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Abstract With mobility, available network connectivity fluctuatese-
pending both on the path taken through uncoordinated pub-

As mobile devices continue to shrink, users are no longefic deployments and the varied quality of individual access
merely nomads, but truly mobile, employing devices on theP0INnts.

move. Atthe same time, these users no longer rely on a singReactive management performs poorly for this collection of
managed network, but exploit a wide variety of connectivity always-active, mobile devices attempting to use a patckwor
options as they spend their day. Together, these trende argef uneven, unmanaged connectivity. Instead, one must con-
that systems must consider tterivative of connectivity—  sider thederivative of connectivity—how it changes over

the changes inherent in movement between separately mafime—to properly support mobile, networked applications.

aged networks, with widely varying capabilities. This paper describes BreadCrumbs, our system that lets a

To manage the derivative of connectivity, we exploit thet fac mobile device exploit this derivative of connectivity as it
that people are creatures of habit; they take similar paths e owner moves around the world. BreadCrumbs maintains a
ery day. Our system, BreadCrumbs, tracks the movemergersonalized mobility model on the user’s device, predicti

of the device’s owner, and customizes a predictive mobilityfuture network conditions based past movements. Because
model for that specific user. Rather than rely on a synthetigeople are creatures of habit, the predictions of this model
model or aggregate observations, this custom-tailoredeinod are highly accurate with even minimal training time. Bread-
can be used together with past observations of wireless netrumbs tracks not only which APs were seen at a location,
work capabilities to generatnnectivity forecasts. Appli-  but also probes their application-visible quality.

cations can in turn use these forecasts to plan future nktwor,

use with confidence. We have built a BreadCrumbs protO!B:readCrumbs combines the predictions of its mobility model

type, and evaluated it with several weeks of real-world us? ith an AP quality database to producennectivity fore-

age. Our results show that these forecasts are sufficiertly acasts. Applications, or the operating system itself, use these

curate, even with as little as one week of training, to previd forecasts to take domain-specific actions in response to up-

) . . coming network conditions, deferring less time-sensitive
improved performance with reduced power consumption for 2 . . T

. low-priority work to a time that will maximize performance
several applications.

or minimize power consumption.

We evaluated our prototype system with several weeks of
1 Introduction real-world usage in Ann Arbor, Michigan. We found that
both the quality and the availability of publicly-accedsib

Operating svstems manage wireless networks i o- APs are quite uneven. In spite of this, BreadCrumbs was
mgnt rezgctizel choosin 9 connections onl wmhleﬂyne circum-able to predict the device’s next-step downstream bantiwidt
' y 9 Y from the Internet within 10 KB/s for over half of the time,

stances change. This IS a reasonable position tc_) take if moatnd within 50 KB/s for over 80% of the time. These results
users are merely nomadic, and the few truly mobile users rel

. . Were achieved with only one week of training.
on homogeneous access points. However, true mobile usage

across a diverse and separately-managed patchwork of coe further evaluated how BreadCrumbs’ connectivity fore-
nectivity options presents both new challenges and opportieasts could aid three example applications: (1) oppottienis
nities. writeback of created media content, (2) deactivating a-wire

. . . less link in an area without coverage to save power, and (3)
In such an environment, mobile devices can work oppor-

- ) . assigning data flows between WiFi and cellular data con-
tunistically as the they encounter public network conmwecti gning

; o ; .~ nections. Compar rediction-ignoran lin r
ity. However, applications cannot make reliable assumgtio ections. Compared to prediction-ignorant baselinesaére

. . . Crumbs’ forecasts improve power efficiency and application
about the quality of network connection at any given moment. P P y PP



performance for the first two applications, while the result We compared the success of selecting APs based on sig-
for the third are somewhat mixed. nal strength with selecting the AP with the best downstream
bandwidth probed by Virgil, in five neighborhoods of varied
density in three different cities in the United States. Wirg
resulted in a 22-100% increase in the percentage of scans
that successfully found an access point with a usable letern
connection.

This work makes the following contributions:

e We introduce the concept abnnectivity forecasts and
show how they are useful to realistic applications on
always-active, mobile devices.

) i , .. Much in the same way, BreadCrumbs uses a reference server

o We show_t_hat such devices can predict nOt_JUSt thelrfu'to estimate the connection quality of the access points en-
twre mol_)|!|ty p_atter_ns but quality O.f upcoming _network countered by mobile devices. In addition to downstream
connectivity with h'gh accuracy, W'FhOUt requiring GPS bandwidth, BreadCrumbs also estimates upstream bandwidth
hardware or extensive centralized infrastructure. via the AP. Rather than simply pinging the reference server,

e We evaluate our system using the actual mobility of aWe estimate latency by opening a TCP connection and ping-

real person as he encountered ithsitu deployment of ~ PONging a integer nonce back and forth. This was an attempt
access points in a city. to more closely mimic how real applications would utilize

a network connection. Finally, BreadCrumbs omits the port
e We show how resource-constrained mobile devices castatus tests in order shorten the testing process. In suynmar
do this efficiently, respecting both CPU and storage lim-BreadCrumbs uses the techniques described above to esti-
itations. mate the following three values for each open access point
the mobile device encounters: (1) downstream TCP band-
width from an Internet host, (2) upstream TCP bandwidth to
2 Backgr ound the Internet, and, (3) latency from the device to remotei-dest
nations.

2.1 Determining AP Quality

. . _ 2.2 Estimating Client L ocation
There is little point to developing a complex system for fore

casting the quality and availability of public wireless 0@8- | order for a device to predict its future mobility, it needs
tions if they are few and far between, or all access pointgome way to determine its location. This location could be
have equivalent connection quality. We explored the curyescriptive (“at Angell Hall’), relative to known locatispor

rent state of affairs in our prior work [25], which described gpsoiyte. In our case, BreadCrumbs uses latitude and longi-

Virgil—an AP selection tool that considers the application-y,qe coordinates as the basic building blocks of each device
visible quality of access points. In contemporary operatin mobility model. Typically, this can be provided by GPS.

systems, wireless connection managers typically sel&ct theyen for devices without GPS technology, it is possible to
unencrypted AP with the strongest received signal strengthygiimate one's position with reasonable accuracy, usirty te
Rather than consider such link-layer criteria, Virgil ddic  \5|qgies like Place Lab [20]. This project exploits the fact

associates with each candidate AP and runs a battery ¢ 4 plethora of fixed-position beacons exist in the evayyd
tests designed to estimate the connection quality apitat o ironment—namely, WiFi access points and GSM mobile

would enjoy if the device were to choose this access point. nhone towers. A nice benefit of Place Lab is that it works
Virgil connects toreference servers in order to estimate this well when GPS does not—indoors and in urban canyons.
connection quality. A reference server is a well-knownite pjace Lab relies on publigardriving databases, which map

net destination that runs a simple TCP server process. Lik§aacon MAC addresses to GPS locations. For example
a honeypot, this process listens on a wide range of TCP poifi g1 e net currently tracks over 11 million distinct access

numbers. To probe the application-visible quality of an acg’omts in its database. Place Lab generates a GPS fix by first
cess point, Virgil connects to a reference server via the ARcanning for all beacons in the device's vicinity, thenrtria

and runs the following tests: gulating based on the GPS location of each beacon source.
i i . Their evaluation results (in 2005) found the mean accuracy
e Estimate downstream bandwidth by connecting (0 the,¢ pjace ab's location estimates to be on the order of 20-30
TCP server process on awell-known portand downloadieters from the GPS “ground truth” when only WiFi beacon
ing random data as fast as possible. sources were utilized. As we shall see, such error is accept-
o Determine if the AP is blocking certain services by at- 2ble for our needs.
tempting a TCP connection to common port numbers.

e Estimate latency by pinging the reference server.



3 Connectivity Forecasting

By leveraging Virgil and either Place Lab or GPS data, one 42.217 4 &

can determine both the locations a user has previousledisit
and the application-level quality of network connectivity
those locations. Our goal is to combine these two sets of data 42.276 2
to yield what we will callconnectivity forecasts. A connec-

tivity forecast is an estimate of the quality of a given fagket

network connectivity at some future time. An example would 42275
be the estimated upstream bandwidth from the client to a re-

mote host 20 seconds in the future. This is a function both

of the user’s mobility—which APs will be in range at that -83.747  -83.746  -83.745
time—and of the quality of these APs’ network connections.

A wide variety of applications can exploit such forecasts. F State Last GPS Current GPS
example, consider a distributed file system client that seed 1 — (42.275,-83.747)
to re-integrate some data to a remote file server. If energy (42.275,-83.747), (42.276,-83.747)
consumption is a first-class concern—as it is for handheld (42.276,-83.747) (42.277,-83.746)
devices—the best policy for the client would be to transmit (42.277,-83.746) (42.277,-83.746)
data to the file server when the mobile device has the highest- (42.277,-83.746) (42.277,-83.745)
bandwidth network connection that it will enjoy in the near
future.

ab~wN

Figure 1:Generating states from mobility history. Each state in
This section first discusses how BreadCrumbs maintains #e second-order Markov model encodes the current GPS location
personalized device mobility model, based on the past seand the previous location. GPS fixes are estimated at a set geriod
guence of GPS locations the user visits. Next, we descripthat is the time interval between state transitions in the model.

how BreadCrumbs applies the principles of Virgil [25] to es-

timate the quality of different access points, and combineghere exists no one centralized authority who controlstikp
this data with the predictions of the mobility model. The-sec jic WiFi APs that the user encounters. This limits our choice
tion concludes with a concrete eXample of how Connect|V|tyof mob|||ty models to those that can reasonab|y be main-

forecasts are generated. tained on resource-constrained, handheld devices. Song et
al [29] previously evaluated the accuracy of several common
3.1 Predicting Future Mobility mobility prediction models, using mobility data collected

the campus of Dartmouth College during the 2003-2004 aca-
demic year [19]. This dataset tracks the AP association his-
tory of over 7000 users to over 550 WiFi access points of
known location.

Mobility prediction is a well-studied area, particularly the
domain of mobile phone networks. The majority of applica-
tions of such techniques focus on allowing a central authori
to track the movement of devices to pre-provision networkTheir evaluation found a second-order Markov model, with
resources [2, 3, 7, 21, 26, 28, 32]. As did Place Lab, we notéallback to a first-order model when the second-order model
that tracking mobility history at a central pointis problatia.  has no prediction, was the most accurate of all techniques
When such databases are compromised—either accidentalgxamined. Conveniently, Markov models are ideal for use
maliciously, or under subpoena—the precise movements afin resource constrained devices. Their CPU needs are low
users are disclosed without consent. Furthermore, mobilbecause model querying and maintenance involves merely
devices may need this information the most at precisely theeading and writing individual entries in arrays. Sincesthe
times when they are disconnected from the network and cararrays are generally sparse, storage requirements arestnode

not query the centralized server. We chose geographic longitude and latitude coordinates as
Synthetic mobility models [30] or aggregate models derivecthe fundamental building block of our model. Since we have
from the movements of many users [18, 31] are useful when ahosen a second-order Markov model, each state consists of
network provider needs the big picture of how their networktwo sets of coordinates: the location where the device was
will be utilized. However, such models have little chanceduring the last state, and its current location. Trackirig th

of accurately capturing the very unique paths one user takezecond-order state is useful for distinguishing betweterdi
through their environment. ent mobility paths that share a common point. For example,
Ithis can distinguish between the user walking eastbound and

The most compelling reason to maintain the mobility mode :
westbound on a given street.

on the device itself is that, unlike for a mobile phone networ



The resolution of our model is bounded both by the accu-
racy of location sensing and the resource constraints of mo-
bile devices. To avoid a state space explosion, BreadCrumbs
rounds all GPS values to three decimal places—one one-
thousandth of a degree. While the size of one degree of lat- . .

itude is constant everywhere on the Earth, the distance be- I aE;an(_dV:dt;aidsvﬁth

tween two degrees of longitude shrinks as one moves further return best P

away from the equator. At our latitude in Ann Arbor, Michi-

gan (42.2N), a 0.002x 0.00F grid square is 110 m80 m. (a) Best bandwidth algorithm

BBW (Statex)

best <+ 0.00
foreach ap € {APs previously seen at statg

The frequency with which BreadCrumbs estimates the de-
vice’'s GPS location bounds the resolution of the mobility
model. This model can be thought of as a discrete-time cF (statex;, int steps)

Markov chain where a state transition fires everyec- if seps< 1

onds. Figure 1 illustrates how the model generation process return y;{pij - BBW(x))}

works. The first state is state 1. This is a special state with else

no “Last GPS” component, just the initial location. Then, return yyj{pij - CF(xj,steps—1)}

T seconds later BreadCrumbs fixes the device’s location at o _
(42.276,—83.747), and creates the new state 2. The remain- (b) Connectivity forecast algorithm

ing states in the example are generated in a similar fashion.

For each state in the model, BreadCrumbs updates theigure 2:Pseudocode: best bandwidth at a state and connectiv-
Markov transition matrix whenever the model is in the statelty forecasts. The best bandwidth algorithm has been simplified to
and transitions to another. These transitions occur every assume BreadCrumbs tracks one type of bandwidth, when in fact it
seconds. Note that if the user remains at one location far Iondlf'ferentlates between upstream and downstream connectivity.
periods, the model will have a heavy transition probability

wards the self-loop (back to the same state) at that locationy suptle point is that one access point may be visible from
This is an easy way for BreadCrumbs to identify what othersmyltiple grid locations, since our chosen grid size (0001
have termedhubs [13]—popular, long-term destinations. 0.00T) is only 110mx80m at Ann Arbor’s latitude. The
quality of an AP may vary at different grid locations, how-
ever, because of varying distances from the AP, physical in-
terference, et cetera. BreadCrumbs therefore tags all $tP te
results with the GPS coordinates at which they were taken.

Section 2.1 above described our prior work on determmmq\/lultiple test results for a single AP co-exist in the quality

the application-visible quality of WiFi access points. We : . . :
use similar techniques here to build an AP quality databaséj!atabase if they were probed at different GPS grid locations

The purpose of maintaining this database is to estimate thBreadCrumbs combines the custom user mobility model and
“quality” of a connection to the Internet, for all the differ the AP quality database to provid®nnectivity forecasts.

ent access points a mobile device encounters. As with VirgilFigure 2(b) describes a simplified version of this algorithm
when BreadCrumbs first encounters an unencrypted AP, it atFhis example takes two arguments: a state in the mobil-
tempts to associate and obtain an IP address through DHC#y model, and an integer number of steps in the future. In
If successful, BreadCrumbs then opens three connections @ur actual implementation of BreadCrumbs, the algorithm
a remote reference server, to estimate (1) downstream banglso considers what network quality is to be forecast (down-
width, (2) upstream bandwidth, and (3) latency to remote In-stream/upstream bandwidth, or latency). To simplify the
ternet hosts. pseudocode we assume the algorithm only considers one net-

3.2 Forecasting Future Conditions

. . work quality metric,bandwidth.
One reference server cannot possibly represent the myrlav(\f
network destinations that applications might contact. ButFirst, consider the limiting case wheseps is one. This is
note that the first hops—the wireless AP and its backend corg request for the projected network bandwidth one tramsitio
nection, e.g. a DSL or cable modem—are constant no mapast the specified state. In other words, for the model tran-
ter what the remote destination of a connection ultimatly i sition periodt, one step i seconds in the future. Bread-
From there, the path through the network core depends ofsrumbs calculates this forecast as the weighted sum, across
the peering agreements between the AP’s ISP and that of trl states in the model, of the best bandwidth previousinsee
destination. We argue that when choosing between two AP4{om an AP at that potential next state. This sum is weighted
it is far more likely that the overall quality of an end-toeen by the transition probability that model will transitiorofn
link depends on edge effects rather than core routing issuesstatex to a statexj. Thus, the best bandwidth seen at states



0.12 For instance, if the time step of the model was ten seconds,
then this would be the estimated downstream network band-
width available to the device ten seconds from the current

Xo 0.18 Xo time. To calculate connectivity forecasts further into fae
ture, the connectivity forecast algorithm calls itself uec
sively as shown in Figure 2(b). The downstream bandwidth

20 seconds ahead (two steps) is therefore the following:
JO- 70 I0.27

CF(X,2) = z Poj - CF(Xj, 1)
V]

174.91 KB/s 0.00 KB/s

X4 1.00 X3 = Poo- CF(Xo, 1) + Po1- CF(X1,1) + Po2- CF(X2, 1)

45.07 KB/s 21.82 KB/s

4 Implementation

Figure 3:Example Markov model with best-bandwidthresults.  \yq haye implemented a BreadCrumbs prototype on Linux, as
a user-level privileged process. This process consistw®f t

which are likely successors of the state contributes more t§réads, each of which is described in a subsection below.

the connectivity forecast than transitions which are wet{ik
In practice, the number of successor states from any givegr 1 Scanning Thread
state will be small as compared to the whole state space, be-

cause states are grounded in geographic reality. One thread periodically scans for access points and fixes the

If stepsis greater than one, connectivity forecasts are calcuedevice’s GPS coordinates by triangulating on the locations

lated recursively as shown in Figure 2(b). At each step up thef AP beacons in the Place Lab database. This scanning pe-

recursion tree, results from leaf nodes are weighted-suinmeriod is a configurable parameten)(set to 10 seconds in our

in proportion to the transition probabilities. current implementation. The scanning thread also handles
the probing of AP connection quality, as described in Sec-
tion 2.1, whenever an open AP is encountered that has not

33 Example been probed at the current GPS grid location. Test resuits ar

. L then stored in a local database.
Consider the Markov chain in Figure 3. The value below each

state’s name is the best downstream bandwidth probed whilfter fixing its current GPS location every seconds, this
at that state—for a stase, this is BBW(). The current state  thréad then updates the Markov model. This consists of up-
is Xo. We want to know the expected downstream bandwidtriating the transition probability from the previous statéte
at the next time step. From Figure 2(b) above, this yields: NeW current state (because of the new location estimate).
The reference server used to estimate AP connection qual-
ity was located on the campus of the University of Michigan,
connected directly to the Internet on the wired EECS net-
work with no firewall. Given that our subsequent evaluation
In other words, the expected downstream network bandwidtkook place in Ann Arbor, one might be skeptical that con-
one step in the future is the sum (over all states in the Markowecting to this server from different wireless access oint
chain) of the best bandwidth observed at each state, weighten the same city would truly approximate the average la-
by the probability that the Markov chain will transition fro  tency and bandwidth one would encounter when connect-
the current statgy to each given statg. When calculatinga ing to arbitrary remote destinations. The peering points be
connectivity forecast, we need not actually sum acrossall t tween the university’s ISP and the common ISPs seen around
states in the Markov chain, but only across those with a nonann Arbor—overwhelmingly, Comcast and AT& T—are not
zero transition probability. Returning to our example, we s |ocated in Ann Arbor, however. In fact, for a subset of lo-
from Figure 3 that the only possible transitions out of skgte  cations around Ann Arbor we performed aacer out e to
are to stateg; andxp, and a self-loop back ty. Therefore, the reference server, and in all cases the shortest path from
Equation 1 above is simplified to: the wireless AP to the EECS network was through Chicago,
lllinois. In some cases, in fact, packets went from the wire-
CF(X0, 1) = Poo- BBW(X0) + Po1- BBW(X1) + Poz- BBW(X2) less AP in Ann Arbor to Chicago, to New York City, back
=0.12-17491+0.70-45.07+0.18-0.00 to Chicago, then to the EECS network in Ann Arbor, only
=5254KB/s a few kilometers away. We are therefore confident that this

CF(Xp,1) = z Poj - BBW(X;) Q)
V]



configuration reasonably approximates the latency and-band
width one would encounter when contacting typical Internet
destinations that require a trip through the network core.

4.2 Application Interface

The other thread handles application requests for cornvaecti
ity forecasts. Applications send requests to BreadCrurigbs v
a named pipe. These requests consist of two values: (1)
the criterion of interest—downstream bandwidth, upstream
bandwidth, or latency—and (2) an integer number of seconds
in the future.

BreadCrumbs converts the value in seconds into the number
of corresponding state transitions in the future of the rhode
This depends both on the scanning pericahd the number Figure 4: Visited grid locations and commute ground truth.

of seconds left until the start of the next scan, because themall squares are all GPS grid locations fixes from two weeks of

mobility model is a discrete time Markov chain where a state-'Ser mobility traces collected. The black line is the “ground truth”
transition fires every seconds path through the map taken by the user on his daily commute be-

tween home and work.

First, BreadCrumbs subtracts the time left until the stéart o

the next scan from the value passed by the application. Then, . ] . . .
it performs integer division of the remaining time by The held, with an integrated 802.11b WiFi card, running Famil-

result is the number of steps in the future of the model afar Linux (a distribution targeted for handheld devices]|]16
which to generate a connectivity forecast. One of the authors carried the handheld with him contin-

uously for two weeks during daytime hours (before seven
For example, assume that BreadCrumbs scans for APs arﬁ:}n)_ All data points lie in Ann Arbor, Michigan—population

updates the mobility model every 10 seconds (as in our im114,000’ density 1630/k#8].

plementation), starting @t=0. Att =9, an application

queries for the forecasted downstream bandwidth 25 second@€adCrumbs ran continuously in the background, scanning
in the future (at = 36). This is| (36— 1)/10| = 3 steps in the for new access points every ten seconds. After each scan,
future. BreadCrumbs then generates the connectivity éstec BreadCrumbs estimated the device’s current GPS coordinate

at that point in the future, for the given criterion, and resi Py cross-referencing the MAC addresses of detected APs
the value to the calling application through the named pipe. with the Place !_ab database (as described in Section 2.2).

The GPS coordinates and MAC addresses were then logged,

along with a timestamp. For each AP in the scan set that
5 Evaluation had not been previously probed at those coordinates, Bread-
Crumbs attempted to associate and probe AP quality as de-
scribed in Section 2.1. The probe results (upstream band-
width, downstream bandwidth, latency) were then appended
to a test results database.

In evaluating BreadCrumbs, we sought answers to the fol
lowing questions:

e How accurately does BreadCrumbs forecast AP quality’Recall from Section 3.1 that BreadCrumbs divides the world
into grid locations, where each grid box is 0.00bf latitude

e How beneficial are such forecasts for applications thaby 0.00F of longitude. At Ann Arbor's latitude (approxi-

are commonly found on mobile devices? mately 42.2N), this is 110 mx80 m. All GPS fixes that fall
e Is the overhead BreadCrumbs imposes reasonable favithin the same box are considered to be the same position.
resource-constrained devices? The small squares in Figure 4 are all the unique grid location

visited during the two weeks of user traces. The solid black
The error bars in all figures below represent the standaod err line represents thground truth path of the user’s daily com-
of the meanS: = o/\/n. mute between home and work. This trip is a mix of walking
and bus riding, and is responsible for the vast majority of mo
tion during the two week period. The spread of visited grid
locations is not strictly limited to the commute path, hoetev

- . . This is a result both of Place Lab GPS error and noise intro-
Rather than rely on existing mobility traces or syntheticdmo duced by other. non-commuting trins. For example. the trace
els, we installed BreadCrumbs on an iPAQ h5555 hand- y ' g trps. pie,

5.1 Methodology



mean | o | max | min n_ | \ mean o max | min | n
APsper scan | 10.23 | 7.73 | 32 0 5227 ‘ down BW 68.38 | 114.41| 385.54| 0.00 | 110
- down non-zero | 123.30| 129.74| 385.54| 0.29 | 61
”g;)‘;ﬁZAF,ZS 282%?5140% ) up BW 33.98 | 49.85 | 241.66| 0.00 | 110
X up non-zero 64.44 | 52.44 | 241.66| 4.10 | 58
encrypted APs 1339 (82.60%)

grid locationsvisited 110

locationswith usable AP | 61 (55.45%) Table 2: Bandwidth at grid locations. Values in KB/s. Accord-

ing to Place Lab estimates, during the evaluation period the mobile
Table 1: Access point statistics. Locations with usable AP are dewge visited 110 unique grid Ioc'at'lons (0.60&t|tuQe by 0.001
I%pgltude). Non-zero refers to omitting those locations where no

those grid Iocatlons_ where at least one access point had a probeencountered AP had a probed bandwidth greater than zero.
downstream bandwidth greater than zero.

100 binary connectivity accurate ——
set includes instances of the user walking from home to var- =3 . next state accurate ——
ious downtown destinations, and driving to several différe 8o L E = s .
locations.

Tables 1 and 2 summarize the frequency and quality of net—é 6o L K |
work connectivity that BreadCrumbs encountered during the 2

course of our evaluation. As Table 1 shows, BreadCrumbs g HH

saw a widely-varying number of APs each time it scanned. & 40} k1 1
While only 17% of all access points encountered were un- S s

encrypted, BreadCrumbs was able to discover a usable AP 20| % {e |
at over half of all visited grid locations. We defimsable

to mean there existed an AP at that location whose probed

downstream bandwidth was greater than zero. 0
k=1 k=2 k=3 k=4 k=5 k=6

Our prior work [25] showed that the application-visible gua
ity of publicly-available access points varies signifiégnt Figure 5: Mobility model prediction accuracy. k indicates the
The results in Table 2 support this conclusion. For each ofumber of steps into the future BreadCrumbs forecasts.

the 110 grid locations visited during the two weeks of trace

collection, we calculated the best upstream and downstrea
bandwidth available. Even when those locations where n
AP had a non-zero bandwidth are omitted, the variance i%
quite large. This bolsters our claim that network connétgtiv

fluctuates significantly as users move around the world. ~ The crucial insight, however, is that we are not really con-
cerned with predicting the user’s mobility perfectly. Ifezd-

Crumbs predicts the user will move to one location, and they
5.2 Forecast Accuracy in fact move to another, as long as the quality of network

connectivity available at the two locations is comparabis t
We first wanted to quantify how accurate connectivity fore-“mistake” is unimportant. The gray bars in Figure 5 repre-
casts are, given the two weeks of traces we collected. As gent the percentage of steps where BreadCrumbs’ prediction
reminder, BreadCrumbs estimates its GPS coordinates atgnd the actual next location matched with regard to binary
fixed frequency. For our evaluation we set this period to terconnectivity. A given location is considerednnected if at
seconds. Thus, the traces are a series of scan sets—listifghst one AP seen at that location had a probed downstream
all AP beacons detected, plus current GPS coordinates andoandwidth greater than zero. BreadCrumbs was over 90%
timestamp—separated by ten seconds of real time. accurate in predicting binary connectivity one step ahead.

We used the first week of traces as the training set that builf Nis accuracy remained high when looking further into the
BreadCrumbs’ mobility model. The second week of traceguture—nearly 80% accurate six steps ahead.

was then the evaluation set. For each step (scan set) in tidext, we examined how the bandwidth predicted by connec-
evaluation set of traces, we compared the grid location @hertivity forecasts matched the bandwidth actually encowater
BreadCrumbs predicted the device would be in the next stepigure 6 charts the difference between predicted and actual
with where it actually did move. We repeated this, varyingbandwidth as a cumulative distribution function (CDF). Eve
the number of steps BreadCrumbs looked ah&pff¢m one  six steps in the future, BreadCrumbs’ bandwidth forecasts
through six. The white bars in Figure 5 indicate the per-were within 10 KB/s of the actual value for over 50% of the
centage of steps across all two weeks of traces where Breagtace period, and within 50 KB/s for over 80%.

Crumbs’ predicted grid location was correct, foKlk < 6.
he accuracy is over 70% fér= 1 but quickly degrades as
readCrumbs must extrapolate further into the future.
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Figure 6:CDF: bandwidth prediction error. kindicates the num-  Figure 7: Opportunistic writeback. By utilizing BreadCrumbs’

ber of steps into the future BreadCrumbs forecasts. connectivity forecasts, the prediction-aware algorithm delays data
writeback briefly to selectively use high-bandwidth access points.
As a result, the total time until data was safe on the remote server

It is important to note that these results were achieved &ith is comparable, but the wireless radio is active 45% less often. This

training set of only one week duration. As users run Bread+ranslates into significant energy savings.

Crumbs for increasingly-long periods, the device-cemtriz

bility model can only benefit from increased exposure to the . )
user's patterns. 5.3.1 Opportunistic Writeback

Ouir first scenario considers a user who has generated some
5.3 Sample Applications content on his handheld device while away from home. These

files are digital photos taken by the camera on his smart-
The primary aim of BreadCrumbs is to improve the phone. The user previously configured a distributed file sys-
application-level and (most importantly) user-visiblgex-  tem client to ensure all content he generates will be safely
ence for mobile devices. To truly evaluate our system, thenieintegrated to his remote file server. This file server could
we need to examine how both the operating system and difee a dedicated machine at his home or work, or a web ser-
ferent mobile applications could benefit from connectivity vice such as Flickr. We assume the only network connec-
forecasts. tivity available to the smartphone is whatever open WiFi is

We evaluate the performance of different applicationsaisin available.

the traces we collected, rather than executing the apjglicaat  For evaluation purposes, we set the number of photos that
“live” on a mobile device. This allows us to directly com- our hypothetical user took at eight, each with a filesize ran-
pare the performance of prediction-unaware algorithms andomly uniform between 1 MB and 5 MB. The set of eight
BreadCrumbs on identical sequences of user motion and AR@ndom filesizes was generated once and then the same set
seen, to ensure an accurate comparison. used across the entire evaluation for consistency.

The subsections that follow investigate three such scenarrhe prediction-unaware algorithm simply tried to transmit
ios. Clearly, connectivity forecasts are most useful fakba the eight image files as quickly as possible, at each step us-
ground or opportunistic tasks, where an application hasssoming the AP with the best upstream bandwidth available at that
flexibility in when a network operation must occur. location. The algorithm that utilized BreadCrumbs sought
to reduce the amount of time the WiFi radio was active,

As in Section 5.2, the first week of traces was the traininqNhiIe not delaving data writeback unreasonably. Our Sim-
set that built the mobility model, and the second week the ' delaying : Y-
le prediction-aware algorithm worked as follows. At each

evaluation set. For each scenario we devised two algorithm% )
that accomplished the same objective—one that was ignorar‘?%ep of trace playback:
of any future predictions, and another that utilized Bread-
Crumbs’ connectivity forecasts. For each trace in the eval-
uation set, we ran both algorithms, recorded the result$, an
subsequently averaged across all the runs. 2. Query BreadCrumbs for its connectivity forecast of up-

stream bandwidth 10, 20, and 30 seconds in the future.
If any of those three future points are predicted to have

1. Determine which AP has the best upstream bandwidth
at the current location.
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tentional as we sought to evaluate how useful BreadCrumbs'¢ 60| 1
connectivity forecasts could be for applications that have
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We ran both algorithms once each for each of the traces in theé
evaluation set. Our evaluation metrics were (1) total eddps
time until the all data was safely on the remote server, and
(2) total time the WiFi radio was actively transmitting. Fig
ure 7 illustrates the results. On average, the predicticare 0 Radio Active Throughput
algorithm completes writeback only slightly slower thae th

aggre_ssive, pred_ict?on—ignorant algorithm. In fact théed Figure 8:Radio Deactivation. All values are normalized to those
ence Is nearly within the error bounds of the mean for bothyf 3 haseline algorithm that keeps the WiFi interface active through-
algorithms. out the entire trace. The prediction-aware algorithm uses Bread-

On the other hand, utilizing BreadCrumbs’ connectivityefor prumbs’ (?orlnectivity forecasts to transfer more _data while activat-
casts lets the prediction-aware algorithm activate theiWiFn9 the WiFi interface less often than the prediction-unaware algo-
radio 45% less often. By attempting to only transmit data”thm'

at high-bandwidth locations, the prediction-aware akioni

makes more efficient use of the wireless radio. While smalreminder, each step the evaluation traces corresponds to te
for desktops or even laptops, this is significant for mob@e d seconds of real time (because BreadCrumbs scans for APs

vices where wireless NIC usage is a large fraction of totaland calculates its GPS fix at that period).

energy expenditure. For example, Anand et al [4] found thatyo e giction-unaware algorithm tracked the downstream

for aiPAQ handhglq, the power required to actively transmitbandwidth available to the device over the past 30 seconds
data over the WiFi interface (éven in power-save mode) wag, 5 sliding window. If at any point it detected that the devic

nfea;]rly eq_ualdto Fhe mheasuhred ‘jj‘_“esce”_t power coNsSUMPtiQf),s disconnected for all of that time, it deactivates thewir
ofthe entire device when the radio was inactive. less radio for the next 60 seconds. At the end of that period,
the radio reactivates and the sliding window begins anew.

532 Radio Deactivation The algorithm that utilizes BreadCrumbs’ connectivityefor
casts works as follows. At each step of trace playback:

ed

20 E

1z

Normal

The previous section illustrated how a user-level appbeat

could employ BreadCrumbs’ connectivity forecasts. Now 1 Query BreadCrumbs to get a connectivity forecast of the

consider how the operating system itself might make use of expected downstream bandwidth at the next three steps
such information. A simple case is deciding when to deac- (10, 20, and 30 seconds in the future).

tivate a WiFi network interface in order to save power. The
optimal policy would deactivate the interface whenever no 2. If the radio is on, and BreadCrumbs predicts no connec-
usable access points are available, and activate it oteerwi tivity in the next 30 seconds, then turn the radio off.

Determining if any usable APs exist at a given location re- 3 E|se if the radio is off, turn it on if BreadCrumbs predicts
quires power, however. Scanning for AP beacons, and possi-  some connectivity in the next 30 seconds.

bly probing the bandwidth available via an AP, are all expen-

sive operations. If the operating system activated theoradi gy the prediction-aware algorithm, when the radio is deac-
every few seconds, scanned for APs, and then made a degjyated it obviously cannot calculate its GPS fix (because we
sion, it may consume as much energy as simply leaving thgre not assuming that a separate GPS radio exists on the de-
radio active in power-save mode the entire time. Ideally, th vice). Instead, when the radio is off this algorithm traciar
operating system could query an oracle that would tell itwhatime and fires a state transition in the Markov chain every 10
the cgrrent netvv_ork conditions are, without having to tunn o seconds—choosing the state with the highest probability in
the wireless radio. the transition matrix. The next time the algorithm readti¢a
We devised two algorithms that sought to approximate thighe WiFiradio, it can calculate its GPS location and “getkbac
unattainable ideal-one that used BreadCrumbs’ conngctivi on track” if it strayed too far from the physical reality.
forecasts, and the other remaining prediction-unawarea As



We also ran a third algorithm, which was simply a baseline 100 N predioton = T 300
that kept the radio active for the entire duration of all erzal Prediction == I

tion traces. All of the results for the other two algorithme a 8ol 4 250
normalized percentages of this baseline. Our evaluatidn me . S
rics were (1) total trace time the radio was active, and (8§ da  § b 4 200 g
throughput from a remote host if downloading at full speed & €0} % <
whenever the radio was active. Figure 8 illustrates thdtesu é {150 2
The algorithm using BreadCrumbs’ connectivity forecasts § 40 - §
activates the WiFi interface for 47% of the trace, as opposed= 11002
to 52% for the prediction-unaware algorithm. Despite this, 20l =3
the prediction-aware algorithm downloaded over 10% more 150
data, 94% as much as the baseline algorithm that kept its ra-

dio active for the entire trace period. Connectivity forstsa 0 EDGE active (3) Throughput 0
let the prediction-aware algorithm only bother to “come up

for air” W_hen itis mOSt likely to .en.counte.r usable AP_S'.in' Figure 9: Phone data network vs. WiFi. The algorithm using

stead of just checking back periodically like the predistio  greadcrumbs' connectivity forecasts relies on the EDGE link 14%

unaware algorithm. less often than the prediction unaware algorithm, but both achieve
similar data throughput across the total trace duration. WiFi is pre-

- ferred to EDGE when possible to conserve both energy and money.
5.3.3 Phonedata network vs. WiFi

So-calledsmartphones, such as the Apple iPhone or the israrely this robust, however. Measurements of deployéd ne
Nokia N95, are increasingly replacing traditional PDAs aswork environments have found average EDGE bandwidth to
users’ mobile computing platform of choice. These devicese around 100 Kbps [15]. Even service providers themselves
can connect to the Internet through either a WiFi interface oadvertise these lower average rates. For example, AT&T (net
over the mobile phone data network through a GPRS, EDGHRvork provider for the iPhone in the United States) advestise
or 3G connection. Each technology has positive and negativaverage download speed on its EDGE network as 80-140
aspects. WiFi connections typically enjoy high bandwidthKbps [6]. We chose a value near the middle of this range,
to the Internet, and are usually free of charge. Their rang@20 Kbps (15 KB/s), as the EDGE download bandwidth for
is limited, however, and coverage is howhere near universathe evaluation.

Phone data networks, on the other hand, offer seamless coy; . : ; P
erage in most areas, but have much slower bandwidth a%ye designed two algorithms to represent this application’s

. . : .Dehavior. They both attempt to use WiFi instead of the
possible service charges. While 3G phone standards promi & one network as much as possible, while maximizing data
throughput rivaling that of WiFi, such services have not yet '

been widely deployed throughput. The first is a prediction-unaware algorithnt tha

' simply uses the WiFi interface whenever there exists a WiFi
Even if 3G is available, however, one must still consider theAP whose downstream bandwidth is greater than the EDGE
power required to communicate with a distant phone towerdownload bandwidth.
as compared to a lower-power connection to a nearby WiFi . - . .
AP. In fact, Armstrong [5] found that WiFi was more energy- I)Tlivig_cond Is a prediction-aware algorithm, which works as
efficient than GSM data networks for all but the smallest '
transfers—those on the order of 30 KB. In a separate study,
Agarwal [1] measured power consumption of both WiFi and
EDGE during VoIP phone calls. Their results showed the
WiFi interface consumed less than 75% as much energy as
the EDGE link, for the same low-bandwidth (32 Kbps) call 2. Else, query BreadCrumbs for its forecast of downstream
traffic. bandwidth via WiFi during the next 30 seconds. Only
For this portion of the evaluation, we consider an arbitrary ~ SWitch to EDGE if BreadCrumbs forecasts there will be
application that is downloading data from a remote server. N0 WiFi bandwidth greater than the EDGE bandwidth
For example, this could be a file sharing client that is fetch- ~ during thatinterval. Otherwise continue using WiFi.
ing files in the background, and can switch back and forth o ) _
between using the WiFi interface and using the phone netBriefly, the goal of the prediction-aware algorithm is toynl
work. The current theoretical maximum throughput of EDGE'eSOrt to the EDGE network if the user is entering a true

is 384 Kbps (48 KB/s). Performance in real-world conditions WiFi dead zone. One must consider the overhead required
for handoff and association between WiFi networks, since

1. If there exists a WiFi AP at the current location whose
downstream bandwidth is greater than the EDGE band-
width, use WiFi at this location.

10



# statesin model 652 100
model size 27984 bytes (42.92 B/state)
#test results 1335
tes DBsze | 92132 bytes (69.01 Blentry| 80r .

Table 3: Overhead: spacerequirements. The test database is 60 1
currently stored in unoptimized, ASCII format.

time (ms)

40 |+ g
such associations are short-lived in comparison to GSM net-
works. If the mobile device could associate simultaneously
with multiple WiFi APs using one radio, BreadCrumbs could
associate with and probe the quality of upcoming APs in the
background while still connected to the AP currently used fo 0 b0
data transmission. Such a capability is provided by Virtual

Wifi [10] for Windows-based devices, as well as by a virtual Figure 10:Connectivity forecast overhead. Results on a Compag
link layer we have developed for Linux. iPAQ handheld (400 MHz CPU), 128 MB RAM.

We compare the results of these two algorithms with a pol-

igy that s_imply uses the EDGE Iipk exclusive!y. Qur evalua- ;e know that BreadCrumbs visited 110 different grid loca-
tion metrics were (1) total trace time the application usex t tions during the evaluation period. If every combination of

EDGE connection to transfer data, and (2) total data throughy et |ocation and previous location were generated as a
put. Figure 9 illustrates the results. Note the two y-axelén

X . state, the model would have 1¥Q10= 12100 states. Even
figure. At left, we compare the percentage of total trace time, 1odel of such complexity would only require 508 KB of
the EDGE link was utilized. The baseline algorithm utilized

) ) X , space on the mobile device. Given the sparseness of these
the EDGE link 100% of the time, so both algorithms' results models in practice, a model of that size would be most likely

are a normalized percentage of this time. At the right, Wéye sufficient to cover an entire metropolitan area.

compare the total download throughput of our sample appli- ) .

cation if transferring data continuously. This is scaleaiio  Likewise, the overhead imposed to store the test database is
to 300% because the baseline algorithm that used EDGE exéasonable—69 bytes per test entry on average. For conve-
clusively transferred about one-third as much data as the twhience, the database was implemented as an ASCII flat file,

i ) _generated by our evaluation require 90 KB of storage space,
The results are somewhat mixed. The algorithm that Utig ¢ only 7.04 KB when in compressed form

lized BreadCrumbs’ connectivity forecasts used the EDGE

link 57% of the time, whereas the prediction-unaware al-Figure 10 examines the CPU overhead imposed when gener-
gorithm did for 71% of total trace time on average. Since@ling connectivity forecasts. The parameies the number

the WiFi link is more energy efficient in terms of joules-per- of steps in the future of the model, given a current state, tha
byte—particularly for large transfers such as this—thisltesu We requested a connectivity forecast of downstream band-
is good news for device energy consumption. The throughwidth from BreadCrumbs. This graph represents only the
put results, however, show the prediction-aware a|gorithn{nstrumented CPU time required for the calculation, not any
transferred 4% less data than the prediction-ignorant-alggeOmmunications overhead between BreadCrumbs and the ap-
rithm. Note that these values represent a theoretical cap diication requesting the forecast. All results were meedur
the throughput the device could achieve if actively dowdioa ©N @ Compag iPAQ h5555, with a 400 MHz ARM processor
ing during the entire trace period. and 128 MB of system RAM.

We requested a connectivity forecast for each of the 652
states in the model our evaluation generated, varying #ee si
of k from 1 to 10. Because this is a recursive algorithm (see

Figure 2) we expect the overhead to grow exponentially. Up

Tabgﬁ.f’ shozljvsl thedsttortagetriquwed on thte (IjP.A(%htO store thgi six steps ahead, the overhead is less than 2.5 ms. Even the
mobility modet and test database generated in the Course @y, o erhead of 75 ms kt= 9 is not prohibitive for ap-

our evaluation. With 652 different states in the model, the . _.. - . .
L ) ’ lications that perform such intensive operations rafngbte
total model size is approximately 27.3 KB, or 43 bytes perp P P o

: hat we made did not implement caching of calculated fore-
state on average. Recall that, because ours is a secomnd-or

Bsts or other possible optimizations in our implemenatio
Markov model, each state represents the current GPS grid lo- P P P

cation of the user and their previous location. From Table 1,

5.4 Overhead

11



6 Related Work Marmasse [23] argues, as we do, in favor of a user-centric
mobility model. HercomMotion system is concerned chiefly
MobiSteer [24] focuses on improving wireless network con-With tracking users’ movement through various semantjicall
nectivity in one specific usage setting—while in motion in Meaningful locations, such as “home” or “work”. We, on the
a motor vehicle. Their system uses a directional antenna t8ther hand, focus on lower-level waypoints—namely, GPS
maximize the duration and quality of connectivity between adrid locations. The semantic concept of user-defined loca-
moving vehicle and stationary access points in the commutions could easily be layered atop such low-level inforomati
nity. This goal is complementary to that of BreadCrumbs,however.
because MobiSteer performs well in situations where Breadraggle [17] is a framework for disseminating data between
Crumbs does not. While portions of the evaluation tracesnobile users based on the fleeting occasions when they come
collected in our paper track the user riding on a city bus,nto physical contact with each other. In these situations i
during this period the user only has reliable connectivityfrastructure such as WiFi networks need not be used, because
while stopped at intersections. As explored in detail by By-users are within range of low-power, point-to-point linkte
chkovsky et al [9], this reduced performance was due to theologies like Bluetooth or ZigBee. Their system is clearly
brief time the client has to associate with the AP, obtain ajependent on user-centric mobility information, but seieks
DHCP address, and do useful work. On the other handpredict when pairs of users will come into contact with each
BreadCrumbs does not require any specialized hardware angiher. Our work, on the other hand, is focused more on lever-
works with whatever users already carry in their pocket. Mo-aging information about wireless access points the usér wil
biSteer’'s cached mode operation is also reminiscent of thegon encounter.
way BreadCrumbs, and our earlier project Virgil [25], opti-
mize future resource discovery by caching historical axces
point quality information.

Most applications of location prediction have been in mo-
bile phone networks. Typically, a central network operator
seeks to know the sequence of network towers with which a
Song et al [28] studied the efficacy of applying different mo- handset will associate. Given this information, the nekwor
bility prediction methods to the problem of improving band- operator can reserve resources, such as bandwidth, atthe up
width provisioning and handoff for VoIP telephony. Much coming nodes, so handoff proceeds as smoothly as possible.
like our work, they use real client traces to evaluate the sucBhattacharya and Das [7] use a variant of the LZ predic-
cess of a concrete application that is prediction-awar@yTh tor described above to predict the next cell users will asso-
assume the existence of a centralized authority, howéhar, t ciate with. Yu and Leung [32] extend this idea to predict
collects all mobility information, makes predictions, atid-  not only where a mobile device will hand off but also when
seminates instructions to the various wireless acces$goin this will occur. Liang and Haas [21] use a Gauss-Markov
We are focused on applications that are still useful when thenodel in a similar way. Others use Robust Extended Kalman
device itself keeps its mobility history, and this inforieat  Filtering (REKF) [26], integrate individual path infornan

need not be disclosed to any other party. with system-wide aggregate data [2], or estimate future lo-

Ghosh et al [13] predict the probability that users visit pop cations through trajectory analysis [3]. Liu et al [22] use
ular locations, known akubs. Their focus is on extrapo- & similar hybrid approach for mobility prediction in wire-
lating sociological orbits from the client mobility data by €S ATM networks, rather than for mobile telephony. They
identifying the frequency with which users encounter one ancombine system-wide information with local mobility hisgo
other at these hubs. The authors do not evaluate how a@nd path trajectories to reduce system resource consumptio
curately their Bayesian techniques predicted explicierdli  While maintaining user QoS.

paths (rather than just the hubs they visit). We therefor@we Al of these location predictors are enabled by accurate est
unable to compare the accuracy of their technique with thagnates of a mobile device’s location. In some cases, all that i
of our second-order Markov model. needed is information on which access point or mobile phone

Our prior work [31] concentrated, as did Kim et al [18], on fower the device is associated with. For predictors and ap-
deriving realistic mobility models from actual user motyili plications requiring more fine grained location informatio
traces. The idea is to take many different client traces anéhere are a wide variety of solutions. Place Lab leverages
build a probabilistic model that can be used to generate aRublicwar-driving databases of WiFi AP GPS coordinates to
bitrary client tracks. These traces, while still artificialore  triangulate one’s location based on the APs seen at a given
closely model the real movements of users than do syntheti©cation and their signal strengths [20]. The same idea has
models like Random Waypoint [30]. In this paper, we con-recently been extended to use GSM phone towers rather than
sider only the situation where devices maintain their dctuaWViFi APs [11]. Fox et al [12] showed the benefit of Bayesian

mobility history themselves, and predict their future beba  filtering to coalesce results from multiple location sessor
“on-the-fly” rather than base predictions on mobility medel and smooth transient uncertainty in location estimateseOt

derived from multiple users’ behavior. work focuses on indoor localization at very small scales, ei
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ther by deploying custom hardware [27] or mapping existing Journal on Selected Areas in Communications, 19(10):1915—
WiFi beacon sources [14]. 1930, October 2001.

[4] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-
tuning wireless network power management.Phoceedings
7 Conclusion of the Ninth International Conference on Mobile Computing
and Networking (MobiCom), pages 176-189, San Diego, Cal-
ifornia, USA, September 2003.

Trevor Armstrong, Olivier Trescases, Cristiana Amza, and
Eyal de Lara. Efficient and transparent dynamic content up-
dates for mobile clients. IRroceedings of the Fourth Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices (MobhiSys), pages 5668, Uppsala, Sweden, June 2006.

Operating systems currently focus on immediate conditions
when managing wireless network connections. But today, [5]
users are more mobile than ever, utilizing a patchwork of
public access points of varying capabilities and uneven ge-
ographic distribution. Applications would like to use this
public connectivity opportunistically to perform backgrad

or low-priority work, but cannot make reliable assumptions
about connection quality at any given moment in the future.

[6] AT&T EDGE network, average throughput and latency.
https://cingul ar.atgnow concng/tutorials/kb31719. htni .

. . [7] Amiya Bhattacharya and Sajal K. Das. Lezi-update: an
We argue that the increased mobility of users demands a fo- * ixtormation-theoretic approach to track mobile users in PCS

cus on how connectivity changes over time—desivative. networks. InMobiCom ’99: Proceedings of the 5th an-
This paper described BreadCrumbs, our system that leta mo-  nual ACM/IEEE international conference on Mobile comput-
bile device track this trend of connectivity quality as itereer ing and networking, pages 1-12, New York, NY, USA, 1999.

moves around the world. BreadCrumbs maintains a person-  ACM Press.

alized mobility history on th_e device, and tracks the APs en- (g] United States Census Bureau. 2000 census of population
countered at different locations. BreadCrumbs also probes  and housing, summary population and housing characteristics,
the application-level quality—bandwidth and latency to the Washington, DC, USA, 2002.

Internet—of the open connections the device encounters. [9] V. Bychkovsky, B. Hull, AK. Miu, H. Balakrishnan, and

Together, the predictions of the mobility model and the AP S. Madden. A measurement study of vehicular internet ac-
quality database yieldonnectivity forecasts. These fore- cess using in situ Wi-Fi networks. Froceedings of the 12th
casts let applications take domain-specific action in nesgo Annual International Conference on Mobile Computing and

to upcoming network conditions. We evaluated the efficacy Networking (MabiCom), 2006.

of these forecasts with several weeks of real-world usagd10] R. Chandra, P. Bahl, and P. Bahl. MultiNet: Connecting to
BreadCrumbs was able to predict downstream bandwidth at ~ Multiple IEEE 802.11 networks using a single wireless card. In
the next step of the model within 10 KB/s for over 50% of ~ Proceedingsof the 23rd Annual Joint Conference of the |EEE

the evaluation period, and within 50 KB/s for over 80% of gggwp:;eg a;d CO}anunl(éa:ll_OnS ?A)CletrgegélolerOCOM), pages
the time, with only one week of training data to build the —992, Hong fong, thina, Ware '

model and AP quality database. We also evaluated how thrdéll Mike Y. Chen, Tim Sohn, Dmitri Chmelev, Dirk Haehnel, Jef-
example applications, with minimal modification, can a#li frey Hightower, Jeff Hughes, Anthony LaMarca, Fred Potter,
connectivity forecasts. Our results found two application lan Smith, and Alex Varshavsky. Practical metropolitan-scale

saw both improved performance and enerav efficienc hile positioning for GSM phones. IRroceedings of the Eighth In-
W Improved p gy etnciency, whi ternational Conference on Ubiquitous Computing (UbiComp),

the results were somewhat mixed for the third. pages 225-242, Irvine, California, USA, September 2006.

[12] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and
Gaetano Borriello. Bayesian filtering for location estima-
tion. | EEE Pervasive Computing, 2(3):24-33, July—September
2003.
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