
ECO-system: Embracing the Change in Placement

Jarrod A. Roy and Igor L. Markov

CSE-TR-519-06

June 20, 2006

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2121
USA



ECO-system: Embracing the Change in Placement

Jarrod A. Roy and Igor L. Markov
{royj, imarkov}@umich.edu

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2121

June 20, 2006



CSE-TR-519-06: ECO-system: Embracing the Change in Placement 1

Abstract

In a successful RTL-to-GDS flow, numerous circuit modifications and optimizations must interact
with physical aspects of the design. For example, timing violations can be moderated by gate sizing
and net buffering, while routing violations can often be resolved by local replacement. Such a commu-
nity of tools requires a reliable system for performing Engineering Change Orders (ECOs), notably in
placement. Existing work is often overly incremental and limited in the amount of design change it can
support. Most of it describes stand-alone tools that offer poor interfaces to the design flow and cannot
handle a full range of modern VLSI layouts.

We develop a new, strong ECO-system that reliably handles fixed objects and movable macros in
instances with widely varying amounts of whitespace. It detects layout regions and sections of the netlist
that require modification and applies an adequate amount of change in each case: given a reasonable
initial placement, it applies minimal changes, but is capable of re-placing large regions to handle patho-
logical cases. ECO-system favorably compares to recent detail placers and fares well in high-level and
physical synthesis.

1 Introduction

In his keynote speech at ISPD 2006, Cadence CTO Ted Vucurevich expressed the need for “re-entrant,
heterogeneous, incremental, and hierarchical” tools for EDA to handle the challenges of next-generation
designs [17]. However, the importance of this problem has been realized much earlier, as Cong and Sar-
rafzadeh surveyed the state-of-the-art in incremental physical design techniques in 2000 and found these
techniques to be largely “unfocused and incomplete” [11]. Kahng and Mantik also found disconnects be-
tween the relative strengths of incremental optimizers and perturbation techniques [21]. They conclude that
CAD tools of the time “may not be correctly designed for ECO-dominated design processes” [21]. Consid-
erable progress has been made since 2000, e.g., in incremental placement [2, 4, 6, 13, 18, 19, 23–27, 31], but
there is no common agreement on the main tasks solved by incremental tools and how these tasks should be
solved. While incremental physical design is not new, it remains a difficult, high-value goal.

In this work we focus on incremental placement legalization and improvement in large-scale layout. The
need for such legalization typically arises in two contexts. The first is the separation of placement into global
and detail, where rough placements are produced first and incrementally improved to avoid overlaps and fit
into cell sites. This is common for analytical placers (APlace [22], mPL [8]) that approximate and average
out site constraints, while partitioning-driven tools (Capo [32], PolarBear [12]) and annealing-based tools
(mPG [9], Parquet [3]) often adopt correct-by-construction frameworks and require little post-processing.

However, the second context for legalization appears entirely unavoidable. During physical synthesis,
timing-critical gates may be powered up and other gates may be powered down. These changes affect gate
size and typically create overlaps [24]. Buffer insertion often leads to similar area violations, which must
be resolved by legalization. The success of such legalization depends on how much the areas have changed,
in what patterns, and the strength of a given legalizer. In particular, the legalization of mixed-size and
block-based designs with obstacles remains very challenging [29].

Our work is focused on the design of a powerful and robust ECO tool that applies adequate amounts of
replacement, in the right locations, to accommodate necessary design changes. To be useful in high-level
and physical synthesis, such a tool must be able to entirely replace sections of the netlist, e.g., logic added
to the design.

While practical considerations call for an interaction between global placers and legalizers, traditional
work on ECO and detail placement focuses on stand-alone tools incapable of global placement. An attrac-
tive, but yet unexplored solution would be to extend an existing global placer to an incremental mode where
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it would automatically identify layout regions and sections of the netlist that need repair, but preserve sat-
isfactory regions. In this work, we propose such an extension, identify and develop new components that
allow a global placer to act like a powerful ECO tool, and develop a competitive implementation based on
the open-source Capo tool.

As this tool can always resort to calling Capo on the entire design, it is robust and can handle a full
range of modern designs, including those with numerous obstacles, movable macros and various amounts of
whitespace. Such time-consuming calls do not occur when the tool can reuse important placement features.

We formulate the basic requirements for ECO placement and offer algorithms implementing this in-
terface. Our tool, ECO-system, is many times faster than a global placer and increases wirelength only
slightly. ECO-system outperforms APlace’s native legalizer on APlace global placements by over 1% in
HPWL while running 3x faster. ECO-system supports extensive cell resizing producing legal results that
mirror the original with virtually the same HPWL.

The rest of the paper is structured as follows. In Section 2 we review previous work. Key requirements
and a likely interface are discussed in Section 3. We present ECO-system in Section 4. Support for high-
level and physical synthesis is discussed in Section 5. In Section 6 we show empirical results and conclude
in Section 7.

2 Previous Work

Below we describe existing work on incremental techniques and relevant aspects of global placement.
Incremental techniques. Previous work on legalization, incremental placement and detail placement

can be broken into three fairly distinct stages: i) cell spreading, ii) legalization through simple end-case
techniques, and iii) refinement of the legalized placement. For the first stage, several algorithmic paradigms
have been applied in the literature such as network flows [6, 13, 14, 25], linear programming [13], top-
down whitespace injection [23,24] and diffusion gradients [31]. For end-case legalization, generally placers
use greedy movement of cells such as in Capo [32], the Tetris legalizer [18] in FengShui [5], and greedy
packing in DOMINO [14]. Lastly, placement refinement is done in sliding windows of one or more rows
using optimal end-case placers based on branch-and-bound [7] or dynamic programming [19], as well as
cell swapping such as in FastPlace [30] (a variant is also used in Capo).

One major theme in much of the literature is minimizing the total movement of cells in the design during
legalization [6]. While our legalizer achieves remarkably small total/average movement, we point out that
in general this does not always lead to minimal increase in interconnect parameters as shown in [1]. A
legalization with minimal total cell displacement may cause a few cells to move a great distance. Better
timing may be achieved by legalization with greater average movement, and even if the average movement
is the same, there can be many alternative replacements.

Cell spreading. DOMINO [14] legalizes by splitting cells into pieces of identical sizes, solving a flow
formulation to minimize movement, and finally reassembling the cell pieces. This limits the effectiveness of
DOMINO to cells of similar sizes. Existing implementations of DOMINO do not account for obstacles and
shift all cells to the left, limiting their applicability to modern placement instances, such as those from the
ISPD05 contest [28]. Flow-based legalization methods such as those used in [6,25] divide the core area into
regions and redistribute cells between neighboring regions until no region has more cell area than available
site area. These techniques can handle movable macros, but generally fix them early in the legalization
process.

The authors of [23, 24] incrementally place cells by injecting whitespace in a top-down fashion. The
placement region is divided into a grid with bisection steps (based only on the size and shape of the region,
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not taking into account the cells, macros or fixed obstacles therein), and whitespace is injected based on
some particular objective (routing congestion in [23], gate sizing and buffer insertion in [24]). Whitespace
injection is done by shifting the geometric cut-lines to change the whitespace balance in regions. When cut-
lines are shifted, the positions of the cells in the affected regions are scaled. Whitespace injection can cause
significant overlap due to scaling, especially in the presence of fixed obstacles or movable macros as in the
ISPD 2005 Contest benchmarks [28]. To remove these overlaps, a standard legalization step must be applied
followed by window-based detail placement to recover HPWL. It is unclear how well this technique may
work on difficult block-packing instances [29]. The technique may also fail in cases of extreme overlap, such
as global placement by analytical placers, as large areas of the placement will be essentially random. The
authors of [24] report an average displacement of 2.1% of the core area per cell, whereas the displacements
observed with our technique are an order of magnitude smaller.

The diffusion technique of [31] legalizes by dividing the core area into a regular grid. Cells move
from areas of high congestion to lower congestion (moving around fixed obstacles) and their directions
and speeds are determined by solving equations similar to those in the process of chemical diffusion [31].
New placements are generated at each time step of the diffusion and the first solution which satisfies area
constraints is taken to minimize runtime and cell movement [31]. End-case legalizers work within the grid
regions to produce a final legal placement, but this may be impaired by difficult block-packing instances [29].
The work in [26] improves that in [31], but does not measure the impact of its techniques on wirelength,
congestion or timing.

The XDP technique [13] uses a combination of constraint graphs, network flows, linear programming
and greedy cell movement for legalization of mixed-size designs. Overlaps between macros are legalized
first by building and modifying constraint graphs (which can reduce to a sequence-pair) until all macros can
fit into the core region without overlap. After the constraint graph is finalized, a linear programming instance
is built using the graph which is solved to remove macro overlap while moving the macros minimally.
Standard cells are then legalized with a greedy heuristic similar to that of FengShui [5], with the addition of
flow-based methods [6, 25] as necessary. After legalization, window-based detail placement techniques are
used to improve HPWL. XDP shows approximately the same performance as APlace’s legalizer on APlace
global placements, but our technique appears to outperform APlace’s legalizer in similar circumstances.

Macro legalization. It was shown in [2] that a fixed-outline floorplanner based on Simulated Annealing
with sequence pairs could be used to remove overlap. Techniques in [36] improve on [2] and show how to
legalize macros with minimal perturbation. Removal of overlap between macros can be especially difficult
given hard instances of block-packing [29]. To handle such instances, the authors of [29] modify B*-trees
to account for obstacles. Recently, the FLOORIST algorithm [27] has been proposed which uses AI based
constraint satisfaction to remove macro overlap.

Greedy legalization. FengShui [5] uses a simple packing algorithm by Hill [18] that is reminiscent of
the Tetris game. Such legalization fares poorly in designs with large amounts of whitespace, as shown by the
results of the ISPD 2005 Placement Contest. Capo uses two greedy legalizers for its global placements: one
for macros and another for standard cells [32]. Greedily, the macro overlap legalizer tries to move macros
as little as possible so as not to affect neighboring standard cells. Standard cells are legalized via shifting in
rows. If rows have more cell area than available site area, cells are swapped between rows greedily until no
row is overfull. Fixed obstacles are handled implicitly as rows are fractured below them [32]. Tethering of
a small percentage of cells [4] has been shown to make Capo more stable on independent placements of the
same design, but may displace some cells by large distances.

Min-cut placement. ECO-system uses the top-down min-cut placement framework [5, 12, 29, 32–34].
Recent techniques for min-cut placement [10, 35] have produced some of the best placements in the ISPD
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2006 contest [20] and the most routable placements on IBMv2 netlists [33]. In traditional min-cut algo-
rithms, a placement is viewed as a series of placement bins, the first of which encompasses the core area and
contains all movable cells. Based on number of cells in a placement bin, the placer either bisects the bin or
places the bin’s cells with an end-case placer.

When bisecting a bin, a min-cut placer proceeds by selecting a temporary cut-line for the bin based on
the size and shape of the bin. Based on the amount of cell and site area in the bin, the placer determines
partitioning tolerances. Given the tolerance, the placer uses a balanced min-cut partitioner to determine
how to divide the cells between its child bins. Using the partitioning solution, the placer determines a final
cut-line based on whitespace allocation techniques and divides the bin into child bins for further processing.

3 Requirements of Incremental Placement

Design optimizations that require incremental placement can alter a design in many ways [15] such as
(see also Section 5):

• Changing cell dimensions
• Changing net weights/criticalities
• Adding/Removing various constraints, such as density (to promote routability), regions

(to address timing), etc.
• Adding/Removing cells (with or without initial locations)
• Adding/Removing nets
• Adding/Removing macros or obstacles: IP blocks, embedded memories, RTL macros, etc.
Generally these transformations create illegality in localized regions of a design and/or create opportu-

nities for improving an existing placement. All of these transformations can be dealt with by performing
placement from scratch, but this is undesirable: i) replacement can be slow, ii) the transformations may
assume that they are applied to the current layout, and placement from scratch may invalidate them, and iii)
the current layout may include intangibles such as designer intent, or be optimized for novel objectives not
accounted for by the placement tool. Cong and Sarrafzadeh point out that incremental placers need to be
able to trade off potentially several design objectives when operating on a placement [11].

In addition to preserving the original placement, a legalizer must also be able to completely replace
sections of the placement that are deemed too suboptimal after design alterations. For example, if all of the
cells are moved on top of one another at the center of the placement area, the legalizer should have the ability
to replace all of the cells as the initial placement gives little useful information about a legal placement of
the design. While this example is not typical of legalization as a whole, it is quite possibly the case for small
sections of an illegal placement which most legalization techniques (such as those described in Section 2)
do not consider.

Take for example the cases when new cells are added to a design. If the new cells are added to isolated
regions of the design, such as during buffer insertion, traditional techniques that perturb the design only
slightly are most likely appropriate. Yet, timing optimization may call for pipelining of a multiplier or
changing an adder to a different type. Adding a significant amount of new logic to an already placed and
optimized design will require the functionality of a full-blown placer rather than just cell spreading to avoid
degrading the design’s wirelength and timing characteristics.
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Figure 1: Legalization during min-cut placement. Placement bins are subdivided until i) a
bin contains no overlap and is ignored for the remainder of the legalization process or, ii)
the placement contained in the bin is considered too poor to be kept (too many overlaps or
does not meet the solution quality requirements) and is replaced from scratch using min-cut
or analytical techniques.

4 Top-Down Legalization

To develop a strong ECO tool, we build upon an existing global placement framework and must choose
between analytical and top-down. The main considerations include robustness, the handling of movable
macros and fixed obstacles, as well as consistent routability of placements and the handling of density con-
straints. Based on recent empirical evidence [29,33,34], the top-down framework appears a somewhat better
choice. Indeed the 2 out of 9 contestants in the ISPD 2006 Competition that satisfied density constraints
were top-down placers. However, analytical algorithms can also be integrated into our ECO-system when
particularly extensive changes are required. We base ECO-system on the min-cut placer Capo [32] as it is
available in source code.

4.1 General Framework

ECO-system can be likened to reverse engineering the min-cut placement process. The goal is to reconstruct
the internal state of a min-cut placer that could have produced the given initial placement. Given this state,
we can choose to accept or reject its previous decisions based on our own criteria and build a new placement
for the design. If many of the decisions of the placer were good, we can achieve a considerable runtime
savings as compared to placement from scratch. If many of the decisions are determined to be bad, we can
do no worse in terms of solution quality than placement from scratch. An overview of the application of
ECO-system to an illegal placement is depicted in Figure 1. The overall algorithm and in the framework of
min-cut placement is shown in Figure 2.

To rebuild the state of a min-cut placer, we must reconstruct a series of cut-lines and partitioning solu-
tions efficiently. We must also determine criteria for the acceptability of the derived partitioning and cut-line.
To extract a cut-line and partitioning solution from a given placement bin, we must examine all possible cut-
lines of the bin as well as the partitions they induce. We start at one edge of the placement bin (left edge for
a vertical cut and bottom edge for a horizontal cut) and move towards the opposite edge. For each potential
cut-line encountered, we maintain the cell area on either side of the cut-line, the partition induced by the
cut-line as well as the net cut of the partition.
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Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While(queue not empty)
2 Dequeue a bin
3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has

the smallest net-cut considering
cell area balance constraints

7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)
17 Process end case
18 Else
19 Bi-partition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

Figure 2: Our ECO algorithm. Lines 3-15 and 20 are different from traditional min-cut placement.

4.2 Fast Cut-line Selection

For simplicity, assume that we are making a vertical cut and are moving the cut-line from the left to the
right edge of the placement bin (the techniques necessary for a horizontal cut are analogous). Pseudo-code
for choosing the cut-line is shown in Figure 3. To find the net cut for each possible cut-line efficiently, we
first calculate the bounding box of each net contained in the placement bin from the original placement.
We create two lists with the left and right x-coordinates of the bounding boxes of the nets and sort them in
increasing x-order. While sliding the cut-line from left to right (in the direction of increasing x-coordinates),
we incrementally update the net-cut and amortize the amount of time used to a constant number of operations
per net over the entire bin. We do the same with the centers of the cells in the bin to incrementally update the
cell areas on either side of the cut-line as well as the induced partitioning. While processing each cut-line,
we save the cut-line with smallest cut that is legal given partitioning tolerances. An example of finding the
cut-line for a partitioning bin is shown in Figure 4.

Once a cut-line and partitioning have been chosen, we evaluate them to see if they should be accepted
or rejected. To evaluate the partitioning, we use it as input to a Fiduccia-Mattheyses partitioner and see
how much it can be improved by a single pass (if the bin is large enough, we use a multi-level Fiduccia-
Mattheyses partitioner). The intuition is that if the constructed partitioning is not worthy of reuse, a single
Fiduccia-Mattheyses pass could improve its cut non-trivially.1 If the Fiduccia-Mattheyses pass improves the
cut beyond a certain threshold, we discard the solution and bisect the entire bin from scratch. If a partition
is accepted by this criterion, we perform a legality test: if the partitioning overfills a child bin, we discard
the cut-line and bisect from scratch.

1We do not assume that the initial placement was produced by a min-cut algorithm (indeed, some of our experiments use
APlace [22] — an analytical algorithm).
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Input: placement bin, balance constraint
Output: x-coordinate of best cut-line
1 Calculate bounding box of all nets incident to bin
2 Create list of left x-coords of each box, LEFTX
3 Create list of right x-coords of each box, RIGHTX
4 Create list of pairs (center x-coord, cell area)

of cells in the bin, CENTERX
5 Sort all lists in increasing order of x-coord
6 Set CURCUT = 0, BESTCUT = ∞,

BESTX = ∞, LEFTPARTAREA = 0
7 For(X = left edge of bin, X ≤ right edge of bin,

X = X + cell spacing)
8 While(LEFTX not empty)
9 If(first element of LEFTX ≤ X)
10 CURCUT = CURCUT + 1
11 Remove first element from LEFTX
12 Else
13 Break
14 While(RIGHTX not empty)
15 If(first element of RIGHTX ≤ X)
16 CURCUT = CURCUT − 1
17 Remove first element from RIGHTX
18 Else
19 Break
20 While(CENTERX not empty)
21 If(x-coord of first element of CENTERX ≤ X)
22 LEFTPARTAREA = LEFTPARTAREA + cell area
23 Remove first element from CENTERX
24 Else
25 Break
26 If(CURCUT < BESTCUT and

LEFTPARTAREA satisfies balance constraint)
27 BESTCUT = CURCUT
28 BESTX = X
29 Return BESTX

Figure 3: Algorithm for finding the best vertical cut-line from a placement bin. Finding the
best horizontal cut-line is largely the same process. Note that the most runtime intensive
part of the algorithm is sorting the lists of X-coordinates and cell areas. Thus the algorithm
runs in time slightly more than linear in the number of nets incident to the bin.

4.3 Scalability

Pseudo-code for the cut-line location process used by ECO-system is shown in Figure 3. Since a single
Fiduccia-Mattheyses pass takes linear time [16], the asymptotic complexity of our algorithm is most affected
by the sorting procedure on line 5 of Figure 3, which takes O(N logN) time in the size of the input. If we let
N represent the number of nets incident to the bin, C represent the number of cells in the bin and L represent
the number of potential cut-lines in the bin, the cut-line selection process runs in O(N logN +C logC + L)
time. In the vast majority of cases, N > C and N > L, so the runtime estimate simplifies to O(N logN).

The number of bins doubles at each hierarchical layer, until bins are small enough for end-case place-
ment. End-case placement is generally a constant amount of runtime for each bin, so it does not affect
asymptotic calculations. Assume that ECO-system is able to reuse all of the original placement. Since ECO-
system performs bisection, it will have O(logC) layers of bisection before end-case placement. At layer i,
there will be O(2i) bins, each taking O

(

N
2i log

(

N
2i

))

time. This gives a total time per layer of O(N logN).
Factoring in all of the layers gives O(N logN logC), but since N >C we have a total runtime of O(N log2 N).
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Figure 4: Choosing a vertical cut-line from an existing placement during legalization. Nets
are illustrated as red lines. Cells are individually numbered and take 2 or 3 sites each. Cut-
lines are evaluated by a left-to-right sweep (their net cuts are shown at the top). A cut-line
that satisfies partitioning tolerances and minimizes cut is found (thick green line). Cells are
assigned to “left” and “right” according to the center locations.

Empirically, the runtime of the cut-line selection procedure (which includes a single pass of a Fiduccia-
Mattheyses partitioner) is much smaller than partitioning from scratch. On large benchmarks, the cut-line
selection process requires 5% of ECO-system runtime time whereas min-cut partitioners generally require
50% or more of ECO-system runtime.

4.4 Handling Macros and Obstacles

With the addition of macros, the flow of top-down placement usually becomes more complex. We adopt
the style of “floorplacement” from [29, 32]. “Floorplacement” proceeds as traditional placement until a
bin satisfies criteria for block-packing [29, 32]. If the criteria suggest that the bin should be packed rather
than partitioned, a fixed-outline floorplanning instance is induced from the bin where macros are treated
as hard blocks and standard cells are clustered into soft blocks. The floorplanning instance is given to a
Simulated Annealing-based floorplanner to be solved. If macros are placed legally and without overlap,
they are considered fixed. If the solution returned is in some way illegal, the placement bin is merged with
its sibling bin in the top-down hierarchy and that bin is floorplanned. This merging and re-floorplanning
continues until the floorplanning solution is legal.

For our legalization technique, we add a new criterion for floorplanning. If a placement bin has non-
overlapping positions for macros (i.e. no macros in the placement bin overlap each other) we generate a
placement solution for the macros of the bin to be exactly their placements in the initial solution. If some
of the macros overlap with each other, we let other criteria for floorplanning decide. If floorplanning other
than our special form of floorplanning is invoked, we must discard the placement of all cells and macros in
the bin and proceed as described in [32].

During the cut-line selection process, some cut-line locations are considered invalid — namely those
that are too close to obstacle boundaries but do not cross the obstacles. This is done to prevent long and
narrow slivers of space between cut-lines and obstacle boundaries. Ties for cut-lines are broken based on the
number of macros they intersect. This helps to reduce overfullness in child bins allowing deeper partitioning,
which reduces runtime.
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5 Using ECO-system in High-level and Physical Synthesis

We extend the proposed framework to offer users efficient access to the features of incremental placement
described in Sections 3 and 4 as well as provide greater user control and flexibility.

Tunable aggressiveness. ECO-system accepts or rejects derived partitioning solutions based on how
much a single pass of a Fiduccia-Mattheyses partitioner can improve them. If the partitioner improves the
net cut of the more than a threshold percentage, the partitioning solution is rejected. This threshold can be
adjusted by the user so as to prevent ECO-system from performing large changes. If a designer wants ECO-
system to change the placement as little as possible, the improvement threshold can be given as 100%. This
tunable aggressiveness also allows one to adjust the strength of ECO-system legalization to better correlate
with the magnitude of design modifications [21].

Changing net weights. Having a legal placement facilitates more precise static timing analysis and
finding timing-critical nets. To improve timing, weights are increased for nets with smallest slack, and
decreased for non-critical nets. As ECO-system checks if the cut of an induced partitioning solution can be
improved significantly, net weights are naturally integrated into this test. With weighted cut, ECO-system
recognizes instances when replacement is in order due to the sub-optimality of the initial placement.

User-defined locality. ECO-system operates automatically on the given placement and quickly focuses
on sections of overlap. It may be the case that a designer has performed optimization on only a small portion
of the design. Having our algorithm run over the entire design to find this small area is potentially wasteful.
Thus we allow the user or a physical synthesis tool to specify one or more regions of the placement area to
apply legalization.

Satisfying density constraints. A common method for increasing the routability of a design is to inject
whitespace into regions that are congested [4, 23]. One can also require a minimum amount of whitespace
(equivalent to a maximum cell density) in local regions of the design to achieve a similar effect [34]. As
one of ECO-system’s legality checks is essentially a density constraint (checking to see if a child bin has
more cell area assigned to it than it can physically fit), this legality check is easy to generalize. The new
criterion for switching from using the initial placement and partitioning from scratch is based on a child bin
having less than a threshold percent of relative whitespace, which is controlled by the user. Combined with
user-defined locality, this allows a designer to re-tune whitespace allocation to reduce congestion in regions
of the design without affecting whitespace allocation elsewhere.

Placing new cells and macros. The addition of macros, IP blocks and embedded memories to an already
placed netlist can introduce significant overlap. Large modules may need to be fixed due to alignment
constraints and will appear as obstacles. Buffer insertion is also a concern as numerous buffers may need
to be inserted. There are typically few available legal locations for buffer insertion, and, compounding the
problem, buffers must be placed precisely to be effective.

Our current technique can accommodate newly added modules for which tentative initial placements are
given. All a designer would need to do is place new modules roughly where they should go in the core and
ECO-system will find legal positions for them automatically. If new module locations are not known, they
can be found with simple analytical techniques. Specifically, if an unplaced module is connected to several
placed modules, an initial location for the module could be the average location of its neighbors. This does
not work well, however, when a cluster of new logic is added to a design, especially in the presence of macros
and obstacles. For this reason, we develop a technique to place unplaced modules within ECO-system.

To handle new modules separately, one must be able to detect them easily in a design. Some input
formats allow the user to specify modules which are new with the keyword UNPLACED. For other input
formats without such a keyword, ECO-system checks for modules that are placed outside of the core and
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marks them as being unplaced. ECO-system also tests to see if several modules are placed at exactly the
same location which could indicate a cluster of new logic. Modules placed in exactly the same location,
such as a default location like (0,0), are also treated as unplaced.

In each bin, if a cut-line and partitioning are derived, unplaced modules are partitioned with a separate
partitioning call to assign them to child bins. If the derived partitioning is not accepted, unplaced modules
are combined with the old modules, and placement continues from scratch. In this way, unplaced modules
will migrate to good legal locations automatically. As the locations for unplaced modules are chosen based
on current locations of all the modules in the design, the final locations of unplaced modules will likely be
better than ones that were chosen based on the initial placement.

If new modules are introduced into a design and a user defines a region of the placement to work in, there
is some ambiguity in what ECO-system should do with unplaced modules. All unplaced modules could be
placed inside the user-specified region, or ECO-system could determine which of the unplaced modules
would best be placed in the region. Determining which of the unplaced modules belong in a user-specified
rectangular region requires at most four calls to a partitioner (since the region can be carved out with four
geometric cut-lines), so this will still be efficient. To avoid uncertainty, the user is allowed to specify which
behavior is desired.

6 Empirical Results

We implemented ECO-system in the C++ programming language and ran it on 3.2GHz Pentium Xeon
machines. For testing we use two suites of benchmarks. The first suite of benchmarks are the ICCAD
2004 IBM-MSwPins benchmarks: mixed-size netlists with non-trivial macro sizes, aspect ratios and pin
offsets [32]. We placed all of the benchmarks with Capo 10 [32] and chose the best of 2 runs. Next we
randomly resized the standard cells of the benchmark to simulate cell sizing such that the total area of cells
would remain relatively constant. Each standard cell of the design was randomly increased or decreased in
size, but no cell was decreased below the minimum cell size or increased beyond the largest cell size. This
resizing results in the original Capo placement being illegal. The change in cell area and amount of overlap
introduced by the resizing is shown in Table 1.

We believe that the resized benchmarks should have legal placements with HPWL near that of the
original benchmarks since total cell area does not change appreciably. Discussions with colleagues in the
industry point out that cell resizing is affected by a variety of factors, which are not as random as in our
experiments. On the other hand, our technique is similar to real resizing in that it creates local areas of high
cell overlap and is reasonable. On average, our resizing introduces 9% overlap by cell area (and more when
there are fixed obstacles in the design) which is greater than what’s typically observed while resizing VLSI
circuits.

We compare ECO-system to the legalizer of Capo 10 and the results are summarized in Table 1. The
Capo legalizer runs quickly and produces legal placements, but it increases HPWL by 3.93% on average.
ECO-system takes less than 14% of the original placement time, and only increases HPWL by 0.10% on
average. We have also varied the amount of overlap introduced into these benchmarks by reducing the
number of cells affected by our sizing. We find that HPWL is relatively unaffected (HPWL generally
changes by less than 0.5%) by increasing amounts of overlap for these designs.

The second set of benchmarks are from the ISPD 2005 Placement Contest [28]. They are a standard cell
benchmark suite with non-trivial fixed obstacles throughout the placement area [28]. Example placements of
the benchmark adaptec3 are show in Figure 5. In testing, we placed all of the benchmarks with APlace 2.04
[22] (the winning placer of the contest). Next, we randomly resized the standard cells of the benchmark in
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Area Orig. Orig. Capo 10 Legalizer [32] ECO-systemBenchmark Ratio Time (s) HPWL (e6) Overlap Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio
ibm01 0.9982 248 2.48 7.35% 1.27 2.57 1.0371 37.4 2.46 0.9913
ibm02 1.0008 463 5.12 5.56% 2.15 5.28 1.0328 65.6 5.11 0.9974
ibm03 1.0011 661 7.58 5.83% 15.9 7.99 1.0543 130 7.56 0.9978
ibm04 0.9990 728 8.61 8.13% 11.3 9.03 1.0482 135 8.65 1.0046
ibm05 1.0017 593 10.14 13.54% 0.13 10.25 1.0114 110 10.20 1.0057
ibm06 1.0018 846 6.78 7.36% 10.5 7.10 1.0469 123 6.81 1.0046
ibm07 0.9997 1213 11.63 9.61% 16.4 12.16 1.0455 167 11.65 1.0016
ibm08 1.0029 1492 13.42 8.50% 7.36 13.73 1.0232 192 13.49 1.0048
ibm09 1.0025 1492 14.96 8.14% 14.8 16.06 1.0732 249 14.91 0.9966
ibm10 0.9997 2476 31.79 4.53% 119 32.62 1.0260 384 31.38 0.9871
ibm11 0.9993 2067 21.43 8.48% 26.3 22.56 1.0529 317 21.50 1.0031
ibm12 0.9996 2903 38.52 5.91% 50.6 39.20 1.0175 345 37.63 0.9768
ibm13 1.0014 2667 27.30 7.94% 55.3 28.61 1.0478 494 27.35 1.0018
ibm14 1.0002 4954 40.00 13.49% 38.3 41.67 1.0417 594 40.45 1.0113
ibm15 1.0016 6241 53.72 10.85% 63.1 56.48 1.0514 1288 54.48 1.0142
ibm16 0.9997 7232 61.12 9.19% 36.2 62.74 1.0264 734 61.08 0.9993
ibm17 0.9987 7558 70.52 14.09% 36.0 73.09 1.0365 807 71.09 1.0081
ibm18 1.0017 6897 46.46 15.91% 13.7 48.11 1.0354 733 47.05 1.0128

Average 1.0005 1.0393 1.0010

Table 1: Results of overlap legalization caused by cell resizing on the IBM-MSwPins bench-
marks [32]. “Area Ratio” represents the change in total cell area after resizing. Overlap is
measured as a percentage of the total movable cell and macro area in the benchmark. Time is
measured in seconds. ECO-system requires significantly more runtime than the Capo 10 le-
galizer [32], and approximately 14% of the original placement time by Capo 10. ECO-system
increases HPWL by 0.10% on average while the Capo 10 legalizer increases HPWL by 3.93%.

Bench # Mov. # Fixed Design
mark Objects Objects # Nets # Pins Util.

adaptec1 210904 543 221142 944053 57.34%
adaptec2 254457 566 266009 1069482 44.32%
adaptec3 450927 723 466758 1875039 33.66%
adaptec4 494716 1329 515951 1912420 27.23%
bigblue1 277604 560 284479 1144691 44.67%
bigblue2 534782 23084 577235 2122282 37.94%
bigblue3 1095519 1293 1123170 3833218 56.68%
bigblue4 2169183 8170 2229886 8900078 44.35%

Table 2: Benchmarks from the ISPD 2005 Placement Suite [28].

the same way as the IBM-MSwPins benchmarks. The change in cell area and amount of overlap introduced
by the resizing is shown in Table 3. Legal placements of the resized benchmarks should have HPWL near
that of the originals due to nominal change in cell area, as described above.

A comparison of ECO-system to the legalizer of Capo 10 is summarized in Table 3. The Capo legalizer
runs 40% faster than ECO-system, but increases HPWL by 4.28% on average. ECO-system takes 14% of
the original placement time, and decreases HPWL by 0.80%. Figure 5 depicts the benchmark adaptec3
before cell resizing and after legalization with ECO-system. The placement from ECO-system is similar
to the original placement produced by APlace 2.04 and does not move the majority of cells far from their
original locations. The average displacement per cell is 0.3% of the half-perimeter of the design. Only 2.7%
of the cells have nontrivial displacements.

Lastly, we compare ECO-system to the APlace 2.04 legalizer on global placements from APlace 2.04
on the ISPD05 Contest benchmarks. Results are summarized in Table 4. Analytical placement techniques
generally produce a significant amount of overlap on the contest benchmarks because of the numerous
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Area Orig. Orig. Capo 10 Legalizer [32] ECO-systemBenchmark Ratio Time (s) HPWL (e6) Overlap Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio
adaptec1 1.0004 9403 83.87 18.17% 1020 88.81 1.0589 1627 84.27 1.0047
adaptec2 1.0012 9978 87.31 16.83% 1246 91.48 1.0477 1731 88.89 1.0181
adaptec3 1.0004 26937 231.17 17.37% 3090 240.44 1.0401 4579 225.12 0.9738
adaptec4 1.0005 29266 187.65 16.81% 1775 194.89 1.0386 3741 189.92 1.0121
bigblue1 1.0005 10752 101.96 15.62% 1.6 104.77 1.0276 1421 101.72 0.9976
bigblue2 0.9994 27902 159.08 16.15% 1238 164.21 1.0322 5064 158.31 0.9952
bigblue3 0.9999 69498 414.29 15.69% 4169 445.95 1.0764 11083 391.35 0.9446
bigblue4 1.0006 118741 884.39 15.58% 953 903.81 1.0220 13501 876.89 0.9915
Average 1.0004 1.0428 0.9920

Table 3: Results of overlap legalization caused by cell resizing on the ISPD05 Contest bench-
marks [28]. “Area Ratio” represents the change in total cell area after resizing. Overlap is
measured as a percentage of the total movable cell area in the benchmark. Time is measured
in seconds. ECO-system usually requires 60% more runtime than the Capo 10 legalizer [32],
and 14% of the original placement time by APlace 2.04 [22]. ECO-system decreases HPWL
by 0.80% on average while the Capo 10 legalizer increases HPWL by 4.28%.

fixed obstacles in the core region. This can be seen in Table 4 as the APlace 2.04 global placements have
approximately 30% or more overlap in terms of movable cell area. During legalization, APlace 2.04’s
legalizer generally increases HPWL by 4.91% while our legalizer produces an increase of only 3.67% on
average. In addition, ECO-system is 3x faster than APlace’s legalizer on these benchmarks.

We do not report results for FengShui 5.0 and 5.1 [5] because these tools crashed in several contest
benchmarks. Detail placement in FengShui is based on one-sided packing, which is known to fair poorly in
the presence of obstacles and large amounts of whitespace. The same holds for the DOMINO [14] tool from
TU Munich. mPL4 [8] overlapped fixed objects, but we hope to experiment with mPL6. We would also like
to compare ECO-system with flow- and diffusion-based techniques [6, 26, 31], but source code or binaries
are generally not available and descriptions leave out relevant details for good implementations.

7 Conclusions

Our main contribution is ECO-system — an algorithmic framework designed to interface a wide variety
of circuit optimizations with their physical environment. This framework offers, for the first time in the
literature, a strong and robust legalizer that can handle a broad range of modern placement instances with
movable macros, fixed obstacles, etc. ECO-system automatically focuses on regions of the layout and
sections of the netlist that require changes, and performs optimization of adequate strength in each case.
ECO-system can be combined with an external global placer invoked when particularly large changes are
required. It can also be used in incremental re-synthesis, in high-level and physical synthesis optimizations,
and several other contexts.

ECO-system includes all detail placement methods implemented in Capo [29,32–34], and can similarly
be grafted onto other top-down placers, such as BonnPlace [37], PolarBear [12] or NTUPlace [20], by
performing a one-pass Fiduccia-Mattheyses test. ECO-system can act like the WSA technique [23], and
can invoke any black-box global placement algorithm when it decides that a particular bin must be replaced
from scratch.

The definitive success of ECO-system in legalizing APlace placements (Table 4) allows to answer a long-
standing question in placement — whether the slicing structure of min-cut placements costs them HPWL.
Given that the placements produced by ECO-system are largely slicing, the answer appears negative.
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Orig. Illegal APlace 2.04 Legalizer [22] ECO-systemBenchmark Time (s) HPWL (e6) Overlap Time (s) HPWL (e6) Ratio Time (s) HPWL (e6) Ratio
adaptec1 7569 81.05 34.74% 1346 83.87 1.0348 1730 84.84 1.0467
adaptec2 6062 94.22 47.25% 2543 101.64 1.0788 2042 99.47 1.0558
adaptec3 15849 211.13 47.12% 11495 231.17 1.0949 4500 227.32 1.0767
adaptec4 15404 197.24 36.78% 15271 206.23 1.0456 4132 203.24 1.0304
bigblue1 8265 100.51 28.53% 2486 101.96 1.0144 1804 105.14 1.0461
bigblue2 13650 154.51 30.15% 14252 159.08 1.0296 5183 156.63 1.0137
bigblue3 30624 385.40 41.06% 38873 414.29 1.0750 13708 388.46 1.0079
bigblue4 61932 865.03 32.01% 56809 884.39 1.0224 14910 881.04 1.0185
Average 1.0491 1.0367

Table 4: Results of overlap legalization of APlace 2.04’s [22] global placements of the
ISPD05 Contest benchmarks [28]. Overlap is measured as a percentage of the total
movable cell area in the benchmark. Time is measured in seconds. In each of the bench-
marks, ECO-system produces legal solutions with nearly the same or better HPWL than
APlace 2.04’s legalizer. On average, APlace’s legalizer increases HPWL by 4.91% on
these benchmarks while ECO-system increases HPWL by only 3.67% with better wire-
length on 6 of the 8 placements. ECO-system is faster on 7 of the 8 benchmarks and 3x
faster than APlace’s legalizer overall.

We have analyzed requirements for an ECO placement tool and implemented an interface based on
ECO-system applicable to high-level and physical synthesis, allowing the designer to add and remove nets
and cells from a design, reallocate whitespace, resize cells and re-weight nets while retaining control of the
amount of change performed by ECO-system.

Even though ECO-system is robust and scalable, it may be excessive for minor design changes. A
number of additional techniques can make ECO-system more flexible. One such technique is a floorplan
repair algorithm which can replace Simulated Annealing when macros overlap [27]. Other ongoing work
focuses on evaluating the impact of ECO-system on timing and congestion.
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Before Resizing HPWL = 231.2e6 Top 2.7% cell displacements due to ECO-system Postprocessed by ECO-system HPWL = 225.1e6

Figure 5: When applied to a resized netlist, ECO-system produces a placement (right) sim-
ilar to the original placement (left). Fixed objects are outlined in double black lines, and
standard cells are blue. The largest cell displacements are shown in red (center). For a dis-
placement to be shown, it must be larger than 1.5% of the half-perimeter of the design which
is true for only 2.7% of the movable cells of the design. The average displacement is 0.3%
of the half-perimeter of the design. As one can see, the majority of the large displacements
form around the corners of the large, fixed obstacles. Many of these large displacements
appear to be clustered, indicating small groups of modules transported to another region of
the core or spread to accommodate area increases.
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