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Abstract
Physical synthesis is a relatively young field in Electronic Design Automation. Many published op-

timizations for physical synthesis and timing-driven placement end up hurting the final result, often by
neglecting important physical aspects of the layout, such as long wires or routing congestion. Our work
defines and explores the concepts of physical safeness and logical soundness, and empirically evaluates
the effects of physical safeness on route length, via count and timing. In addition, we propose a new
physically safe and logically sound optimization, SafeResynth, which provides immediately-measurable
improvement without altering the design’s functionality. It can enhance circuit timing without detri-
mental effects on route length and congestion. We achieve these improvements by performing a series
of netlist transformations and re-placements that are individually evaluated for logical soundness (us-
ing on-line verification) and physical safeness. When used alone, SafeResynth improves circuit delay
of IWLS’05 benchmarks by 11% on average after routing, while increasing route length by less than
0.2%. Our resynthesis can also be used in an unsafe mode, akin to more traditional physical synthesis
algorithms popular in commercial tools. Applied together, our safe and unsafe transformations achieve
24% average delay improvement for seven large benchmarks from the OpenCores suite, which we show
to be orthogonal to improvement from timing-driven placement.

1 Introduction

Timing optimization of digital logic is gaining importance with each technology step, as interconnect con-
tributes a larger fraction of critical-path delay due to its poor scaling. Since accurate timing information can
only be obtained after the circuit is placed, post-placement timing optimization has been studied extensively.
Most techniques either modify the logic or change the physical aspects of the circuit [9]. Physical solutions
include net buffering, gate sizing [15] and gate relocation [1]. Logical solutions include gate replication [12],
rewiring [6, 7] and restructuring [5, 17, 20, 24]. Techniques based on a placement or routing with the goal to
improve timing are often called physical synthesis.

A number of previous works on physical synthesis do not provide an overall improvement because when
optimizing one aspect of the design, they may damage other aspects. For example, uncontrollable logic
cloning may increase area and route length, making critical nets longer than expected during placement and
routing [12]. Indiscriminate buffering may also create many gate overlaps, leading to potentially detrimental
effects on circuit timing when overlaps are resolved [18]. A number of related publications that try to solve
this problem are now available. For example, Li et al. [18] proposed an incremental placement algorithm
which maintains the stability of a placement for gate sizing and buffer insertion, while Luo et al. [21] and
Brenner et al. [3] addressed this problem by designing legalizers that seek to preserve performance metrics.

Timing-driven placement also suffers similar stability problems. In particular, optimization in place-
ment often increases routing congestion around timing-critical nets. While published papers typically report
timing estimates before routing, critical nets often detour during routing, thus aggravating performance
compared with traditional placement. Timing-driven placement also tends to be unpredictable for reasons
specific to placement algorithms. To this end, it is not uncommon for commercial place-and-route tools to
produce better results when the timing-driven mode is disabled. In practice, the best bet to improve tim-
ing of a particular design is to try as many timing-driven and non-timing-driven tools as possible. As the
empirical results in [13, 14] suggest, no placer – commercial or academic – dominates on all benchmarks.

In our work we define and explore physically safe and logically sound netlist transformations — those
that provide immediately-measurable delay improvement and immediately-verifiable correctness on every
step. As seen from our empirical results, these transformations produce more predictable improvements
without detrimental effects on other circuit parameters. In addition, they do not conflict with any existing
design flows, are orthogonal to timing-driven placement, and can be used after unsafe transformations. In
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the past, safe transformations have been largely neglected because they offered very little improvement [6].
However, the amount of improvement depends entirely on the set of available transformations, and our em-
pirical results suggest that safe transformations may improve upon unsafe resynthesis. Another contribution
of our work is a new approach to finding such transformations, called SafeResynth, based on simulation and
iterative equivalence checking. By broadening the set of transformations and applying them in a safe way,
we show that circuit delay can be improved considerably with very little risk of destabilizing an existing
design flow or hampering timing closure, a common problem with new ideas in physical synthesis. Figure
1 shows two examples of our optimizations. In Figure 1(a), the signal that drives g8 is resynthesized using
gates located closer to it, and a new gate is added to replace the old one. In Figure 1(b), one gate (g8) orig-
inally driven by g6 uses gate new as its new source, while the other gate (g1) is still driven by g6. None of
the new gates overlap with old gates, and they are placed in previously-unused locations. Empirical results
(in Table 2) show that our technique can improve delay by 11% while route length and via count increase
by less than 0.2%.

(a) (b)
Figure 1: Example transformations for row-based standard-cell layout: (a) resynthesized gate new replaces
g6 to drive g8, (b) gate cloning uses resynthesized gate new to drive g8, while the original driver g6 continues
to drive g1.

The rest of this paper is organized as follows. In Section 2 we describe the concepts of physical safe-
ness and logical soundness, and then review previous work on physical synthesis. We then propose a new
powerful, safe and sound timing optimization approach in Section 3. Several aspects of our technique are
analyzed in Section 4. Experimental results are reported in Section 5, and Section 6 concludes this paper.

2 Safeness and Soundness of Physical Synthesis Techniques

Existing techniques for post-placement timing optimization vary in strength and differ in how they affect
logic and gate locations [9]. We use the term “physical safeness” to describe their impact on placement and
“logical soundness” to describe their impact on logic. In this section, we first describe safeness and sound-
ness in detail. After that, we introduce several physical synthesis techniques and analyze their optimization
capabilities and safeness.

2.1 Physical Safeness and Logical Soundness
The concept of physical safeness is used to describe the impact of an optimization technique on the place-
ment of the circuit. Physically safe techniques only allow legal changes to the placement, therefore accurate
analysis such as timing and congestion can be performed. Such changes are safe because they can be re-
jected immediately if the layout is not improved. On the other hand, unsafe techniques allow changes that
produce a temporarily illegal placement. As a result, its evaluation is delayed, and we cannot reliably accept
or reject the change. Therefore, the average quality of unsafe changes may be worse than that of accepted
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safe changes. In addition, other physical parameters, such as via count, may be impacted by unsafe trans-
formations, as can be seen from Table 6.

Similar to physical safeness, logical soundness is used to describe the perturbation to the logic made
by the optimization techniques. Techniques that do not change the logic usually do not require verification.
Examples for this type of optimization include gate sizing and buffer insertion. Techniques that change the
logic of the circuit may require verification to ensure their correctness. For example, optimizations based on
reconnecting wires require verification because any bug in the optimization process may change the circuit’s
behavior. Since local changes to combinational logic can be verified easily using SAT, they are considered
logically sound. However, small changes to sequential logic often have global implications and are much
more difficult to verify, therefore we do not classify them as logically sound techniques. These techniques
include the insertion of clocked repeaters and the use of retiming.

2.2 Physically Safe Techniques
Symmetry-based rewiring is the only timing optimization technique that is physically safe in nature. It
exploits symmetries in logic functions, looking for pin reconnections that improve timing [6]. For example,
the inputs to an AND gate can be swapped without changing its logic function. Since only wiring is changed
in this technique, the placement is always preserved. An example of symmetry-based rewiring is given in
Figure 2(a).

The advantage of physically safe techniques is that the effects of any change are immediately measur-
able, therefore the change can be accepted or rejected reliably. As a result, delay will not deteriorate after
optimization and no timing convergence problem will occur. However, the improvement gained from these
techniques is often limited because they cannot aggressively modify the logic or use larger-scale optimiza-
tions. For example, in [6] timing improvement measured before routing is typically less than 10%. To
this end, our experimental results in Section 5 show that post-routing timing improvements may not match
pre-routing results and must be evaluated directly.

2.3 Physically Unsafe Techniques
Traditional physical synthesis techniques are physically unsafe because they create cell overlaps and thus
prevent immediate evaluation of changes. Although some of these techniques can be applied in a safe way,
they may lose their strength. Therefore existing physical synthesis tools usually rely on unsafe techniques
and fix the newly-created problems later on. These techniques and their impact on logic are discussed below.

Gate sizing and buffer insertion are two important techniques that do not change the logic, as shown in
Figure 2(b) and Figure 2(d). Gate sizing chooses the sizes of the gates carefully so that signal delay in wires
can be balanced with gate delay, and the gates have enough capability to drive the wires. Buffer insertion
adds buffers to drive long wires. The work by Kannan et al. [15] is based on these techniques.

Gate relocation moves gates on critical paths to better locations and also does not change the logic.
An example of gate relocation is given in Figure 2(c). Ajami et al. [1] utilize this technique by performing
timing-driven placement with global routing information using the notion of movable Steiner points, and
they formulate the simultaneous placement and routing problem as a mathematical program. The program
is then solved by Han-Powell method.

Gate replication is another technique that can optimize timing without changing the logic. Take Figure
2(e) for example, by duplicating g5, the delay to g1 and g9 can be reduced. Hrkic et al. [12] proposed a
placement coupled approach based on such technique. Given a placed circuit, they first extract replication
trees from the critical paths after timing analysis, and then they do embedding and post-unification to de-
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termine the gates that should be duplicated and their locations. Since duplicated gates may overlap some
existing gates, timing-driven legalization is applied at the end. Although their approach improves timing by
1-36%, it also increases route length by 2-28%.

(a) Symmetry-based rewiring. (b) Gate sizing.

(c) Gate relocation. (d) Buffer insertion.

(e) Gate duplication.

Figure 2: Physical synthesis techniques. Newly-introduced overlaps are removed by legalizers.

Traditional rewiring techniques based on addition and removal of redundant wires are not physically
safe. The basic idea is to add one or more redundant wires to make a target wire redundant so that it becomes
removable. Since gates must be changed to reflect the changes in wires, overlap of cells may occur. The work
by S. C. Chang utilizes this technique based on an ATPG (Automatic Test Pattern Generation) reasoning
mechanism [7].

Optimization techniques discussed so far can be made physically safe by rejecting all changes that create
new overlaps. For example, this would allow inserting buffers only in overlap-free sites. However, the
prevailing practice for these and many other optimizations is to first allow overlaps and then call a legalizer
to fix overlaps. According to our definition, this is physically unsafe. In other words, depending on how
many overlaps are introduced, how powerful and how accurate the legalizer is, the physical parameters of
the circuit may improve or deteriorate.

Traditional restructuring focuses on directing the synthesis process using timing information obtained
from a placed or routed circuit. It is more aggressive in that it will change the logic structure as well as
placement. This technique reflects the fact that timing-driven synthesis requires accurate timing, which
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can only be obtained from a placed circuit. However, a circuit cannot be placed unless it is synthesized.
Restructuring tries to bridge the gap between these two different stages in circuit design.

A typical restructuring flow includes: (1) obtaining accurate timing analysis results from placed or
routed design, (2) identifying critical paths, (3) selecting gates from critical paths to form critical regions,
(4) performing timing-driven resynthesis on the critical regions, and (5) calling legalizers to remove gate
overlaps that may be created during the process. This process is repeated until timing closure is achieved.
The works by Lu et al. [20], Vaishnav et al. [24] and Changfan et al. [5] are all based on this flow with
emphasis on different aspects. For example, the work by Vaishnav focuses on eliminating late-arriving
events identified by symbolic simulation, while Changfan analyzes effects of routing on timing and utilizes
them in his resynthesis and incremental placement engines.

Traditional restructuring is usually physically unsafe. For example, evaluation of new cell locations can-
not be done reliably for technology-independent restructuring unless technology mapping is also performed.
Moreover, restructuring techniques based on AIGs are likely to be unsafe because node mergers performed
in an AIG may distort a given placed circuit [25]. As a result, the effects of the changes are not immediately
measurable. In other words, the delay after optimization may be worse than before. Although carefully
designed techniques can be used to alleviate this problem [17, 18, 21], it is difficult to eliminate altogether.
The strength and safeness of these techniques are summarized in Table 1.

Techniques Physical Optimization
safeness strength

Symmetry-based rewiring Safe Low
Our work Safe Medium
ATPG-based rewiring, buffer insertion, Unsafe∗ Low
gate sizing, gate relocation
Gate replication Unsafe∗ Medium
Restructuring Unsafe High

Table 1: Comparison of physical safeness and optimization strength of different techniques. Low strength
means only local optimization is possible, high strength means large scale optimization is possible, and
medium strength is in between. ∗Note: some techniques can be made safe but popular implementations
allow gate overlap and are unsafe.

3 A New Powerful, Safe and Sound Physical Synthesis Approach

Our safe physical synthesis approach, SafeResynth, is discussed in detail in this section. It uses signatures
produced by simulation to identify potential resynthesis opportunities, whose correctness is then verified by
equivalence checking [25]. Since our goal is layout optimization, we can prune some of the opportunities
based on their promise before formally verifying them since verification is relatively slow. To this end,
we propose pruning techniques based on physical constraints and logical compatibility among signatures.
SafeResynth is powerful in that it does not restrict resynthesis to small geometric regions or small groups of
adjacent wires. It is safe because the produced placement is always legal and the delay improvement can be
evaluated immediately.
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3.1 Terminology
We define a signature as a bit-vector of simulated values of a wire. Given the signature st of a wire wt to
be resynthesized, and a certain gate g1, a wire w1 with signature s1 is said to be compatible with wt if it
is possible to generate st using g1 with signature s1 as one of its inputs. In other words, it is possible to
generate wt from w1 using g1. For example, if s1 = 1, st = 1 and g1 = AND, then w1 is compatible with wt
using g1 because it is possible to generate 1 on an AND’s output if one of its inputs is 1. However, if s1 = 0,
then w1 is not compatible with wt using g1 because it is impossible to obtain 1 on an AND’s output if one of
its inputs is 0 (see Figure 5).

A controlling value of a gate is the value that fully specifies the gate’s output when applied to one input
of the gate. For example, 0 is the controlling value for AND because when applied to the AND gate, its
output is always 0 regardless of the value of other inputs. When two signatures are incompatible, that can
often be traced to a controlling value in some bits of one of the signatures.

3.2 SafeResynth Framework

Figure 3: A restructuring example. Input vectors to the circuit are shown on the left. Each wire is annotated
with its bit-signature computed by simulation on those test vectors. We seek to compute signal w1 by a
different gate, e.g., in terms of signals w2 and w3. Two such restructuring options (new gates) are shown
as gn1 and gn2. Since gn1 produces the required signature, equivalence checking is performed between wn1
and w1 to verify the correctness of this restructuring. Another option, gn2, is abandoned because it fails our
compatibility test.

The SafeResynth framework is given in Figure 4, and an example is given in Figure 3. Initially, library
contains all the gates to be used for resynthesis. We first generate a signature for each wire by simulating
certain input patterns, whose selection will be discussed in detail in Section 3.4. In order to optimize timing,
wiret in line 2 will be selected from wires on the critical paths in the circuit. Line 3 restricts our search of
potential resynthesis opportunities according to certain physical constraints, and lines 4-5 further prune our
search space based on logical soundness. After a valid resynthesis option is found, we try placing the gate
on various overlap-free sites close to a desired location in line 6 and check their timing improvements. In
this process, more than one gate may be added if there are multiple sinks for wiret , and the original driver
of wiret may be replaced. We only call equivalence checking when we found certain changes that improve
timing because formal verification is time-consuming. In line 10 we remove redundant gates and wires that
may appear because wire′t s original driver may no longer drive any wire, which often initiates a chain of
further simplifications.
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1. Simulate patterns and generate a signature for each wire.
2. Determine wiret to be resynthesized and retrieve wiresc from

the circuit.
3. Prune wiresc according to physical constraints.
4. Foreach gate ∈ library with inputs selected from combinations

of compatible wires ∈ wiresc.
5. Check if wiret ’s signature can be generated using gate with its

inputs’ signatures. If not, try next combination.
6. If so, do restructuring using gate by placing it on overlap-free

sites close to the desired location.
7. If timing is improved, check equivalency. If not equivalent,

try next combination of wires.
8. If equivalent, a valid restructuring is found.
9. Use the restructuring with maximum delay improvement for

resynthesis.
10. Identify and remove gates and wires made redundant by resyn-

thesis.
Figure 4: The SafeResynth framework.

3.3 Search-Space Pruning Techniques
In order to resynthesize a target wire (wiret ) using an n-input gate in a circuit containing m wires, the brute
force technique needs to check

(m
n
)

combinations of possible inputs, which can be very time-consuming for
n > 2. Therefore it is important to prune the number of wires to try.

When the objective is to optimize timing, the following physical constraints can be used in line 3 of
the framework: (1) wires with arrival time later than that of wiret are discarded because resynthesis using
them will only increase delay, and (2) wires that are too far away from the sinks of wiret are abandoned
because the wire delay will be too large to be beneficial. We set this distance threshold to twice the HPWL
(Half-Perimeter Wirelength) of wiret .

In line 4 logical compatibility is used to prune the wires that need to be tried. Wires not compatible with
wiret using gate are excluded from our search. Figure 5 summarizes how compatibilities are determined
given a gate type, the signatures of wiret and the wire to be tested (wire1).

Gate type wiret wire1 Result
NAND 0 0 Incompatible
NOR 1 1 Incompatible
AND 1 0 Incompatible
OR 0 1 Incompatible

XOR/XNOR Any Any Compatible
Figure 5: Conditions to determine compatibility: wiret is the target wire, and wire1 is the potential new input
of the resynthesized gate.
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To accelerate compatibility testing, we use the “one-count”, i.e., the number of 1s in the signature, to
filter out unpromising candidates. For example, if gate==OR and the one-count of wiret is smaller than that
of wire1, then these two wires are incompatible because OR will only increase one-count in the target wire.
This technique can be applied before bit-by-bit compatibility test to detect incompatibility faster.

Our pruned search algorithm that implements lines 4-5 of the framework is outlined in Figure 6. The
algorithm is specifically optimized for two-input gates but can be extended to gates with more than two in-
puts. Wiret is the target wire to be resynthesized, wiresc are wires selected according to physical constraints,
and library contains gates used for resynthesis. All wires in the fanout cone of wiret are excluded in the
algorithm to avoid formation of combinational loops.

Function pruned search(wiret ,wiresc, library)
1 foreach gate ∈ library
2 wiresg = compatible(wiret ,wiresc,gate);
3 foreach wire1 ∈ wiresg
4 wiresd = get potential wires(wiret ,wire1,wiresg,gate);
5 foreach wire2 ∈ wiresd
6 Restructure using gate, wire1 and wire2;

Figure 6: The pruned search algorithm.

In Figure 6, function compatible returns wires in wiresg that are compatible with wiret given gate.
Function get potential wires returns wires in wiresd that are capable of generating the signature of wiret
using gate and wire1, and its algorithm is outlined in Figure 7. For XOR/XNOR, the signature of the other
input can be calculated directly, and wires with signatures identical to that signature are returned using the
signature hash table. For other gate types, signatures are calculated iteratively for each wire (denoted as
wire2) using wire1 as the other input, and the wires that produce signatures which match wire ′t s are returned.

Function get potential wires(wiret ,wire1,wiresg,gate)
1 if gate == XOR/XNOR
2 wiresd= sig hash[wiret .signature XOR/XNOR

wire1.signature];
3 else
4 foreach wire2 ∈ wiresg
5 if wiret .signature ==

gate.evaluate(wire1 .signature,wire2 .signature)
6 wiresd ← wiresd ∪wire2;
7 return wiresd;

Figure 7: Algorithm for function get potential wires. XOR/XNOR is considered separately because the
required signature can be calculated uniquely from wiret and wire1.

The effectiveness of our search-space pruning techniques is supported by our empirical results. For
example, in the worst case (MEM CTRL) 7,560 equivalence checking steps are performed during resynthe-
sis. However, it is far smaller than the number of resynthesis options in the search space (about 1 billion),
indicating that our techniques are effective in pruning unpromising resynthesis opportunities.
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3.4 Implementation Insights
In our implementation, we select desired locations for placing the restructured gates with the following
criterion: the first 200 overlap-free slots closest to the Center Of Gravity (COG) of the new gate’s input
and output wires’ COG. Although better initial guesses may exist for desired locations than the COG, they
are not necessary because a fairly large number of valid locations will be evaluated rigorously. As a result,
having an extremely accurate initial guess is not necessary to find the actual best location.

The performance of our algorithm is greatly influenced by the quality of the signatures generated by sim-
ulation. Poor signatures cannot distinguish many different wires and require additional calls to equivalence-
checking. On the other hand, potentially resynthesizable wires can usually be distinguished from those
not resynthesizable if their signatures are different. In light of this, we enhanced the FRAIG package in
ABC [25] to dump its patterns and use them for our initial simulation. The purpose of the patterns in ABC is
to distinguish different nodes in the AIG (And-Inverter Graphs) netlist built from the circuit, therefore they
are also suitable for generating signatures that can distinguish different wires. In particular, if the FRAIG
package is run with infinite backtrack limit, at least one simulation vector will exist to distinguish every
two nodes. Currently, FRAIGs first simulate 2048 random patterns. Next, they append the counterexamples
returned during equivalence checking and their variants as additional simulation patterns.

Despite our efforts to generate high-quality signatures, ill-behaved signatures still exist and may render
our simulation-based techniques ineffective. For example, a wire with an all-1 signature can generate a
target wire with an all-1 signature using any wire through an OR gate. The same happens to NOR, AND
and NAND gates, but not to XOR and XNOR gates. This problem arises because the gate being tried is
controlled by one of its inputs. When this happens, only equivalence checking can verify the correctness of
resynthesis involving the ill-behaved wire. Needless to say, most such resynthesis opportunities are invalid,
making the time spent to verify them worthless. Therefore in our implementation, we abandon resynthesis
opportunities with the number of uncontrolled bits (bits in the signature with non-controlling value of the
gate) smaller than 4, making sure that simulation-based techniques have enough chance to prune impossible
combinations of wires.

4 Analysis of Our Approach

Several aspects of our approach are discussed in this section, including its scalability, optimization power,
safeness, advantages and limitations.

Scalability: Suppose that there are m wires in the circuit and g n-input gates are used for resynthesis,
then the worst case time complexity of our resynthesis algorithm is on the order of g×mn if n ≤ m/2.
However, by using physical constraints and logical pruning techniques, as well as several other heuristics,
the time complexity is reduced significantly in practice. From our experimental results, we observe that the
runtime is somewhere between linear and quadratic for n = 2. For example, a netlist with almost 100K nets
can be resynthesized in 24 minutes (the largest benchmark in Table 2).

Aside from runtime, the use of signatures instead of other logic representations, such as BDDs, makes
our approach more scalable in terms of memory usage. For example, comparable methods to find resynthesis
opportunities in [11, 19] are evaluated for at most 5K gates at a time, whereas our techniques typically
handle 100K-gate circuits in minutes. Commercial tools often use BDDs but achieve scalability by means
of (i) netlist partitioning, and (ii) restricting logic optimization to small windows. To this end, our main
contribution is a relatively simple framework that is fast and naturally scales to large designs without netlist
partitioning or windowing.
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Optimization Power and Safeness: Our resynthesis technique tries to reproduce a signal using gates in
the library with new inputs selected from the whole circuit, therefore it is essentially a form of technology
mapping. Since the selection is not limited by small windows like in previous restructuring techniques [5],
it is capable of finding optimizations that are long-range. Furthermore, complete controllability don’t-
cares are automatically utilized in our techniques by construction, while no explicit don’t-care computations
[22] are required. These don’t-cares also give our technique more optimization power to find restructuring
opportunities.

When we try to resynthesize a wire, we are either trying to remove a gate and drive all the relevant sinks
by a new gate or to speed up the propagation of the signal to the sinks of the wire. The former case subsumes
simple gate relocation, gate relocation that simultaneously changes gate type, and also several types of
traditional restructuring. The latter case subsumes single-gate logic replication, including the possibility of
gate relocation and changing the gate type immediately after cloning.

All our transformations are physically safe in that no gates will be overlapped by our optimization. They
also have limited effect on congestion because gates may be removed after each transformation, making
white-space almost equal or even better after resynthesis. Furthermore, it is easy to veto transformations
that violate designer-specified constraints or worsen designer-specified quality metrics, e.g., involve wires
crossing obstacles, increase gate area or aggravate routing congestion. By making sure that every transfor-
mation improves major quality metrics without introducing new violations, we ensure that our resynthesis
techniques are physically safe. On the other hand, by subsuming and generalizing several existing tech-
niques they achieve considerable strength in practice.

Advantages and Limitations: In summary, the advantages of the resynthesis approach proposed in-
clude:
• The number of physical violations does not increase, and major physical parameters are not worsened.

Furthermore, the correctness of logic is guaranteed. As a result, it is physically safe and logically
sound.

• Long-range optimizations can be considered, and complete controllability don’t-cares are exploited.
• Gate relocation and replication techniques can be subsumed whenever beneficial.
• A form of physically-safe technology mapping is included.
• Our experimental results show a 11% delay improvement as measured after routing with less than

0.2% increase in route length and via count on average (see Table 2), which confirms that our tech-
nique is both powerful and safe.

We observed that our technique does not improve standard arithmetic circuits because they are already
heavily optimized. Nonetheless, our technique can be very helpful for large netlists automatically synthe-
sized from HDL descriptions.

5 Experimental Results

We implemented our techniques in C++ including a simple incremental Static Timing Analysis (STA) engine
for our experiments. In our benchmarks, gate delays range from 0.025ns to 0.15ns, the unit capacitance is
131.53pF/m and unit resistance is 337KΩ/m. The driver resistance ranges from 2.5KΩ to 10KΩ, and the
port capacitance is 0.0149pF . These parameters are based on a 0.18µm technology library, and we expect
greater improvements as wire delays become more significant in newer technologies. We use three net delay
models. The star model from [23] applies Elmore formulas to a star topology with the star point placed
at the center of gravity of all pins. Other models use the D2M formulas from [2], and we apply them to
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Figure 8: Flow chart of our resynthesis experiments.

Rectilinear Steiner Minimal Trees (RSMTs) generated by the FLUTE package [8]1 or to actual net routes
produced by an industry router. We perform our optimizations using STA engines based on the star model
and RSMT, and we route the resynthesized layout to measure the final timing based on actual net routes.
We observe that STA based on RSMTs provides much more accurate timing estimation than the star model,
and the simpler star model has poor correlation with the routed timing. Therefore we report primary results
based on RSMTs in this paper, and report results based on the star model only for comparison.

Our hardware platform is an AMD Opteron 880 workstation running Fedora 4 Linux. Our experiments
use the min-cut placer Capo 10 from the University of Michigan [4], the QPlace 5.2 placer from Cadence
Design Systems, the NanoRoute 4.1 router also from Cadence and the FLUTE RSMT package from GSRC
Bookshelf [8]. Simulation patterns are generated by the ABC package from UC Berkeley [25], and all
transformations are verified by an external equivalence checker based on the MiniSat SAT solver [10].
While our organization licenses a broad range of EDA software, we do not currently have access to relevant
physical synthesis tools. However, we do not believe that our techniques are used by EDA vendors, and
would be willing to perform empirical comparisons when appropriate tools become available to us. We
expect that our tools will achieve comparable improvements, but run considerably faster.

Our initial testcases are selected from IWLS 2005 benchmarks [26], where the design utilization is
70%, but for experiments in Table 5 we varied the amount of whitespace. These benchmarks belong to
the following suites: OpenCores (SPI, DES AREA, TV80, SYSTEMCAES, MEM CTRL, AC97, USB,
PCI, AES, WB CONMAX, Ethernet and DES PERF), Faraday (DMA), ITC99 (b14, b15, b17, b18 and
b22) and ISCAS89 (s35932 and s38417). The benchmarks in the OpenCores suite are produced by a quick
synthesis run of Cadence RTL Compiler, and all the benchmarks are mapped to a 0.18µm library. Our
current implementation can only generate two-input NAND, NOR, AND, OR and XOR gates, as well as
their variants where one of the inputs is inverted. In particular, if a three-input gate can be replaced by
a two-input gate, our technique will find this restructuring opportunity. Although the netlists used in our
experiments have multi-input cells, such as AOI, we do not need to break them down into smaller cells.
Multiple gate cloning is not yet supported in the current implementation. As a result, area utilization remains
roughly the same after resynthesis is performed.

1Minimal Steiner trees sometimes provide unnecessarily large source-to-sink delays, and our framework can use a drop-in
replacement for timing-driven Steiner trees.
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Benchmark Cell Net Original Resynthesized Runtime
count count Est. Routed Route Via Est. Routed Route Additional (min)

delay delay length count delay delay length vias
(ps) (ps) (µm) improv. improv. increase

SPI 3227 3277 2922 2918 238056 22661 2.89% 2.84% 0.14% 0.14% 1.07
DES AREA 4881 5122 4451 4440 285701 30269 1.24% 1.28% 0.19% 0.56% 0.66
TV80 7161 7179 5519 5507 506243 50951 12.23% 12.08% 0.25% 0.13% 1.77
SYSTEMCAES 7959 8220 4688 4687 783394 61878 2.94% 2.94% 0.04% -0.12% 1.02
MEM CTRL 11440 11560 5118 5093 1108789 90876 6.42% 6.54% 0.12% 0.24% 44.71
AC97 11855 11948 2307 2750 871881 85041 2.67% 1.56% 0.04% -0.14% 0.58
USB 12808 12968 3173 3257 1000834 87536 5.21% 3.09% 0.06% 0.15% 1.36
PCI 16816 16990 3777 4430 1390256 122375 5.99% 0.00% 0.09% 0.10% 1.68
AES 20795 21055 4417 4391 1358891 131246 2.32% 2.25% 0.09% -0.08% 2.63
WB CONMAX 29034 30165 19367 19402 2750881 257579 61.37% 61.29% 0.19% -0.19% 7.6
Ethernet 46771 46891 70789 70762 7686013 427475 85.66% 85.61% 0.04% -0.14% 21.66
DES PERF 89341 98576 11564 11542 7643762 595196 1.98% 1.93% 0.02% 0.01% 5.58
DMA 19118 19809 5016 5064 2055086 153406 3.33% 1.03% 0.01% -0.03% 1.37
b14 8679 8716 6338 6306 703240 59178 3.66% 3.66% 0.04% -0.03% 4.32
b15 12562 12605 4809 4793 1029036 94015 3.71% 3.63% 0.03% -0.15% 2.22
b17 37117 37167 5761 5757 3192066 280868 5.26% 5.22% 0.00% -0.07% 4.99
b18 92048 92214 10843 10820 7423151 686753 17.54% 17.41% -0.04% -0.07% 23.05
b22 28317 28354 7261 7240 2292342 192405 6.58% 6.46% 0.02% -0.23% 7.75
s35932 7273 7599 4081 3942 769292 59307 9.11% 0.00% 0.05% 0.14% 0.31
s38417 8278 8309 2796 3195 562242 58937 2.38% 0.00% 0.06% 0.14% 0.94
Average 12.12% 10.94% 0.07% 0.02%

Table 2: Improvement achieved by our techniques: delays, route lengths and via counts for unoptimized
layouts are shown, followed by relative improvement due to resynthesis. “Est. delays” were delays estimated
by the STA, while “routed delays” were measured using the D2M model from [2]. The last column shows
the program runtime. We only show results using Capo because of space limitations, but results produced
with Cadence QPlace exhibit the same trends.

The flow of our experiments is summarized in Figure 8. Three iterations of the resynthesis are carried out
for each run, and the maximum number of resynthesis attempts for each wire is limited to 1,000 to further
reduce runtime. Characteristics of the benchmarks and our empirical results are summarized in Table 2,
where the numbers are averages over three independent runs. Although we performed experiments using
both Capo and QPlace, we only report the results produced by Capo due to space limitations. However,
results from QPlace show similar trends. In addition to benchmarks in the table, our technique has shown
similar performance on other netlists.

From the results, we observe that our approach is effective in reducing the delay for most of the bench-
marks with minor increase in total route length, and sometimes it even results in route length reduction. The
average delay improvement is 12% before routing and 11% after routing, while the route length and via
counts increase by less than 0.2% on average. This is remarkable, compared to the results for logic cloning
in [12] where route length increases by 2-28%. The results also show that our SafeResynth approach works
most effectively for the OpenCores benchmarks (SPI to DES PERF), because they are generated by quick
synthesis without optimization. For example, the delay improved by 86% for the Ethernet benchmark, sug-
gesting that our technique is effective when applied by itself. However, our technique still achieves up to
17% delay improvement when applied to already optimized benchmarks (DMA to s38417), indicating that
it can augment traditional optimization techniques for further improvement.

The impact of our techniques is illustrated in Figure 9: (a) the detour of the critical path is reduced,
which also reduces the maximum delay; and (b) our resynthesis technique found another source to generate



CSE-TR-522-06: Keeping Physical Synthesis Safe and Sound 13

(a)

(b)
Figure 9: Two optimization examples, one critical path per plot. Delay calculations are at the 0.18µm
technology node. In (a) the critical path is shortened. In (b) an alternative source to generate the same signal
is found. Although the new path is longer, the delay is actually reduced.

the same signal. Although the new path is longer, the delay is actually reduced.
In order to compare safe and unsafe optimizations, we apply our resynthesis technique in an unsafe way

to compare the results with safe resynthesis. In particular, we allow gate overlap during resynthesis and rely
on a legalizer to remove the overlaps. In our unsafe resynthesis, the location to place the resynthesized gate
is determined by trying 400 sites near the desired coordinate regardless whether these sites are overlap-free
or not. We used the legalizer provided by GSRC Bookshelf [27] in our experiments, and noticed that its
runtime is typically short. In addition to performing safe and unsafe resynthesis separately, we combined
both techniques by performing safe resynthesis after unsafe resynthesis in the hope of leveraging both their
advantages. While this experiment does not cover all possible safe and unsafe techniques, we believe that it
is representative. Because benchmarks that are only slightly modified cannot reflect the difference between
safe and unsafe resynthesis, we use seven large benchmarks from OpenCores in this experiment, whose
netlists are more significantly altered. The results are summarized in Table 3, where the estimated and
routed delay improvements are both shown. The route length and via count increase are summarized in
Table 4.

The comparison of estimated delay improvement between safe and unsafe resynthesis in Table 3 shows
that unsafe resynthesis provides more improvement before legalization because the resynthesized gate is
placed at the best location. However, the improvement reduces after legalization and becomes close to the
improvement achieved by safe resynthesis. This shows that performing our resynthesis technique in a safe
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Benchmark Estimated delay improvement Routed delay improvement
Safe Unsafe resynthesis Unsafe Safe Unsafe Unsafe

resynth. Before After + safe resynth. resynth. + safe
legal. legal. resynth. resynth.

AC97 2.67% 3.67% 3.44% 3.67% 1.56% 1.31% 2.65%
USB 5.21% 5.29% 5.10% 5.29% 3.09% 6.69% 10.41%
PCI 5.99% 5.37% 4.58% 5.37% 0.00% -1.90% 0.00%
AES 2.32% 5.06% 4.94% 5.06% 2.25% 3.61% 5.66%
WB CONMAX 61.37% 61.54% 61.48% 61.54% 61.29% 61.30% 63.14%
Ethernet 85.66% 86.41% 85.89% 86.41% 85.61% 82.07% 86.60%
DES PERF 1.98% 2.21% 2.12% 2.21% 1.93% 0.49% 2.44%
Average 23.60% 24.22% 23.93% 24.22% 22.25% 21.94% 24.41%

Table 3: A comparison of safe resynthesis, unsafe resynthesis, and unsafe followed by safe resynthesis.
Relative improvements in delay are shown. Unsafe optimizations allow cell overlaps, and legalization is
required to remove the overlaps. The GSRC bookshelf provides a legalizer, which is used in this experi-
ment. Since netlists that are only slightly modified cannot reflect the difference between unsafe and safe
resynthesis, we choose seven large benchmarks from the OpenCores suite in this experiment, whose netlists
are more significantly altered.

Benchmark Route length increase Via count increase
Safe Unsafe Unsafe Safe Unsafe Unsafe

resynth. + safe resynth. resynth. + safe
resynth. resynth.

AC97 0.04% 0.12% 0.06% -0.14% 2.60% 2.19%
USB 0.06% 0.00% 0.00% 0.15% 1.56% 1.35%
PCI 0.09% 0.44% 0.48% 0.10% 5.88% 5.47%
AES 0.09% 0.08% 0.11% -0.08% 4.00% 3.99%
WB CONMAX 0.19% -0.16% 0.00% -0.19% -0.07% -0.59%
Ethernet 0.04% 0.00% 0.02% -0.14% 0.16% 0.14%
DES PERF 0.02% -0.12% -0.11% 0.01% 0.08% 0.08%
Average 0.08% 0.05% 0.08% -0.04% 2.03% 1.80%

Table 4: A comparison of safe resynthesis, unsafe resynthesis, and unsafe followed by safe resynthesis.
Relative increases in route length and via count are shown.

way, instead of the traditional unsafe way, does not result in any loss in its optimization strength. In addition,
performing safe optimizations avoids the detrimental effects that worsen other physical parameters. As can
be observed from Table 4, performing safe instead of unsafe resynthesis avoids the significant increase in
via count. The results also suggest that to obtain the greatest improvement, the advantages of both safe
and unsafe techniques should be leveraged. As Table 3 shows, this goal can be achieved by applying safe
resynthesis after unsafe resynthesis.

Capo supports a “boost” mode which optimizes timing during placement [16]. In order to study the
effects of timing-driven placement on our technique, we perform safe resynthesis using the same bench-
marks shown in Table 3, whose placements are produced by Capo-boost in this experiment. On average,
pre-resynthesized routed delay improved by 10.34% due to timing-driven placement, while resynthesis pro-
vides an additional 20.08% improvement, resulting in an 30% overall improvement. Compared with the
22.25% improvement shown in Table 3, this result suggests that our optimization is mostly orthogonal to
that provided by timing-driven placement, and can improve upon it.
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Percentage Estimated delay improvement Routed delay improvement
of Safe Unsafe resynthesis Unsafe Safe Unsafe Unsafe

whitespace resynth. Before After + safe resynth. resynth. + safe
legal. legal. resynth. resynth.

30% 23.60% 24.22% 23.93% 24.22% 22.25% 21.94% 24.41%
10% 23.59% 24.12% 23.64% 24.01% 23.52% 23.56% 23.98%
3% 20.33% 20.78% 20.34% 21.63% 20.22% 20.23% 21.38%

Table 5: A comparison of delay improvement for layouts with different percentage of whitespace.

Percentage Route length increase Via count increase
of Safe Unsafe Unsafe Safe Unsafe Unsafe

whitespace resynth. resynth. + safe resynth. resynth. + safe
resynth. resynth.

30% 0.08% 0.05% 0.08% -0.04% 2.03% 1.80%
10% 0.05% 0.09% 0.07% -0.01% 2.29% 1.87%
3% 0.04% 0.05% 0.05% 0.15% 1.68% 1.62%

Table 6: A comparison of route length and via count for layouts with different percentage of whitespace.

In order to study the impact of available whitespace on the success of optimization results, we repeat the
same experiments with varying whitespace. The average delay improvements are summarized in Table 5,
while Table 6 shows the average increase in route length and via count. We can observe from Table 5 that
delay improvement tends to decrease with the reduction in whitespace because of diminishing flexibility in
layouts. However, the difference is small, showing that our SafeResynth technique is effective even when
whitespace is limited. In addition, the safeness property is not affected by the amount of whitespace. As
seen from Table 6, safe resynthesis essentially preserves via counts, while unsafe resynthesis significantly
increases via counts.

In order to explore other factors that may affect the stability of physical synthesis techniques, we reran
the same experiments using the STA engine based on the star model [23] to study the relation between
STA accuracy and physical stability. The results are summarized in Table 7, which should be compared
with Table 5 where timing analysis based on RSMT topology is used. The results in Table 7 show that
the star model often overestimates delay, and therefore may also overestimate delay improvement. As can
be seen from Table 7, the routed delay improvement is much smaller than the estimated improvement. In
addition, the comparison with Table 5 shows that the star model provides smaller routed delay improvement,

Percentage Estimated delay improvement Routed delay improvement
of Safe Unsafe Unsafe Safe Unsafe Unsafe

whitespace resynth. resynth. + safe resynth. resynth. + safe
resynth. resynth.

30% 34.20% 34.51% 36.53% 19.73% 20.58% 20.97%
10% 26.27% 25.62% 28.11% 15.62% 15.12% 17.78%
3% 21.64% 21.57% 24.10% 16.45% 16.10% 19.75%

Table 7: A comparison of delay improvement using STA based on the star model. This table shows the
results for seven large benchmarks from the OpenCores suite.
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Benchmark Routed delay improvement
Star model RSMT topology

Safe Unsafe Unsafe Safe Unsafe Unsafe
resynth. resynth. + safe resynth. resynth. + safe

resynth. resynth.
AC97 0.00% -1.62% -1.04% 2.43% 3.14% 4.58%
USB -4.04% -5.56% 3.15% 6.81% 6.47% 8.19%
PCI 2.02% 1.44% 1.46% 3.80% 4.25% 5.29%
AES 1.58% 3.82% 4.33% 2.49% 2.26% 3.39%

WB CONMAX 63.90% 63.82% 63.97% 60.47% 60.35% 60.32%
Ethernet 51.81% 51.89% 60.44% 63.67% 62.62% 65.64%

DES PERF -0.14% -1.11% 5.94% 1.83% 2.49% 2.22%
Table 8: Routed delay improvement of OpenCores benchmarks at 3% whitespace resynthesized using STAs
based on the star model and the RSMT topology.

suggesting that timing analysis without route topology is inaccurate. The results also show that inaccurate
timing analysis may make unsafe techniques unsafer. As can be observed from Table 7, safe resynthesis
performs better than unsafe resynthesis at 3% and 10% whitespace, suggesting that legalization worsens the
final timing more significantly. In contrast, Table 5 shows similar performance between unsafe and safe
resynthesis. To further investigate this phenomenon, we give detailed results for resynthesis of seven large
OpenCores benchmarks at 3% whitespace in Table 8. The results show that when the star model is used,
the optimized delay may be worse than that of the unoptimized layout. However, we do not observe such
a phenomenon when RSMT topology is used. This observation suggests that inaccurate timing analysis
worsens physical stability. On the other hand, Table 8 also shows that safe resynthesis is less likely to
worsen the final timing when the star model is used, suggesting that physical stability can be improved by
applying the optimizations in a safe way. This result indicates that the stability of exiting physical synthesis
techniques may be improved by performing safe instead of unsafe layout modifications.

6 Conclusions

In this paper we proposed and evaluated the concepts of physical safeness and logical soundness to analyze
circuit transformations in physical synthesis. Logically sound techniques only make changes to the circuit
that can be easily verified, and physically safe techniques only modify the circuit in a way that the effect
is immediately and reliably measurable. Safe and sound techniques are usually preferable because the op-
timizations are more stable, more reliable and more predictable. However, most safe and sound techniques
known before our work are limited in their optimization power because of the small number of transforma-
tions allowed.

To overcome the limitations of traditional physically safe techniques, we proposed a new resynthesis
algorithm that is powerful, safe and sound. It utilizes simulation to generate a signature for each wire,
and the wires on critical path are resynthesized using new gates with their inputs selected from compatible
wires. On-line equivalence checking is then carried out to verify the correctness of logic transformations.
Since we allow inserting additional gates only when unused space is available, the original gate locations
are preserved. At the same time, the global search for candidate wires gives our technique the power to
find long-range optimizations. Experimental results show that our technique can improve timing consider-
ably without deteriorating other circuit parameters, such as route length and via count. Furthermore, it is
mostly orthogonal to timing-driven placement and can provide additional improvement. Our technique can
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be applied to practically any design flow without hampering its timing closure. In addition, our compari-
son between safe and unsafe optimizations further highlights the importance of developing more powerful
physically safe techniques, or methods to apply unsafe transformations in a safe way with minimal loss in
strength.

Our results can be further improved with physically safe net buffering and gate sizing. Less obviously,
these steps may need to be applied both before and after our techniques: first, to focus our techniques on the
right critical paths, and after resynthesis buffer the remaining critical paths.

Our ongoing work suggests that efficient search pruning mechanisms exist for many gates with three or
more inputs, promising to further speed up and strengthen our technique.
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