i )t

P i
01(t) = ui − ui · e−(λXi+λY i )t

P i
11(t) = ui + (1− ui) · e−(λXi+λY i )t

P i
10(t) = (1− ui)− (1− ui) · e−(λXi+λY i )t.

1) ui Estimator: The ML estimator̂ui can be derived by solving the equation∂ log L(θ)/∂ui =
0 which does not yield any closed-form solution. Although a numerical analysis could be
used, it is not conducive to provide a confidence interval. Instead, a sample mean estimator
is proposed as an alternative estimator:

ûi =
1

ri

ri∑

k=1

Zk.

Although this is not optimal, it is unbiased and tractable to derive a confidence interval.
The unbiasedness can be shown as

E[ûi] =
1

ri

ri∑

k=1

E[Zk] = ui.

We now derive the confidence interval. The correlation coefficient for any two samples
Zk1 andZk2 (k1 6= k2) is found to be

E[Zk1Zk2 ] =

{
Pr(Zk1 = 1|Zk2 = 1) Pr(Zk2 = 1) , k1 > k2

Pr(Zk2 = 1|Zk1 = 1) Pr(Zk1 = 1) , k1 < k2

= P i
11(|k1 − k2| · T i

P ) · ui

⇒ ρk1k2 =
E[Zk1Zk2 ]− (ui)2

ui − (ui)2
= e−(λXi/ui)·|k1−k2|T i

P .

This shows that the correlation is decaying exponentially fast as the separation of two
samples becomes large. Since the rate of decrease is proportional to(λXi/ui)T i

P , ri samples
can be assumed to be weakly-correlated as long as(λXi/ui)T i

P and ri are large. Using
this fact, we can derive the confidence interval. When(λXi/ui)T i

P is large, Z−E[Z]√
var[Z]

→
N(0, 1) asri → ∞ by the Central Limit Theorem. Hence,100(1 − α) (%) confidence
interval is given as[

Z−
√

var[Z] · N−1(1− α/2), Z +

√
var[Z] · N−1(1− α/2)

]

whereα is a design parameter andvar[Z] is a function ofri. To relateri with the confidence

interval, we introduce another design parameterβ such thatβ =
√

var[Z] ·N−1(1− α/2).
Then, an appropriateri can be found to guarantee the levelα of confidence with the interval
length of2β. In general, we need more samples (i.e., biggerri) to achieve a higher level
of confidence (i.e., smallerα or β).
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2) λXi Estimator: The ML estimator̂λXi can be derived by solving the equation∂ log L(θ)/∂λXi =
0 which gives

λ̂Xi = − ui

T i
P

log

[−B +
√

B2 − 4AC

2A

]

where





A = (ui − (ui)2)(ri − 1)
B = −2A + (ri − 1)− (1− ui)n0 − ui · n3

C = A− ui · n0 − (1− ui)n3

.

The remaining task is to find a confidence interval ofλ̂Xi. Unfortunately, the high
nonlinearity ofλ̂Xi makes it difficult to find a confidence interval. Instead, an upper bound
of T i

P will be provided to ensure a reasonable level of confidence. Note that each of four
transition probabilities tends to converge to a constant,ui or 1− ui, asT i

P goes to infinity.
Sincelog L(θ) is expressed with transition probabilities, an ML estimator cannot guarantee
accurate estimation with a largeT i

P . Hence we will bound the value ofP i
01(T

i
P ) below a

certain threshold(1 − γ)ui to ensure the probability would not be too close to its limit.
This concept is shown clearly in Figure 9. Then, an upper bound ofT i

P is determined as

|ui − P i
01(T

i
P )| ≥ γ × ui ⇒ T i

P ≤ − ui

λXi

log γ.

In case a new sensing period to be adapted is larger than this bound,T i
P must be set to

− ui

λXi
log γ.

Fig. 9. The graph ofP i
01(T

i
P ) and upper bound ofT i

P

V. ORDERING CHANNELS

As discussed in Section III, a secondary user has to senseN licensed channels to find
an idle channel and assign it to one of data links to transmit/receive a packet to/from its
neighbor. Here, our main objective is to minimize the idle channel search time so as to
reduce the end-to-end packet delay. As a simple solution, channels may be arranged in
ascending order of channel utilizations. However, this is not an optimal solution. Instead,
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we must considerP i
idle(t), the probability that channeli would be idle at timet based on

the previous sample history. By settingt to be the time when an idle channel needs to be
found, we can build an optimal sensing order as described below.{

Find P i
idle(t) = Pr(Zi

t = 0|Zi
s, s < t), for all i = 1, . . . , N

Sense N channels in descending order ofP i
idle(t)

where

{
Zi

t : channeli’s sensing result at timet
t: the time when an idle channel search is required

Again we consider ON-OFF alternating channels. According to the renewal theory, we
only need the most recent sample to deriveP i

idle(t). Hence,P i
idle(t) becomes the transition

probability between the most recent sample and its following sample which will be collected
by the idle channel search:P i

idle(t) = Pr(Zi
t = 0|Zi

s = d), whereZi
s is the most recent

sample of channeli. Sinced = 0 or 1, P i
00 and P i

10 are considered. In this section, the
general form of transition probabilities, not only for the exponential case, will be derived.
The theory suggests thatP i

11(∆i), where∆i implies the time difference between the most
recent sample’s collection time and the time when an idle channel search is required, is
expressed as

P i
11(∆i) =

∫ ∞

∆i

FY i(u)

E[Y i]
du +

∫ ∆i

0

hi
10(u)FY i(∆i − u)du

wherehi
10(u) is the renewal density of state I (OFF) given that the renewal process started

from state II (ON) [15]. It is proven thathi∗
10(s) is expressed as

hi∗
10(s) =

f ∗Xi(s)
{
1− f ∗Y i(s)

}

E[Y i] · s{
1− f ∗

Y i(s)f ∗Xi(s)
} .

By using the above form and the Laplace transform, we get

P i∗
11(s) =

1

s
−

{
1− f ∗Y i(s)

}{
1− f ∗Xi(s)

}

E[Y i] · s2
{
1− f ∗

Y i(s)f ∗Xi(s)
} .

P i
10(∆i) can be derived by the inverse Laplace transform and the following relationship:

P i∗
10(s) = 1−P i∗

11(s). By switching the role of state I and II,P i
00(∆i) can be easily derived

by the inverse Laplace transform of the following term:

P i∗
00(s) =

1

s
−

{
1− f ∗Xi(s)

}{
1− f ∗Y i(s)

}

E[X i] · s2
{
1− f ∗

Xi(s)f ∗Y i(s)
}

For example, for a channel with Erlang-distributed ON/OFF periods such asfXi(x) =
xe−x (x > 0) andfY i(y) = ye−y (y > 0),

P i
00(∆i) =

1

2
+

1

2
e−∆i cos(∆i)

P i
10(∆i) =

1

2
− 1

2
e−∆i cos(∆i).

On the other hand, for a channel with exponentially-distributed ON/OFF periods such
asfXi(x) = λXie−λXix (x > 0) andfY i(y) = λY ie−λY iy (y > 0),

P i
00(∆i) = (1− ui) + ui · e−(λXi+λY i )∆i

P i
10(∆i) = (1− ui)− (1− ui) · e−(λXi+λY i )∆i .
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The complete channel-ordering algorithm is given below.

1) For i = 1, . . . , N,

calculateP i
idle(∆i) =

{
P i

00(∆i) , if di = 0
P i

10(∆i) , if di = 1

where





di : most recent sample of channeli
∆i : elapsed amount of time since

the most recent sensing

2) Optimal Sensing Order :
sense N channels in descending order ofP i

idle(∆i)

VI. EVALUATION

A. Simulation Setup

To measure the effectiveness of the proposed proactive sensing algorithm, especially for
sensing-period adaptation and ordering of channels, we define three performance metrics:
estimation accuracy, achieved opportunity ratio, andchannel-search delay. Theestimation
accuracy represents how close the estimation results would be to the actual channel-
parameters. Theachieved opportunity ratiomeasures the ratio of the total amount of
discovered spectrum availability (summed over all channels) to the total amount of existing
availability (summed over all channels). Thechannel-search delayis defined as the average
delay (in seconds) in finding an idle channel per packet transmission.

We considered the case where a secondary nodeN0 tries to exchange packets with its
neighbors. All channels are assumed to have exponentially-distributed ON/OFF periods.
We conducted simulation using MATLAB, and all measurements are made byN0.

To evaluate the algorithm’s estimation accuracy, 5 heterogeneous channels are used. Since
each channel has unique channel utilization andλXi, it helps differentiate channel-usage
estimation results.

To evaluate the achieved opportunity ratio, two scenarios are tested: 5 homogeneous
channels and 5 heterogeneous channels. The results are compared to those of a non-adaptive
proactive sensing scheme, such as those in [11], [13]. Both schemes start with a given
initial sensing-period, ranging from 0.15 to 2 sec. Since the sensing period is not adapted
in the non-adaptive case, the initially-determinedT i

P affects the overall system performance.
By comparing the two schemes in this way, we can show the benefits of sensing-period
adaptation in terms of the discovery of opportunities. As in Section IV, consistent packet
transmission is assumed so that whatever idle channels discovered byN0 via periodic
sensing can be allocated to a data link and then utilized.

To measure the channel-search delay, our proactive-sensing scheme is compared to a
proactive sensing without channel-ordering. The sensing-period adaptation is assumed to
be used by both. Several environments with different numbers of channels, ranging from
3 to 15 heterogeneous channels, are studied. This test will show that the channel-ordering
can reduce the delay in locating an idle channel and also improve the system scalability.
Unlike in the achieved opportunity ratio, consistent packet transmission is not assumed;
instead, the packet inter-arrival/departure time is assumed to be Poisson-distributed with
mean 1 sec.
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The following design and channel parameters are used for the simulation whereEX i

andEY i are measured in seconds.

α β γ T i
I

0.2 0.05 0.2 20(ms) (for alli)

TABLE I

THE VALUES OF DESIGN PARAMETERS IN THE SIMULATION

homogeneous: achieved opportunity ratio
Ch 1 Ch 2 Ch 3 Ch 4 Ch 5

EXi 2.50 2.50 2.50 2.50 2.50
EY i 0.50 0.50 0.50 0.50 0.50

heterogeneous: estimation accuracy and achieved opportunity ratio
Ch 1 Ch 2 Ch 3 Ch 4 Ch 5

EXi 2.50 0.50 1.00 5.00 1.00
EY i 0.50 2.50 1.00 2.50 2.00

heterogeneous: channel-search delay
Ch 1,6,11 Ch 2,7,12 Ch 3,8,13 Ch 4,9,14 Ch 5,10,15

EXi 1.50 0.50 1.00 3.00 1.00
EY i 0.80 2.50 1.00 2.50 2.00

TABLE II

THE VALUES OF CHANNEL PARAMETERS IN THE SIMULATION

B. The Simulation Results

1) Estimation Accuracy:Figures 10 and 11 show the accuracy of channel-usage esti-
mation. Each point in the figures indicates an estimate produced in an estimation cycle.
A dashed line implies the actual channel parameter. The estimatorûi is unbiased and its
confidence interval was derived in an exact form in Section IV. As a result, the plot ofûi

in Figure 10 follows the actual channel utilization very closely. On the other hand, we do
not have the exact confidence interval ofλ̂Xi which is reflected in Figure 11 such that the
variance of estimates varies with channel. However, the average behavior of the estimator
shows that it follows the actualλXi well.

Note that the estimation results do not converge in time since we don’t accumulate
samples to produce an estimate. That is, we discard previous samples when a new stage
of sampling/estimation/sensing-period-adaptation begins and we use onlyri samples to
estimate.

2) Achieved Opportunity Ratio:Figures 12 and 13 plot the achieved opportunity ratios
of adaptive and non-adaptive schemes. The x-axis represents the initially-assigned sensing
period, which is adapted in the former scheme. In the y-axis, 100 % is achieved only when
all the existing opportunities in 5 channels, the sum of(1−ui), are discovered. However, it
is unachievable in practice because each sensing operation requires a non-zero time,T i

I , to
listen to a channel and the discrete sensing may miss some opportunities. Hence, a dashed
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Fig. 10. Channel-utilization estimation

Fig. 11. λOFF estimation

line in each graph is used to indicate the analytical maximum of the ratio which can be
derived from the Eq. (1).

As shown in both figures, the plot of achieved opportunity ratio shows the superiority
of the proposed algorithm. The sensing-period adaptation offers a maximal amount of dis-
covered spectrum availability regardless of the initial sensing period. The adaptive sensing
is found to achieve up to 98% (homogeneous) and 97% (heterogeneous) of the analytical
maximum, and discover up to 20% more opportunities than the previous sensing schemes
without sensing-period adaptation. This improvement may become greater as the initial
sensing period grows. The reason for a slight performance degradation with large initial
values in the adaptive case is that the initial sensing period is not adapted until the first
estimation cycle ends, which took more than 50 seconds in our simulation. However, this
tendency is negligible since the sensing period is quickly adapted to the optimal value
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in a few cycles as shown in Figure 14. In this figure, each plot represents a realization
of sensing-period adaptation starting from a given initial period (7 variations: 0.15 to 2
seconds). It can be seen that every plot converges to the common adapted period which is
very close to the optimal one (a dashed line).

On the other hand, choice of the initial sensing period is crucial for the performance of
the non-adaptive sensing. In case the period is too small, the performance is degraded since
the sensing overhead becomes significant. On the other hand, if the period is too large,
most of the opportunities cannot be discovered, yielding a poor performance.

Fig. 12. Homogeneous case: achieved opportunity ratio

Fig. 13. Heterogeneous case: achieved opportunity ratio

3) Channel-Location Delay:In terms of the channel-search delay, our scheme also
outperforms the sensing without channel-ordering as shown in Figure 15. In the case without
channel ordering, the delay grows steadily as the number of channels to sense increases.
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Fig. 14. Sensing-period adaptation (channel 3)

However, in case of ordering channels to sense, the delay in locating an idle channel is
less sensitive to the number of channels, thanks to the optimal order of sensing channels.
An idle channel can be located within 25 ms which corresponds to one or two times
of sensing. Hence, the proposed channel-ordering enhances system scalability, enabling a
secondary node to sense a large number of channels. Although the exact delay in locating
an idle channel depends on the underlying channel parameters, the channel-ordering always
reduces the location delay.

Fig. 15. Channel-search delay

VII. C ONCLUSION

We investigated two typical modes of sensing, proactive and reactive, and developed a
sensing mode selection algorithm to achieve better energy-efficiency. Proactive sensing was
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designed and analyzed in-depth, especially focusing on its optimal sensing adaptation. The
proposed scheme strives to discover as much usable spectrum availability as possible. A
channel-usage pattern estimation technique was also proposed by deriving ML estimators
and their confidence intervals. Finally, the optimal order of sensing channels is constructed
so as to minimize the delay in finding an idle channel. The simulation results demonstrated
the advantages of the proposed algorithm, such as robustness of parameter estimation, a
larger amount of discovered channel availability, and a smaller channel-searching delay.

In future, we would like to enhance reactive sensing by adding a channel estimation
feature. Although it does not provide an organized way of sample collection, some channel
information is collected during each idle channel search. We will focus on those samples
to perform Bayesian estimation without any prior knowledge.
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