
Improving Distributed File System Performance in

Virtual Machine Environments ∗

Xin Zhao Atul Prakash Brian Noble Kevin Borders
University of Michigan, 2260 Hayward Street, Ann Arbor, MI, 48109-2121, USA

{zhaoxin,aprakash,bnoble, kborders}@eecs.umich.edu

Abstract

Virtual machine (VM) systems have traditionally
used virtual disks for file storage. Recently, there
has been interest in using distributed file systems
as a way to provide data storage to guest virtual
machines, with the file server running on the same
physical machine. Potential advantages include fine-
grained data sharing, data protection, versioning, and
backup to multiple guests from one central place.
Unfortunately, distributed file systems often perform
substantially worse than local file systems because of
high network overheads, even when the file server is
on the same physical machine.

This paper proposes two mechanisms to reduce
communication overheads of inter-VM file system
operations: Inter-VM metadata sharing and Vir-
tual Remote Procedure Call (VRPC). Inter-VM meta-
data sharing enables clients to directly read file at-
tributes from the server without an RPC exchange.
VRPC follows standard RPC format but uses inter-
VM shared memory to exchange data between a file
server and its clients, which cuts out a lot of com-
munication overhead. We implemented these two
mechanisms on the Xen virtual machine platform and
adapted NFS version 3 to take advantage of these two
mechanisms. For an Apache build workload, NFS
with Inter-VM metadata sharing and VPRCs was
only 6.3% slower than the Ext3 file system, while
standard NFS was 31.2% slower. These results sug-
gest that Inter-VM metadata sharing and VRPCs
significantly reduce communication overhead between
virtual machines running on the same hardware.

1 Introduction

In a virtual machine environment, the main form of
storage is virtual disks. The virtual machine monitor
(VMM), which manages the guest virtual machines,
exports block-level virtual disks to the guest VMs.
The VMM can translate virtual block access requests
to physical disk commands very efficiently. Unfortu-
nately, all file-level information is lost at this point.

∗This research was supported by National Science Founda-
tion (USA) ITR Award:ATM 0325332

This makes it challenging to provide features such as
file sharing among guest VMs and centralized file and
version maintenance [27].

To overcome these limitations, recent work [27,
35] suggests using distributed file systems such as
NFS [28, 25, 26], AFS [14, 22, 29], and LustreFS [1] to
provide a centralized file system for virtual machines
running on the same computer. With all of the files
managed in a central location, it is possible to pro-
vide features such as selective exporting of file system
branches to individual guests, fine-grained sharing,
file versioning, virus checking, and selective backup.
Having files in a central file system can also simplify
virtual machine creation because large parts of guest
OSes can be shared amongst guest VMs [35, 27].

Unfortunately, distributed file systems often per-
form substantially worse than local file systems. This
is primarily because distributed file systems have to
traverse the network stack to exchange requests and
results. Virtual machine systems, such as Xen [2],
use shared memory to speed up virtual network op-
erations [12]. However, Xen’s optimizations do not
entirely bypass the network stack and still incur sub-
stantial overhead. For example, we found that on
the Postmark benchmark [16], NFS running over the
Xen’s virtual network is over 1.6 times slower than an
Ext3 [31] file system running on a virtual disk. For
an Apache build workload, it is over 31% slower than
Ext3.

This paper explores techniques for substantially re-
ducing communication overhead between distributed
file system clients and servers running in a virtual ma-
chine environment. We propose two mechanisms to
enhance the performance of distributed file systems.
Both of these mechanisms take advantage of the fact
that file server and clients reside on the same physi-
cal host and can use shared memory to reduce com-
munication costs without compromising VM-imposed
boundaries. In this paper, we started from NFS as
a representative of distributed file systems and mod-
ified it to take advantage of the two proposed mech-
anisms. We believe that our techniques could be ap-
plied to other distributed file systems without signif-
icant design changes. In the rest of the paper, we
will refer to the modified version of NFS as VNFS

1

(Virtual NFS).
The first mechanism we introduce is called inter-

VM metadata sharing. Inter-VM metadata sharing
means that a VNFS client can read file attributes di-
rectly from an NFS server using shared memory. Tra-
ditionally, NFS clients exchange synchronous mes-
sages with a server to retrieve file attributes. These
operations are time consuming and have a negative
impact on NFS performance. With the inter-VM
metadata sharing technique, an NFS server can grant
clients “read-only” access to its memory frames that
contain file attributes. An NFS client can then map
the metadata pages into its address space, and then
fetch the file attributes directly from local memory.
In addition to the performance enhancement, any up-
dates made to file attributes are seen immediately by
the clients, which leads to better attribute coherency.

The second mechanism we use to enhance NFS
performance is the Virtual Remote Procedure Call
(VRPC). VRPCs provide the same interfaces as stan-
dard RPCs, but significantly reduce overhead by us-
ing shared memory for all communication. Taking
advantage of shared memory significantly reduces the
number of times that data has to be copied and elim-
inates the overhead of a network protocol stack.

The concept of using shared memory to reduc-
ing communication overheads has been proposed by
several researchers in the past in various contexts,
e.g., [3, 24, 30]. But, applying the techniques to
virtual-machine file systems poses a number of spe-
cial challenges: data passed in file system operations
can be large and of varying size; current virtual ma-
chine monitors provide limited, low-level support for
data sharing and synchronization; file systems consis-
tency semantics must not be weakened; and changes
to the guest kernels and virtual machine monitor it-
self should be minimized. We provide a more de-
tailed discussion of related work in Section 2. As far
as we are aware, performance of distributed file sys-
tems within a virtual machine environment has not
been analyzed in the past and this paper also helps
to address that gap.

We implemented both inter-VM metadata sharing
and VRPCs on Xen using the low-level memory shar-
ing capability provided by Xen’s grant tables [12].
We also adapted NFS version 3 to use VRPCs and
inter-VM metadata sharing. Our current implemen-
tation adds 4300 lines of code to the NFS client, 3800
lines of code to the NFS server module, and 60 lines
of code to the guest Linux kernel at the NFS server
side. The inter-VM metadata sharing mechanism is
applicable when the NFS server runs on a Linux guest
OS.

To evaluate our implementation, we ran an Apache

build workload and the Postmark benchmark on four
different file system configurations:
• A local file system Ext3 [31] running on a virtual

disk
• A standard NFS client and server that use Xen’s

virtual network
• A limited version of VNFS that only uses VRPCs
• A full version of VNFS that uses both VRPCs

and inter-VM metadata sharing.
In both benchmarks, the local file system Ext3 is

the fastest, as expected. For the Apache build, which
simulates a workload of software development activ-
ity, VNFS was only 6.3% slower than ext3, while
NFS was 31% slower. Overall, standard NFS was
approximately 23% slower than VNFS. In the Post-
mark benchmark, which is dominated by operations
on small files, NFS was approximately 83% slower
than VNFS with the Postmark default file size range.

We also examine the impact of VRPCs and inter-
VM metadata sharing on individual file-system oper-
ations. The results indicate that inter-VM data shar-
ing provides the biggest savings for operations that
primarily read file attributes, while VRPCs provide
the greatest benefit for data block reads and writes,
as well as updates to file attributes.

The remainder of this paper is organized as follows.
Section 2 covers related work. Section 3 discusses
NFS configuration and the Xen’s grant table mecha-
nism. Section 4 describes the design of the inter-VM
metadata sharing mechanism. Section 5 discusses the
design of the VRPC mechanism. Section 6 presents
the results of our evaluation. Finally, Section 7 con-
cludes and talks about the direction of future work.

2 Related Work

2.1 Communication Optimization

Some NFS variants like DAFS [11, 18, 19] and NFS-
over-RDMA [8] use the Remote Direct Memory Ac-
cess (RDMA) capability provided by specialized net-
work interfaces in clustered systems. With RDMA
support, these file systems are able to directly trans-
fer bulk data into user applications’ memory, which
significantly reduces data copying overhead. In addi-
tion to using RDMA to avoid data copying, it is also
possible to offload some protocol processing tasks,
such as checksum computation or packet header strip-
ping, to network hardware [17, 19], which can help re-
duce CPU load. This would require sophisticated net-
work hardware, which limits wide deployment. More-
over, in a virtual machine environment, network in-
terfaces are virtualized in software. Even if special-
ized network hardware is available, protocol process-

2

ing and data copying still cannot be offloaded to vir-
tual network device, unless virtual network driver is
extended to virtualize the special hardware features.

IO-Lite [24] unifies all cache and buffer pages and
allows all system components to share a single physi-
cal copy of data. It can be used to avoid data copying
in network communication. Using IO-Lite, however,
would have been difficult as it would have required us
to modify network drivers as well as significant parts
of the kernel to take advantage of a unified cache and
buffer pages. In addition, network streams from dif-
ferent clients must be “early demultiplexed” in order
to determine the ACLs of received data objects, in-
curring extra network protocol processing overhead,
which is not required by VRPC.

Bershad et. al. [3] proposed Lightweight Remote
Procedure Call (LRPC) to improve the RPC perfor-
mance on the same machine. LRPC uses a shared
stack to reduce copying small or medium size param-
eters and results between protection domains, and re-
duces scheduling overhead with the thread tunnelling
technique. Applying this scheme to a VM-based NFS
poses special challenges. NFS clients frequently issue
RPCs to read or write files. The file data is passed
by reference in the RPC and can be of large size.
With LRPC, if an argument is passed by reference,
the referent is copied to the shared stack. Moreover,
the shared stack used in LRPC has a fixed size after
allocation. This is not a problem for many RPCs,
which have small arguments, but it is a problem for
RPCs with large arguments. According to the au-
thors, “if data is too large to fit into the argument
stack, it must be transferred in a large out-of-band
memory segment, which is complicated and relatively
expensive”. LRPC also relies on a thread tunnelling
technique to reduce context switching overhead, but
extensive modifications to the virtual machine moni-
tor would be required to make thread tunnelling work
across the VM boundary.

Schmidt et. al. [30] proposed to improve the perfor-
mance of “read-only” RPCs by sharing RPC objects
between protection domains within the Opal oper-
ating system. Using this technique in the context
of distributed file systems has open issues. It would
require determining the set of objects that are appro-
priate to share via read-only RPCs in the context of
file system. Read-only RPCs also require the server
to not delete or recycle shared objects until a client
has stopped using them; otherwise a client could read
erroneous data. In the context of file systems, this is
a severe constraint. For example, if the server de-
cided to export a read-only inode entry directly from
its cache to a client, it would not be able to replace
that entry with another inode until it is sure that all

clients have released that inode.

2.2 VM Memory Sharing

Virtual machine systems such as Disco [7, 13] and
Xen [2] expedite device I/O by sharing memory be-
tween VMs. For example, Xen’s virtual network
driver uses shared memory to avoid data copying.
Our proposed mechanisms extend the applicability
of inter-VM sharing to higher-level file system oper-
ations.

IBM proposes to use a discontiguous saved seg-
ments (DCSS) mechanism [15] to allow multiple guest
OSes to share common data such as the text seg-
ments of common utilities. As such, if a guest OS
loads an application that has been previously loaded
into shared memory, this guest OS can share the
identical text segment, which not only reduces disk
I/O, but also saves memory. Similarly, the VMWare
ESX server [32] allows pages with duplicate con-
tents to be shared amongst multiple VMs. Identical
pages can be located by computing the hash value of
page contents or by comparing page contents byte-
by-byte. These schemes are complementary to our
mechanisms. They can be extended to share identi-
cal file data pages across multiple guest OSes, which
can improve the scalability of VM-based distributed
file systems. On the other hand, our mechanisms,
e.g. inter-VM inode sharing, are able to exploit ad-
ditional data sharing opportunities with file system
knowledge, which is not possible with page data com-
parison.

An ongoing research project called XenFS [33, 34]
aims to provide an inter-VM shared file cache for Xen.
This work is complementary to our mechanisms. It
can unify file caches of different virtual machines and
reduce data copying when two VMs read the same
file. At present, the work is still ongoing. There are
no performance results or design details for further
comparison.

2.3 Virtualization Aware File system

Ventana[27], a virtualization aware file system, ex-
tends a conventional distributed file system to pro-
vide attractive features such as file versioning, fine-
grained data sharing, and flexible access control.
Ventana primarily focuses on the principles behind a
virtual aware file system, and leaves the performance
issue as future work. The authors evaluate Ventana
mainly with a case study to demonstrate its func-
tional advantages. While the paper does not exten-
sively analyze the performance of Ventana, it briefly
mentions that “Ventana’s performance is competitive

3

with other user-level NFS servers in most cases with
simple branching.” Our scheme can potentially help
Ventana to enhance its performance.

3 Background

This section first presents the assumptions that en-
able an NFS system to take advantage of proposed
mechanisms. Next, it reviews Xen’s grant table mech-
anism, which is used extensively for implementing the
proposed mechanisms.

3.1 Assumptions

The proposed mechanisms were designed based on
the following assumptions of NFS systems that run
in a virtual server environment:

1. The file server and the clients reside on different
virtual machines running on the same physical
host. They share the same hardware but are
separated by software (VMM), which makes it
possible to exchange data via shared memory.

2. NFS files are only modified via the NFS server.
This assumption is required to ensure consis-
tency of shared inodes. Without it, substantial
changes would be required to the file system and
generic inode structure. More details are dis-
cussed in section 4.3.1

3. The server runs a Linux/Unix file system that
uses inodes to describe files. This paper mainly
focuses on inter-VM sharing of inodes. It does
not cover the scenario where a file system main-
tains file attributes in different data structures.

4. The server stores files on hard drives instead of
other temporary media like RAM or a USB key.
Thus, the backing device IDs are relatively sta-
ble. It is therefore reasonable to assume that a
file can be uniquely identified by its inode num-
ber, inode generation number, and backing de-
vice number. This assumption is important for
inode validation discussed in section 4.3.2.

3.2 Grant Table Mechanism

Grant tables [12] are a mechanism provided by Xen
for sharing and transferring memory between vir-
tual machines at the granularity of pages. It al-
lows V MA to grant V MB certain rights (read-only
or read/write) to specific memory frame(s). Details
of the memory sharing procedure are as follows:

1. V MA grants V MB access to a specific memory
frame. This grant is identified by a grant refer-
ence number ref .

2. V MA transmits the grant reference ref to V MB .

3. V MB uses the reference to map the granted for-
eign memory pages into its address space.

4. After the shared pages are mapped, V MB can
directly access the foreign memory frames.

5. After V MB finishes accessing the mapped frame,
it must unmap the granted frame.

6. After V MB unmaps the frame, V MA can safely
revoke this grant.

Note that V MB must unmap the frame before
V MA revokes the grant; otherwise, the correspond-
ing grant access reference cannot be recycled. Be-
cause the number of grant access references is lim-
ited, excessive failures on recycling grant references
will eventually exhaust the reference space and pre-
vent further page sharing. We ran into this prob-
lem during our first implementation of the inter-VM
metadata sharing mechanism. To cleanly terminate
inter-VM memory sharing, we developed a callback
mechanism, which is described in Section 4.4.

4 Inter-VM Metadata Sharing

For an NFS client, retrieving file attributes from an
NFS server is time-consuming, because it requires
exchanging synchronous messages between the NFS
client and the server. This cost is even higher for
actions such as like listing a directory or compiling
a program because each action invokes multiple file
attribute fetches.

To reduce communication overhead when retriev-
ing file attributes, NFS caches the retrieved file at-
tributes. A cached file attribute is assumed to be
coherent with the server for a short period of time.
During this period of time, requests for this file’s at-
tributes are served with the cached value. If a cached
attribute times out, the NFS client has to re-fetch
the file attribute from server before serving subse-
quent file attribute requests. This incurs significant
communication costs to fetch attributes and keep the
attribute cache fresh. Moreover, it is often tricky to
balance the timeout period and attribute coherence.
If timeout period is too long, cached attributes can
often be inconsistent with server in a busy scenario,
which may cause operation failure. If the timeout pe-
riod is too short, communication overhead increases
and system performance suffers.

We introduce an inter-VM metadata sharing mech-
anism that not only reduces communication times
needed for attribute retrieval, but also provides
stronger file attribute coherence. The inter-VM
metadata sharing mechanism allows an NFS server to
open a “window” for the client VM. This “window”
exposes specific memory pages that contain NFS file

4

metadata. An NFS client can then map the exposed
pages into its address space and share the mapped
metadata with the NFS server. With this mecha-
nism, any metadata updates made by the NFS server
are seen by the NFS client immediately. An NFS
client can bypass inter-VM communication and read
file attributes with local memory accesses, which re-
duces communication overhead.

While this technique can be generally applied to
share various VFS metadata objects such as dentries
and superblocks, this paper mainly focuses on the
sharing of in-memory inodes [6], because they contain
most file attributes needed by an NFS client.

The rest of this section is laid out as follows. Sec-
tion 4.1 discusses the success conditions of the inter-
VM metadata sharing mechanism. Section 4.2 de-
scribes how an NFS server grants a client access to
an inode stored in its memory space. Section 4.3 il-
lustrates how an NFS client retrieves file attributes
from the “exported” inode, including issues of in-
ode consistency and validation. Section 4.4 shows
how an NFS server revokes inode sharing grants. Fi-
nally, Section 4.5 discusses the security and privacy
implications of introducing the inter-VM inode shar-
ing mechanism.

4.1 Conditions for Success

An NFS system running in virtual server environment
generally exhibits four ideal properties, which makes
it feasible to achieve inter-VM inode sharing:

1. It is possible for an NFS client to directly access
a specific memory page of the virtual machine
where the NFS server resides. In a virtual server
environment, the NFS server and client reside on
the same physical host. Their memory frames
are on the same hardware. With the help of the
virtual machine monitor, it is possible to allow
one VM to directly access another VM’s memory.

2. Inodes are clustered together. To share an inode,
an NFS client must map the memory frame con-
taining this inode into its address space. Map-
ping memory from another VM incurs certain
overhead. If inodes are scattered sparsely in
server’s memory, the client may have to map a lot
of memory pages for inode sharing. The mapping
overhead may negate the savings gained from
the inter-VM inode sharing. Fortunately, most
mainstream file systems allocate inodes from
dedicated slab caches [5]. For example, Ext3
allocates inodes from the ext3_inode_cache
cache; Reiserfs [20] allocates inodes from the
reiserfs_inode_cache cache. Inodes are there-
fore contained in limited cache pages and can be

mapped at a low cost.
3. File attributes are directly stored in the mapped

inodes. Inter-VM metadata sharing is most ben-
eficial to NFS performance if a needed file at-
tribute is in a single page. If file attributes are
stored as pointers in inodes, NFS client must
map and access multiple pages, which would
incur additional costs and render this mecha-
nism less effective. Fortunately, most file at-
tributes needed by NFS are directly stored in
inodes. The only exception is the device informa-
tion of NFS exported directories, which is stored
in superblocks and is referred in an inode via a
pointer. However, the number of superblocks is
limited. The pages containing superblocks can
be mapped at an NFS client’s initiation stage.

4. Mapped inodes are likely to be valid when they
are accessed by NFS clients. By “valid”, we
mean that a mapped inode is not freed or filled
with another file’s inode when it is accessed. The
Linux kernel caches inodes when memory is suffi-
cient. Thus, a mapped inode is likely to be valid
when system still has available memory. Never-
theless, it is possible that a mapped inode page is
shrunk due to memory pressure or a mapped in-
ode is released because of file deletion. To avoid
accessing a wrong inode, a mapped inode must
always be validated before use. We describe the
details of inode validation in Section 4.3.2.

4.2 Exporting Inodes for Sharing

To export an inode for sharing with a client, an NFS
server first needs to grant this client access to the
page containing the inode. Next, the server must send
the client the grant reference as described earlier in
section 3.2, which is needed by the client to map the
exported inode page. To do this, two questions must
be answered:

1. When should the NFS server grant foreign access
to an inode page?

2. How should the NFS server send the grant refer-
ence to the client?

NFS identifies each file with a persistent file handle.
Before an NFS client performs any operations on file,
it must first get this file’s handle from the server.
Therefore, we decide to grant foreign access to a file’s
inode when the server creates the file handle. The
grant information will be carried in the file handle
and sent to the client.

To hold inode grant information, in VNFS, we add
five fields to NFS file handles:
• fb_inode_addr – the the inode’s memory ad-

dress at the server side.

5

• fb_inode_ref – the grant reference of the mem-
ory frame where this inode resides.

• fb_inode_number – inode number of the file rep-
resented by the file handle.

• fb_inode_generation – generation number of
the inode, which is used to differentiate two files
reusing the same inode.

• fb_inode_devid – backing device identity.
The last three fields are used for inode validation,
which is described in section 4.3.2.

We change the NFS server’s fh_compose() func-
tion to include above fields when NFS file han-
dles are composed. Before composing file han-
dle for a file, the modified fh_compose() function
first gets the file’s inode address fb_inode_addr.
The inode page address can be easily computed as
“fb inode addr&PAGE MASK”.

To avoid duplicate export of inode pages, the NFS
server maintains an export table for each client. This
export table is implemented as a radix tree [23] and
is indexed by exported page addresses. By looking
up the export table, the hook function can determine
whether current inode page has been exported. If
the inode page is not exported, the hook function
grants the client read-only access to the inode page,
updates the export table, and sets the fb_inode_ref
field to the grant reference number. If the inode page
is already exported, the hook function simply sets
fb_inode_ref to the recorded grant reference.

After preparing the above fields, the original
fh_compose() function is called to compose standard
fields of NFS file handle. The composed file handle
is sent to the VNFS client as part of results of NFS
requests.

4.3 Accessing Shared Inodes

When an NFS client gets an extended file han-
dle, it first extracts the inode sharing information:
fb_inode_addr and fb_inode_ref. With the field
fb_inode_ref, the NFS client can map the inode
page into its address space. After the inode page
is mapped, the client locates and validates the inode
identified by this file handle. Finally, the client can
safely use the shared inode content.

To avoid duplicate mapping, each NFS client main-
tains a mapping table for each NFS server. The map-
ping table is a map of the server’s entire grant refer-
ence space. In the current implementation, it has
4096 entries, which is the maximum number of grant
references supported in a VM. In most scenarios, the
grant reference space is big enough for inode sharing.
When grant reference space is insufficient, the server
can request a client to unmap the least referred inode

pages to free grant references.
Each mapping table entry indicates whether a spe-

cific grant reference has been used to map a page
from the server. A mapping table entry mainly con-
tains four fields:
• ref – the entry’s grant reference
• ismapped – whether grant reference ref has been

used to map an inode page
• remote_pageaddr – the inode page address in

the server’s address space
• local_pageaddr – the client side memory ad-

dress where the inode page was mapped
The mapping table is indexed with the ref field.

By looking up the mapping table, the NFS client
can determine whether the inode page has been
mapped. If the inode page is already mapped, the
client skips further mapping steps. Otherwise, the
NFS client maps this inode page and updates its lo-
cal mapping table. After the inode page is mapped,
the NFS client uses the file handle combined with the
mapping entry to locate the inode identified by the
file handle. The mapped inode’s client-side memory
address is:
inode addr = (fb inode addr − remote pageaddr)

+ local pageaddr

Here, “fb inode addr− remote pageaddr” is the off-
set within the page for the shared inode. With the
inode address, the NFS client is able to directly read
file attributes from the mapped inode.

4.3.1 Synchronization of Concurrent Access
to Shared Inodes

Concurrent access to a shared inode must be carefully
controlled to ensure that the fetched inode content is
consistent. Suppose the NFS server changes a shared
inode while a client is reading file attributes from
the same inode. Without proper synchronization, it
is possible that some values this client retrieved are
stale while the rest are current.

The traditional solution for preventing such a race
condition is to use interlocked mutual exclusion [10].
However, in a virtual server, NFS clients and the
server reside on different virtual machines. An NFS
client cannot modify any data in the server’s mem-
ory. Therefore, an NFS client cannot acquire a
lock from the NFS server without making a RPC to
the server. Synchronizing via RPC communication
largely negates the benefit of inter-VM inode sharing.
Moreover, the NFS server cannot allow an untrusted
NFS client to hold a lock because the server can be
blocked if the client fails to release the lock properly.

To address this problem, we used the version-based
synchronization protocol developed by Schimidt et.

6

������� ����	

��

�� ��������	
���

��

��

��

��

��
������������

��

��
���������

��
���	�������

���������
���

��
���������

��
���	�������

��

��

��

��

��

�	���������	
�

������������
�

��������������������

���� !�"#� ��

��������������������

Figure 1: Concurrent Accesses to Shared Inodes

al. [30] to guarantee that a fetched inode snapshot
is consistent. In this protocol, each shared inode
page needs a server-side mutex lock (Mutex) and two
version numbers (Version[0] and Version[1]) to
mediate concurrent access. Both Version[0] and
Version[1] are one word long, so that reads/writes
are atomic to these fields. The NFS server maintains
a pair of version numbers for each grant reference in
its reference space. All version numbers are located
on statically allocated pages globally shared amongst
the NFS clients and the server. The version numbers
are modified only by the server and synchronized by
the mutex lock. For an NFS client, it can use the
grant reference associated with a shared inode page
to locate the version numbers. These version num-
bers can only be read by the NFS client to detect
concurrent accesses to the inode page.

The concurrent access synchronization mechanism
is illustrated in Figure 1. Version[0] represents the
number of times an update has begun on the inode
page, and Version[1] counts the number of times
an update has completed on the inode page. If the
two numbers are equal, then the client can believe
that the inode page is in a consistent state; otherwise
a server thread concurrently updated some inode on
the shared page.

One change we made to the original version-based
synchronization protocol is that the mutex lock is
only used to protect the page-specific version num-
bers, and not the inodes to be accessed. This does
not break the correctness of the original protocol, be-
cause concurrent accesses to a single inode are medi-
ated by the underlying file system. By excluding the
inode update code from the locked critical section,
this algorithm allows concurrent updates to inodes
on a common page.

A VNFS server maintains two version numbers and
a mutex lock for each exported inode page. It main-
tained the version number pairs in a table, called the
Version Number Table, that needs to be readable by
the clients. A client needs to be able to locate the ver-
sion pair, given a grant reference. But an inode page

�������

�������

���

�������

�������

�������

��	
��

���
�

��������	�
����

��	���������	

�	�
����

����	������	

���	���

��	
��

���
�

���	���

Figure 2: GrantToVersion Indexing Table. In this
figure, two NFS clients share the same inode page.
They must use the same version values for getting a
consistent inode snapshot

can be shared by multiple clients. Xen gives each
client a different grant reference for this shared page.
Therefore, a grant reference cannot be directly used
as an index for the table. To address this problem,
as illustrated in Figure 2, we used a GrantToVersion
indexing table to map a grant reference to the right
version numbers. Both tables, the GrantToVersion
indexing table and the Version Number Table, are
located on statically allocated pages globally shared
amongst the NFS clients and the server, with clients
having read-only access. The maximum number of
entries in both tables is set to the maximum num-
ber of pages that can be exported from a Xen virtual
machine (4096, in our implementation).

To reduce modifications to the OS kernel as much
as possible, we assume that all NFS files are ac-
cessed via the NFS server. With this assumption,
the synchronization mechanism does not require any
changes to the linux kernel or the inode structure it-
self, though it does require changes to the NFS mod-
ules. If one wishes to allow NFS files to be modified
directly through the server’s local file system (e.g.,
ext3), the guest OS kernel must be changed to up-
date the version numbers properly.

4.3.2 Validating Mapped Inodes

Even if a fetched inode snapshot is consistent, the
snapshot itself can still contain false information. For
example, a mapped inode can be released due to
memory pressure or file deletion. After the mapped
inode is released, its memory can either contain stale
inode content or be filled with a different file’s inode.
However, an NFS client has no way to detect changes
that occur on the NFS server. Therefore, NFS client
must validate a fetched inode snapshot every time
before using its content.

The validity of a fetched inode snapshot can be de-
termined by checking two conditions. The first condi-

7

tion is that the mapped inode is not released. If a file
is deleted after its inode is mapped by an NFS client,
this file’s inode will be released and does not contain
valid information anymore. An NFS client can deter-
mine whether a mapped inode has been released by
checking that inode’s i_state field. Linux kernel al-
ways sets an inode’s i_state field to “I_CLEAR” when
releasing an inode. The i_state field of a valid inode
cannot be equal to “I_CLEAR”, when accessed from a
consistent snapshot.

Second, the mapped inode should be the inode of
the file identified by the specified file handle. Ac-
cording to assumption 4 described in section 3.1, a
file can be uniquely identified by its inode number,
inode generation number, and backing device num-
ber. By checking these three fields in the fetched
inode snapshot against those stored in the file han-
dle, VNFS clients are able to determine whether a
mapped inode is the one identified by the given file
handle.

4.4 Inode Page Revocation

When all inodes in an inode page are freed, this page
will be released and moved to the free page list of
the inode cache for fast reuse. If the free page list
already holds enough pages, subsequently released
pages must be freed. However, some of these pages
may have been mapped by an NFS client, who is un-
aware that an shared inode page needs to be released
by the NFS server’s VM. To cleanly free an exported
inode page, the NFS server must ask all NFS clients
to unmap that page. After all NFS clients unmap the
page, the NFS server can safely revoke the grant and
recycle the grant reference. This procedure is referred
to as “inode page revocation”.

We modified the Linux slab manager at the NFS
server side to intercept all requests that will free in-
ode pages. If an intercepted page has been exported
for sharing, it is put into a “deferred freeing” queue.
An NFS server runs a kernel thread to periodically
process “deferred freeing” requests in the queue. For
each NFS client, the kernel thread scans the “deferred
freeing” queue to single out the pages that were ex-
ported to that client. For each of such pages, the ker-
nel thread creates an unmapping entry. All unmap-
ping entries are put together to form an “unmapping”
request to call back the NFS client. Upon receiving
the “unmapping” call, the NFS client first checks all
“unmapping” entries against its mapping table to ex-
clude the pages that have not been mapped. Next,
the client unmaps the pages that have been mapped.
After the “unmapping” call returns, the server can
safely revoke the grants and free the pending pages.

A security threat is that malicious NFS client may
refuse to unmap inode pages, with the hope of ex-
hausting all grant references and blocking other NFS
clients. The effectiveness of this attack can be re-
duced by specifying a client’s quota on grant refer-
ences. With the grant reference quota, a malicious
client refusing to unmap grant references can only
exhaust its own reference space. We currently do not
use this quota in our implementation, but it may be
necessary in some systems, depending on the threat
model.

4.5 Security Discussion

A shared inode page could contain inodes of files
that are not in directories exported by NFS. Thus,
sharing inodes across VMs may cause information
leakage. We acknowledge this issue, but believe the
threat is mild. First of all, the server exports all
inode pages to an NFS client’s address space as read-
only. This is enforced by the virtual machine moni-
tor. Unless the virtual machine monitor is compro-
mised, NFS clients cannot modify the mapped in-
ode objects. Second, the information leaked from
a mapped inode object mainly includes: the inode
number, access/modification time, and inode object
size. This information is unlikely to be directly used
to mount attacks, because it is hard to map an in-
ode to a file without sufficient access rights to the
server’s file system. If, on the other hand, a user has
sufficient access to the server’s file system, the file at-
tributes could have been easily obtained via normal
applications like “ls” or “stat” without using shared
inode pages.

5 VRPC

In a virtual server, NFS clients and server share the
same hardware, but they reside in different virtual
machines, which are securely partitioned by the vir-
tual machine monitor. To exchange file requests and
data, NFS clients and server must rely on cross-
machine communication.

Traditionally, NFS uses remote procedure call [4, 9]
as a convenient way to exchange data between NFS
client and server. However, standard RPC incurs
substantial overhead for copying data, traversing net-
work stack, XDR-encoding/decoding data, and es-
tablishing connections.

Several NFS implementations have been optimized
to avoid data copying by sending file data directly
from the kernel page cache to network device layer.
However, receivers still need to copy data from net-
work layer to file system buffer. Moreover, the over-

8

���� ����

��������	
�����

������	
�����

�����

�������	������

���	������

������	
�����

�����

�������	������

���	������

����	������

������	
�����

����	������

����
��������������
�

����������

������	������

��������	
�����

Figure 3: Comparison of VRPC and standard RPC

head of protocol processing is nontrivial. For exam-
ple, if a client receives a read response, it must put the
received data blocks into the file cache. To do this,
the network interface first strips off transport head-
ers and the NFS header from each message. Then,
the network interface must assemble the packets and
put them into page-aligned file buffer. If the network
MTU is smaller than a hardware page, a page of data
can be spread across multiple packets, which can ar-
rive at the receive out of order or mixed with packets
from other flows.

To speedup RPC communication, this paper
presents the Virtual Remote Procedure Call (VRPC)
mechanism which can significantly reduce the num-
ber of times that data has to be copied and eliminate
the overhead of a network protocol stack. A VRPC
has the same format as a normal remote procedure
call. However, it uses cross-VM memory sharing to
achieve fast data exchange between virtual machines
running on the same hardware, completely bypassing
the network stack.

At the initialization stage, VRPC establishes a
shared memory region between the NFS server and
each NFS client. Any requests or responses can be
directly put into the shared memory and be seen
by the receiver immediately. There is no need to
copy, encode, fragment or encapsulate data, which
greatly reduces the data processing overhead. In
addition, VRPC eliminates the network connect-
ing/disconnecting cost since it does not establish a
network connection at all.

Figure 3 compares standard RPC and VRPC. The
top half shows RPC running over Xen virtual net-
work. Xen already uses inter-VM memory sharing
to expedite network transmission. However, RPC
running over Xen virtual network still needs to pay
the overhead of protocol processing and data copying
from network stack to VRPC buffer or file cache. In

��������

�����	�
� ���������

����	�
�

���� ������� ����

���������	
������

��������

�	��	�����	�	

�	�����	���	�	�������	�� �����	
�	

��
���	�����

�����������

��
���	�����

�������

����

���
��

������
	�����
 �����
	�!��"##	�� $��% �����
	�!��� !	

&��'�(����
	�!��� !	����	��)	�� !	��
 ��

Figure 4: Architecture of VRPC

contrast, VRPC, as shown in the bottom half of Fig-
ure 3, allows client and server to directly access data
via shared memory, eliminating the overhead of pro-
tocol processing, packet assembly, and data copying.

An example helps illustrate the overall working of
VRPC. Suppose an NFS client wants to read a page
of file data from the NFS server. It first allocates
a page from the file cache to store file data. Then,
the client grants the server read/write access to this
page. Next, the client creates a VRPC request which
contains the file handle, offset, bytes to read, and the
page sharing information. Finally, the client deposits
the VRPC request into the shared memory. Upon
detecting this request, the server puts file data di-
rectly to the client’s file cache page. No additional
memory copy or network transmission occurs in this
procedure.

In the rest of this section, we first present the
hybrid memory sharing model employed by VRPC.
Next, we describe how VRPC requests and responses
are organized. Finally, we illustrate the mechanism
that VRPC uses to notify VMs of outstanding re-
quests or responses.

5.1 Hybrid Memory Sharing

Different NFS requests may need VRPC to carry
different amount of data. For example, function
lookup() searches certain directory for a specified file.
The input parameters are the file name and the par-
ent directory’s file handle. The output values are the
file’s handle and attributes such as file size, modifi-
cation time, and access rights. This function only
involves small amount of data exchange. On the
other hand, functions such as read() or write() can
exchange data of arbitrary length.

VRPC uses a hybrid memory sharing mechanism
to carry variable length of data with minimum over-

9

head. Small amount of data is directly passed via
a statically shared VRPC buffer pool. Bulk data is
exchanged via dynamically shared memory regions.

As shown in Figure 4, both an VRPC client and the
server share a memory region called the VRPC Buffer
Pool. An VRPC client allocates a VRPC buffer pool
at its initialization stage. The VRPC server then
maps the buffer pool into its address space. For the
rest of its life, the NFS client can use this buffer pool
to exchange data with the server. VRPC buffer pool
only requires an NFS client to pay one-time memory
mapping cost during its whole lifetime, which is very
cheap.

A VRPC buffer pool is statically divided into mul-
tiple buffer slots, with each buffer slot corresponding
to a VRPC request or response. The size of buffer
slot is fixed but can be configured. Our current imple-
mentation sets each slot to be 4K byte long. VRPC
buffer pool is designed to carry small amount of data
at minimum cost. ALL NFS requests, except read(),
write(), readlink() and readdir() functions, can
pack their request arguments and results directly into
a buffer slot(less than 4K bytes).

For functions that need to exchange data of vari-
able length or more than 4K bytes of data transfer,
VRPC allows an NFS client to dynamically allocate
memory and grant the server access to this memory
region. The NFS client deposits request arguments in
the dynamically allocated memory, but put the shar-
ing information, including grant references, the start-
ing address and size of the memory, into the buffer
pool slot. With the sharing information transmit-
ted via the shared buffer pool slot, the VRPC server
maps the dynamically shared memory into its address
space for data accessing. Currently, VNFS only uses
dynamic memory sharing during four NFS functions:
read(), write(), readlink() and readdir(). All
these functions involve variable-length data exchange.
Dynamic memory sharing is slightly more expensive,
as it needs to establish memory mapping for each file
request that needs dynamic mapping. But dynamic
memory sharing allows arbitrary length of data to be
transferred with a VRPC call.

5.2 VRPC Request/Response

As illustrated in Figure 4, VRPC uses two circular
queues to coordinate requests and responses between
two VMs. Both of these two queues are divided into
multiple fixed size slots (15 byte per slot in current
implementation), with each request or response using
one slot. NFS client puts file requests into the re-
quest queue and fetches responses from the response
queue. NFS server fetches the requests from the re-

quest queue and puts the responses back to the re-
sponse queue. A VRPC request and its response
carry an identical, unique VRPC ID. A VRPC client
uses the VRPC ID to match a received response with
its corresponding request. With this design, multiple
RPCs can be in-flight and responses can be delivered
out of order. This allows a client to have multiple
operations with pending reads and writes to be in
progress.

Each VRPC request is associated with a VRPC
buffer pool slot. A client uses the buffer pool slot to
directly store request arguments if they can fit into
this slot. If a VRPC request needs to exchange data
larger than a buffer pool slot, the client uses dynamic
memory sharing mechanism. Under such a condition,
the client uses the buffer pool slot to store the follow-
ing: the grant reference to the dynamic page(s), the
starting address, and the size of the dynamically al-
located memory. The server uses these data to share
the dynamic memory region. After processing a re-
quest, the VRPC server deposits result data into the
buffer pool slot associated with this request. There-
fore, a client cannot free a request’s buffer pool slot
until the response is received and consumed.

In summary, a VRPC request is composed of two
parts: request metadata and request arguments. The
request metadata mainly includes VRPC ID and the
index of the associated buffer pool slot. They are put
in a request queue slot. The client puts the request
arguments either in the associated buffer pool slot,
or in a dynamic memory region which is described by
the buffer pool slot associated with the request.

5.3 Request/Response Notification

When a new request or response is deposited, its pro-
ducer must notify the other party that new data is
outstanding. VRPC uses Xen’s event channel mech-
anism to do this notification. Event channels are
an asynchronous inter-VM notification mechanism.
When a new NFS client is started, the NFS server in-
stantiates an event channel between the NFS client’s
VM and itself. Both virtual machines can request
that a virtual IRQ be attached to notifications on a
given channel. The result of this is that one virtual
machine can send a notification on an event chan-
nel, resulting in an interrupt in the other virtual ma-
chine. The event channel can only transmit a one
bit message, so it is not suitable for transferring bulk
data, but it is reasonable for event notification. Af-
ter attaching a virtual IRQ to the event channel, both
virtual machines install IRQ handlers to handle mes-
sages sent over the event channel. An event detected
on the event channel indicates that a new request or

10

Hardware

CPU 3.00GHz Pentium IV

Memory 512MB(Dom0) 512MB(DomU)

Disk Maxtor 7200RPM EIDE

Software

VMM Xen 3.0.2

Domain0 OS Linux 2.6.16-xen0

DomainU OS Linux 2.6.16-xenU

Linux Distribution Fedora Core 4

Postmark version 1.5

Tar version 1.15.1

GNU gcc version 4.0.2

GNU ld version 2.15.94.0.2.2

GNU Autoconf version 2.59

GNU automake version 1.9.5

Table 1: Experimental platform

response is put into the shared communication ring.
Upon receiving a new notification message, the server
or client checks the shared queues to get new requests
or responses.

6 Evaluation

We ran all experiments on a machine whose config-
uration is listed in Table 1. We deployed the NFS
server in the privileged guest VM (Domain0, in Xen
terminology), and the NFS client in an unprivileged
guest VM (DomainU). Both Domain0 and DomainU
used Ext3 as the local file system. DomainU used
two virtual disks as the Ext3 backing device. The ex-
perimental NFS directory was exported and mounted
with “ASYNC” option in all test runs.

All benchmarks were run on four file system con-
figurations:
• A virtual disk that uses the Ext3 file system
• A standard NFS client and server that use Xen’s

virtual network
• Two versions of VNFS, a limited version that

only uses VRPCs and a full version that uses
both VRPCs and inter-VM metadata sharing.

We conducted all measurements in DomainU.
For NFS based tests, we copied all directories and

files on the experimental machine to an NFS exported
directory. Before running a benchmark, we always
“chroot” [21] to the NFS mounted directory. As a
result, all input and output files needed for the bench-
mark are accessed from the tested NFS file system.
We also directed console outputs to “/dev/null” to
exclude latency caused by console printing.

In all experiments, the network between virtual
machines is an internal-bridged virtual network pro-
vided by Xen. Because Xen’s virtual network trans-
fers data at best effort, we do not control or limit

its network bandwidth. To avoid warm cache effects
caused by previous runs, we unmounted both NFS
client and server-side file systems after each round of
benchmark. We executed all experiments right af-
ter the file system was mounted. Each experiment
was run 10 times and the reported results reflect 90%
confidence interval.

6.1 Apache Build

We first used Apache build as a representative of typi-
cal workloads on a normal development machine. We
used Apache 2.0.58 as the benchmark object. The
Apache archive includes 2339 files scattered in 188 di-
rectories. The total size of the archive is 6.13MB be-
fore being decompressed. After being decompressed,
the total size of the Apache directory is 32.9MB. The
benchmark first unpacks the archive of Apache 2.0.58
into a source directory. Next, it runs configure to
build the source code dependency, which involves lots
of small data read and file lookups. During the third
phase, it builds the Apache binaries from the source
files, which is a CPU intensive task, but also gener-
ates lots of object files and temporary files. Finally, it
removes all Apache files including the Apache source
tree, generated configuration files, object files, and
Apache executable binaries.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Remove Unpack

T
ot

al
 T

im
e

(s
)

Ext3
NFS+VRPC+IS
NFS+VRPC
NFS

(a)

0

50

100

150

200

250

300

350

Configure Build Total

Ext3
NFS+VRPC+IS
NFS+VRPC
NFS

(b)

Figure 5: Performance of Apache build workload.
“NFS+VRPC+IS” stands for NFS with VRPC and
Inode Sharing mechanisms enabled;“NFS+VRPC”
stands for NFS with only VRPC mechanism enabled;
“NFS” stands for standard NFS over virtual network

In Figure 5, each bar group shows a phase of the
Apache build benchmark, while the “Total” group
represents the total time consumed in the four phases
of the benchmark. Overall, the standard NFS run-
ning over Xen virtual network was 31% slower than
Ext3 file system. In contrast, VNFS enhanced with
the VRPC and inter-VM inode sharing techniques
was only 6.3% slower.

11

By examining the benchmark results more deeply,
we found that the performance speedups were high in
unpack and remove phases. The speedup percentages
were 64% and 77%, respectively. The effect of inter-
VM inode sharing was also pronounced during these
two phases. NFS with VRPC and inter-VM inode
sharing outperformed NFS with only VRPC by 21%.

In the configure phase, VRPC and inode shar-
ing techniques boosted NFS performance by 26%
and saved 25 seconds. In the build phase, VRPC
and inode sharing techniques improved NFS perfor-
mance by 15% and saved 35 seconds. In configure
and build phases, NFS with both VRPC and inter-
VM inode sharing support ran faster than NFS with
only VRPC support by 7% and 4%, respectively.
Since computation represents a large portion of the
configure and build phases, reduced impact of file
system improvement was expected. Nevertheless, the
improvements were still 26% and 15% over standard
NFS.

6.1.1 Performance of File System Calls

The total time of Apache build includes the time used
for file accessing as well as time spent on system com-
putation (e.g. compiling). To better evaluate how the
proposed mechanisms impact file system operations,
we collected the latencies of major file system calls
during execution of the workload.

Table 2 lists a summary of results. “VNFS” repre-
sents the VNFS with VRPC and inter-VM metadata
sharing enabled. “NFS” represents standard NFS
running over Xen virtual network. The “Speedup”
row shows the improvement provided by VNFS over
NFS.

With the proposed mechanisms, six out of the eight
file system operations improved performance by over
50%. The exceptions were read() and write() op-
erations. The reason is NFS cache and the file ac-
cessing pattern in the Apache build workload. An
NFS client always tries to take advantage of its local
cache to reduce communication. The read() requests
to the files that have been loaded to the local cache
are served from the local cache. During execution of
Apache build workload, a source file can be read mul-
tiple times. This file accessing pattern limits overall
improvement on file reads.

Similarly, when a process writes to an NFS file,
NFS client will cache the dirty pages at the local
cache and defer flushing them to the server as late as
possible. If memory is sufficient, the NFS client can
defer sending dirty pages to the server until the file
will be closed. Therefore, the performance improve-
ment observed on write() system calls are smaller.

However, for the same reason, close() operations
are 65% times faster with the proposed mechanisms.
When a file is to be closed, an NFS client must flush
all of this file’s dirty pages to the server to guaran-
tee “open-to-close” semantics of NFS. Therefore, the
close() operations can require substantial cross-VM
communication.

6.2 Postmark Benchmark

We next ran the Postmark (version 1.5) benchmark,
which was designed to simulate small-file workloads
seen in electronic mail, netnews, and web-based com-
merce [16].

In each run, we configured Postmark to create
10000 files and perform 10000 transactions consisting
of file reads, writes, creates, and deletes, and removal
of all files.

We run four groups of benchmarks. In group 1,
we used the following default Postmark setting: the
file size range is from 512 bytes to 9.7 kilobytes; the
probabilities of read and write operations are equal.

In group 2, we used the default file size range, 512
bytes to 9.7 KB, but set the probability of read op-
erations to be four times of that of write operations.
This is closer to the workload of some web sites in
which most accesses are read-only.

In group 3 and 4, we increased the upper bound
of file size range from 9.7KB to 40KB, to analyze
how our system performs on files of larger size range.
Postmark was developed in 1997, with increasing net-
work bandwidth and richer content, web sites and
email systems often access larger files. Group 3 and
4 used the same read/write ratios as group 1 and 2,
respectively.

As Figure 6 shows, VNFS significantly improved on
NFS performance in all four groups. When the file
range is 512 bytes to 9.7K bytes, VNFS outperformed
standard NFS by 46%. When file range is 512 bytes
to 40K bytes, VNFS ran 37% faster than standard
NFS.

The speedup percentage is higher when tested files
are smaller. With larger files, longer disk read/write
times mask part of benefits gained with the inter-
VM inode sharing and VRPC techniques. We did
not observe a significant difference in percentage im-
provement when reads dominate writes.

The results also show that Ext3 clearly outper-
formed both VNFS and NFS on the Postmark bench-
mark. There are several reasons for the performance
difference. One reason is that VNFS and NFS need
to cross VM boundary to access files, which incurs
additional context switch overhead. Another reason
is that Ext3 and NFS have different semantics. Ext3

12

stat64 fstat64 utime open read write close unlink

Time/Call (ms)
Ext3 3.47 0.82 9.50 3.84 89.66 10.93 1.40 16.75
VNFS 9.32 1.89 56.22 10.78 99.40 7.16 5.15 78.25
NFS 20.15 3.89 145.81 69.61 162.69 8.16 14.51 172.90

Speedup of VNFS over NFS 54% 52% 61% 85% 39% 13% 65% 55%

Table 2: Latencies of major file system calls collected during Apache build workload

Postmark Benchmark

0

10

20

30

40

50

60

70

80

Small-1:1 Small-4:1 Big-1:1 Big-4:1

T
ot

al
 T

im
e

(s
)

Ext3

NFS+VRPC+IS

NFS+VRPC

NFS

Figure 6: Postmark benchmark results. “Small”
means small file size range (512B-9.7KB), while
“big” means larger file size range (512B-40KB). Ra-
tio “1:1” means that the probabilities of read and
write operations is equal. Ratio “4:1” means that the
probability of read operations is four times of that of
write operations

allows lazy data flush: if a process writes some data
to a file and then closes the file, Ext3 buffers the
written data in page cache and immediately returns
from close(). The dirty pages will be flushed to disk
asynchronously. For both VNFS and standard NFS,
when a file is closed, the client must copy all cached
dirty pages to the server to enforce close-to-open se-
mantics before returning. While data exchange over
VRPC is more efficient than over a virtual network,
the data flushing still substantially impacts file sys-
tem performance.

6.3 Discussion

Our current implementation adds 4300 lines of code
to the NFS client module and 3800 lines of code to
the NFS server module.

For implementing inter-VM inode sharing, in order
to cleanly revoke inode page grants, we added 60 lines
of code to the guest Linux kernel at the NFS server
side to intercept all requests that free inode pages.
In addition, to avoid adding version-based synchro-
nization mechanism to the guest kernel, we decided
to impose a restriction that NFS files should only be
modified via the NFS server. In practice, this is likely
to be a modest imposition. If the NFS server is not
running or not exporting any files, it would be safe

to access the files directly via the local file system on
the server. If it is running, an administrator guest
machine can be used to modify the files. Given the
significantly lower overheads with our scheme, we be-
lieve that should be acceptable.

VRPC is independent of inter-VM inode sharing
mechanism and does not require any modification to
the guest OS kernel; only changes are to the NFS
modules. If kernel change is not acceptable, NFS can
still use VRPCs to enhance performance. Further-
more, if a system only uses VRPCs, it would be safe
to allow writes to the files on the server via the lo-
cal file system. Our results indicate that this would
still provide substantial benefits from a performance
perspective.

Other performance improvements are possible that
we hope to consider in the future. For example,
because the client and the server maintain sepa-
rate data caches, data must still be copied between
these caches. Using ideas from IO-lite [24] and
XenFS [33, 34], it may be possible to reduce or elim-
inate such data copies.

The Xen system currently imposes a limit on the
number of grant references for each virtual machine.
If the limit is low and the number of clients is high,
inter-VM inode sharing will be less beneficial to per-
formance because the number of pages that a client
can share will be limited by the grant reference space.
We did not explore this issue in our study. From our
interactions with Xen developers, it appears the Xen
community is working on finding ways to remove or
to significantly increase this limit.

7 Conclusion

This paper explored mechanisms that can improve
performance of distributed file systems when the file
server and clients reside in different virtual machines
on the same physical host. We presented an in-depth
design of two mechanisms: inter-VM metadata shar-
ing and VRPC to help reduce overheads of such sys-
tems. Both these two mechanisms use shared mem-
ory to reduce communication overhead without com-
promising VM-imposed boundaries.

We implemented these two mechanisms on the Xen
virtual machine platform and adapted NFS version 3
to make use of them. The modified NFS resulted in

13

a substantial improvement over standard NFS.
We discussed solutions to handling consistency of

file system data that is accessed via shared memory.
VRPC requires no changes to the virtual machine
monitor or guest kernels (only changes are to the NFS
modules). Inter-VM metadata sharing requires local-
ized changes to the server’s guest kernel.

As performance of distributed file systems within
virtual machines is improved, extended distributed
file systems can work as a practical storage medium
for guest virtual machines. Our future plans include
exploring additional opportunities for performance
improvement and to extend virtual machine file sys-
tems to provide features such as fine-grain access con-
trol and automatic versioning to multiple guests.

References

[1] Lustre: A scalable, high-performance
file system. Cluster File Systems Inc.
white paper, version 1.0, November 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Oper-
ating systems principles, pages 164–177, New York,
NY, USA, 2003. ACM Press.

[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. In SOSP ’89:
Proceedings of the twelfth ACM symposium on Oper-
ating systems principles, pages 102–113, New York,
NY, USA, 1989. ACM Press.

[4] A. D. Birrell and B. J. Nelson. Implementing re-
mote procedure calls. In Proceedings of the ACM
Symposium on Operating System Principles, page 3,
Bretton Woods, NH, 1983. Association for Comput-
ing Machinery.

[5] J. Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proceeding of USENIX
Summer 1994 Technical Conference, pages 87–98,
1994.

[6] D. P. Bovet and M. Cassetti. Understanding the
Linux Kernel (Ed. A. Oram). O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2000.

[7] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running commodity operating systems
on scalable multiprocessors. ACM Transactions on
Computer Systems, 15(4):412–447, 1997.

[8] B. Callaghan, T. Lingutla-Raj, A. Chiu,
P. Staubach, and O. Asad. Nfs over rdma. In
NICELI ’03: Proceedings of the ACM SIGCOMM
workshop on Network-I/O convergence, pages
196–208, New York, NY, USA, 2003. ACM Press.

[9] B. Callaghan, B. Pawlowski, and P. Staubach.
RFC1813: NFS version 3 protocol specification,
June 1995. Informational RFC.

[10] P. J. Courtois, F. Heymans, and D. L. Parnas. Con-
current control with readers and writers. Commun.
ACM, 14(10):667–668, 1971.

[11] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The direct
access file system. In FAST ’03: Proceedings of the
2nd USENIX Conference on File and Storage Tech-
nologies, pages 175–188, Berkeley, CA, USA, 2003.
USENIX Association.

[12] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williamson. Reconstructing
I/O. Technical Report UCAM-CL-TR-596, Univer-
sity of Cambridge, Computer Laboratory, Aug. 2004.

[13] K. Govil, D. Teodosiu, Y. Huang, and M. Rosen-
blum. Cellular Disco: resource management us-
ing virtual clusters on shared-memory multiproces-
sors. ACM Transactions on Computer Systems,
18(3):229–262, 2000.

[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed
file system. ACM Trans. Comput. Syst., 6(1):51–81,
1988.

[15] IBM Corporation. How to use Execute-in-Place
Technology with Linux on z/VM. Technical Report
SC33-8287-00, IBM Corporation, Oct,2005.

[16] J. P. Katcher. Postmark: A new file system bench-
mark. Tech. Rep. TR3022, Network Appliance, 1997.

[17] K. Kleinpaste, P. Steenkiste, and B. Zill. Software
support for outboard buffering and checksumming.
In SIGCOMM, pages 87–98, 1995.

[18] K. Magoutis. Design and implementation of a direct
access file system (DAFS) kernel server for FreeBSD.
In Proceedings of the BSDCon 2002, pages 65–76,
Berkeley, CA, USA, 2002. USENIX Association.

[19] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremesinghe,
and E. Gabber. Structure and performance of the
direct access file system. In Proceedings of USENIX
2002 Annual Technical Conference, Monterey, CA,
pages 1–14, June 2002.

[20] C. Mason. Journaling with ReisersFS. Linux J.,
2001(82es):3, 2001.

[21] R. McGrath and Free Software Foundation. Chroot
c run command or interactive shell with special root
directory. The Linux Manual Pages.

[22] J. H. Morris, M. Satyanarayanan, M. H. Conner,
J. H. Howard, D. S. Rosenthal, and F. D. Smith.
Andrew: a distributed personal computing environ-
ment. Commun. ACM, 29(3):184–201, 1986.

[23] D. R. Morrison. PATRICIA-Practical Algorithm To
Retrieve Information Coded in Alphanumeric. J.
ACM, 15(4):514–534, 1968.

[24] V. S. Pai, P. Druschel, and W. Zwaenepoel. Io-lite:
a unified i/o buffering and caching system. ACM
Trans. Comput. Syst., 18(1):37–66, 2000.

[25] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design and
implementation. In Proceeding of USENIX Summer
1994 Technical Conference, pages 137–152, 1994.

14

[26] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, and R. Thurlow.
The NFS version 4 protocol. Proceedings of the 2nd
international system administration and networking
conference (SANE2000), page 94, 2000.

[27] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtual-
ization aware file systems: Getting beyond the lim-
itations of virtual disks. In 3rd Symposium of Net-
worked Systems Design and Implementation (NSDI),
May 2006.

[28] R. Sandberg. The Sun Network Filesystem: De-
sign, Implementation, and Experience. In Dis-
tributed Computing Systems: Concepts and Struc-
tures, pages 300–316. IEEE Computer Society Press,
Los Alamos, CA, 1992.

[29] M. Satyanarayanan. Scalable, secure, and highly
available distributed file access. Computer, 23(5):9–
18, 20–21, 1990.

[30] R. W. Schmidt, H. M. Levy, and J. S. Chase. Us-
ing shared memory for read-mostly rpc services. In
HICSS ’96: Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences (HICSS’96)
Volume 1: Software Technology and Architecture,
pages 141–149, Washington, DC, USA, 1996. IEEE
Computer Society.

[31] T. Ts’o and S. Tweedie. Planned extensions to
the Linux Ext2/Ext3 filesystem. In Proc. of the
FREENIX Track: 2002 USENIX Annual Technical
Conference, pages 235–244, 2002.

[32] C. A. Waldspurger. Memory resource management
in vmware esx server. In OSDI ’02: Proceedings
of the 5th symposium on Operating systems design
and implementation, pages 181–194, New York, NY,
USA, 2002. ACM Press.

[33] M. Williamson. 1st year progress re-
port. http://www.cambridge.intel-
research.net/ mwilli2/proposal final.pdf.

[34] M. Williamson. Xen wiki: Xenfs.
http://wiki.xensource.com/xenwiki/XenFS.

[35] X. Zhao, K. Borders, and A. Prakash. Towards pro-
tecting sensitive files in a compromised system. In
3rd International IEEE Security in Storage Work-
shop, 2005.

15

