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Abstract

As mobile devices continue to shrink, users are no longer
merely nomads, but truly mobile, employing devices on the
move. At the same time, these users no longer rely on a single
managed network, but exploit a wide variety of connectivity
options as they spend their day. Together, these trends argue
that systems must consider thederivative of connectivity—
the changes inherent in movement between separately man-
aged networks, with widely varying capabilities.

To manage the derivative of connectivity, we exploit the fact
that people are creatures of habit; they take similar paths ev-
ery day. Our system, BreadCrumbs, tracks the movement
of the device’s owner, and customizes a predictive mobility
model for that specific user. Rather than rely on a synthetic
model or aggregate observations, this custom-tailored model
can be used together with past observations of wireless net-
work capabilities to generateconnectivity forecasts. Appli-
cations can in turn use these forecasts to plan future network
use with confidence. We have built a BreadCrumbs proto-
type, and evaluated it with several weeks of real-world us-
age. Our results show that these forecasts are sufficiently ac-
curate, even with as little as one week of training, to provide
improved performance with reduced power consumption for
several applications.

1 Introduction

Operating systems manage wireless networks onlyin the mo-
ment, reactively choosing connections only when circum-
stances change. This is a reasonable position to take if most
users are merely nomadic, and the few truly mobile users rely
on homogeneous access points. However, true mobile usage
across a diverse and separately-managed patchwork of con-
nectivity options presents both new challenges and opportu-
nities.

In such an environment, mobile devices can work oppor-
tunistically as the they encounter public network connectiv-
ity. However, applications cannot make reliable assumptions
about the quality of network connection at any given moment.

With mobility, available network connectivity fluctuates,de-
pending both on the path taken through uncoordinated pub-
lic deployments and the varied quality of individual access
points.

Reactive management performs poorly for this collection of
always-active, mobile devices attempting to use a patchwork
of uneven, unmanaged connectivity. Instead, one must con-
sider thederivative of connectivity—how it changes over
time—to properly support mobile, networked applications.

This paper describes BreadCrumbs, our system that lets a
mobile device exploit this derivative of connectivity as its
owner moves around the world. BreadCrumbs maintains a
personalized mobility model on the user’s device, predicting
future network conditions based past movements. Because
people are creatures of habit, the predictions of this model
are highly accurate with even minimal training time. Bread-
Crumbs tracks not only which APs were seen at a location,
but also probes their application-visible quality.

BreadCrumbs combines the predictions of its mobility model
with an AP quality database to produceconnectivity fore-
casts. Applications, or the operating system itself, use these
forecasts to take domain-specific actions in response to up-
coming network conditions, deferring less time-sensitiveor
low-priority work to a time that will maximize performance
or minimize power consumption.

We evaluated our prototype system with several weeks of
real-world usage in Ann Arbor, Michigan. We found that
both the quality and the availability of publicly-accessible
APs are quite uneven. In spite of this, BreadCrumbs was
able to predict the device’s next-step downstream bandwidth
from the Internet within 10 KB/s for over half of the time,
and within 50 KB/s for over 80% of the time. These results
were achieved with only one week of training.

We further evaluated how BreadCrumbs’ connectivity fore-
casts could aid three example applications: (1) opportunistic
writeback of created media content, (2) deactivating a wire-
less link in an area without coverage to save power, and (3)
assigning data flows between WiFi and cellular data con-
nections. Compared to prediction-ignorant baselines, Bread-
Crumbs’ forecasts improve power efficiency and application
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performance for the first two applications, while the results
for the third are somewhat mixed.

This work makes the following contributions:

• We introduce the concept ofconnectivity forecasts and
show how they are useful to realistic applications on
always-active, mobile devices.

• We show that such devices can predict not just their fu-
ture mobility patterns but quality of upcoming network
connectivity with high accuracy, without requiring GPS
hardware or extensive centralized infrastructure.

• We evaluate our system using the actual mobility of a
real person as he encountered thein situ deployment of
access points in a city.

• We show how resource-constrained mobile devices can
do this efficiently, respecting both CPU and storage lim-
itations.

2 Background

2.1 Determining AP Quality

There is little point to developing a complex system for fore-
casting the quality and availability of public wireless connec-
tions if they are few and far between, or all access points
have equivalent connection quality. We explored the cur-
rent state of affairs in our prior work [25], which described
Virgil—an AP selection tool that considers the application-
visible quality of access points. In contemporary operating
systems, wireless connection managers typically select the
unencrypted AP with the strongest received signal strength.
Rather than consider such link-layer criteria, Virgil quickly
associates with each candidate AP and runs a battery of
tests designed to estimate the connection quality applications
would enjoy if the device were to choose this access point.

Virgil connects toreference servers in order to estimate this
connection quality. A reference server is a well-known Inter-
net destination that runs a simple TCP server process. Like
a honeypot, this process listens on a wide range of TCP port
numbers. To probe the application-visible quality of an ac-
cess point, Virgil connects to a reference server via the AP
and runs the following tests:

• Estimate downstream bandwidth by connecting to the
TCP server process on a well-known port and download-
ing random data as fast as possible.

• Determine if the AP is blocking certain services by at-
tempting a TCP connection to common port numbers.

• Estimate latency by pinging the reference server.

We compared the success of selecting APs based on sig-
nal strength with selecting the AP with the best downstream
bandwidth probed by Virgil, in five neighborhoods of varied
density in three different cities in the United States. Virgil
resulted in a 22–100% increase in the percentage of scans
that successfully found an access point with a usable Internet
connection.

Much in the same way, BreadCrumbs uses a reference server
to estimate the connection quality of the access points en-
countered by mobile devices. In addition to downstream
bandwidth, BreadCrumbs also estimates upstream bandwidth
via the AP. Rather than simply pinging the reference server,
we estimate latency by opening a TCP connection and ping-
ponging a integer nonce back and forth. This was an attempt
to more closely mimic how real applications would utilize
a network connection. Finally, BreadCrumbs omits the port
status tests in order shorten the testing process. In summary,
BreadCrumbs uses the techniques described above to esti-
mate the following three values for each open access point
the mobile device encounters: (1) downstream TCP band-
width from an Internet host, (2) upstream TCP bandwidth to
the Internet, and, (3) latency from the device to remote desti-
nations.

2.2 Estimating Client Location

In order for a device to predict its future mobility, it needs
some way to determine its location. This location could be
descriptive (“at Angell Hall”), relative to known locations, or
absolute. In our case, BreadCrumbs uses latitude and longi-
tude coordinates as the basic building blocks of each device’s
mobility model. Typically, this can be provided by GPS.
Even for devices without GPS technology, it is possible to
estimate one’s position with reasonable accuracy, using tech-
nologies like Place Lab [20]. This project exploits the fact
that a plethora of fixed-position beacons exist in the everyday
environment—namely, WiFi access points and GSM mobile
phone towers. A nice benefit of Place Lab is that it works
well when GPS does not—indoors and in urban canyons.

Place Lab relies on publicwardriving databases, which map
beacon MAC addresses to GPS locations. For example,
wigle.net currently tracks over 11 million distinct access
points in its database. Place Lab generates a GPS fix by first
scanning for all beacons in the device’s vicinity, then trian-
gulating based on the GPS location of each beacon source.
Their evaluation results (in 2005) found the mean accuracy
of Place Lab’s location estimates to be on the order of 20-30
meters from the GPS “ground truth” when only WiFi beacon
sources were utilized. As we shall see, such error is accept-
able for our needs.
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3 Connectivity Forecasting

By leveraging Virgil and either Place Lab or GPS data, one
can determine both the locations a user has previously visited
and the application-level quality of network connectivityat
those locations. Our goal is to combine these two sets of data
to yield what we will callconnectivity forecasts. A connec-
tivity forecast is an estimate of the quality of a given facetof
network connectivity at some future time. An example would
be the estimated upstream bandwidth from the client to a re-
mote host 20 seconds in the future. This is a function both
of the user’s mobility—which APs will be in range at that
time—and of the quality of these APs’ network connections.

A wide variety of applications can exploit such forecasts. For
example, consider a distributed file system client that needs
to re-integrate some data to a remote file server. If energy
consumption is a first-class concern—as it is for handheld
devices—the best policy for the client would be to transmit
data to the file server when the mobile device has the highest-
bandwidth network connection that it will enjoy in the near
future.

This section first discusses how BreadCrumbs maintains a
personalized device mobility model, based on the past se-
quence of GPS locations the user visits. Next, we describe
how BreadCrumbs applies the principles of Virgil [25] to es-
timate the quality of different access points, and combines
this data with the predictions of the mobility model. The sec-
tion concludes with a concrete example of how connectivity
forecasts are generated.

3.1 Predicting Future Mobility

Mobility prediction is a well-studied area, particularly in the
domain of mobile phone networks. The majority of applica-
tions of such techniques focus on allowing a central authority
to track the movement of devices to pre-provision network
resources [2, 3, 7, 21, 26, 28, 32]. As did Place Lab, we note
that tracking mobility history at a central point is problematic.
When such databases are compromised—either accidentally,
maliciously, or under subpoena—the precise movements of
users are disclosed without consent. Furthermore, mobile
devices may need this information the most at precisely the
times when they are disconnected from the network and can-
not query the centralized server.

Synthetic mobility models [30] or aggregate models derived
from the movements of many users [18, 31] are useful when a
network provider needs the big picture of how their network
will be utilized. However, such models have little chance
of accurately capturing the very unique paths one user takes
through their environment.

The most compelling reason to maintain the mobility model
on the device itself is that, unlike for a mobile phone network,

State Last GPS Current GPS
1 — (42.275,-83.747)
2 (42.275,-83.747) (42.276,-83.747)
3 (42.276,-83.747) (42.277,-83.746)
4 (42.277,-83.746) (42.277,-83.746)
5 (42.277,-83.746) (42.277,-83.745)

Figure 1:Generating states from mobility history. Each state in
the second-order Markov model encodes the current GPS location
and the previous location. GPS fixes are estimated at a set periodτ
that is the time interval between state transitions in the model.

there exists no one centralized authority who controls all pub-
lic WiFi APs that the user encounters. This limits our choice
of mobility models to those that can reasonably be main-
tained on resource-constrained, handheld devices. Song et
al [29] previously evaluated the accuracy of several common
mobility prediction models, using mobility data collectedon
the campus of Dartmouth College during the 2003-2004 aca-
demic year [19]. This dataset tracks the AP association his-
tory of over 7000 users to over 550 WiFi access points of
known location.

Their evaluation found a second-order Markov model, with
fallback to a first-order model when the second-order model
has no prediction, was the most accurate of all techniques
examined. Conveniently, Markov models are ideal for use
on resource constrained devices. Their CPU needs are low
because model querying and maintenance involves merely
reading and writing individual entries in arrays. Since these
arrays are generally sparse, storage requirements are modest.

We chose geographic longitude and latitude coordinates as
the fundamental building block of our model. Since we have
chosen a second-order Markov model, each state consists of
two sets of coordinates: the location where the device was
during the last state, and its current location. Tracking this
second-order state is useful for distinguishing between differ-
ent mobility paths that share a common point. For example,
this can distinguish between the user walking eastbound and
westbound on a given street.
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The resolution of our model is bounded both by the accu-
racy of location sensing and the resource constraints of mo-
bile devices. To avoid a state space explosion, BreadCrumbs
rounds all GPS values to three decimal places—one one-
thousandth of a degree. While the size of one degree of lat-
itude is constant everywhere on the Earth, the distance be-
tween two degrees of longitude shrinks as one moves further
away from the equator. At our latitude in Ann Arbor, Michi-
gan (42.2◦N), a 0.001◦× 0.001◦ grid square is 110 m×80 m.

The frequency with which BreadCrumbs estimates the de-
vice’s GPS location bounds the resolution of the mobility
model. This model can be thought of as a discrete-time
Markov chain where a state transition fires everyτ sec-
onds. Figure 1 illustrates how the model generation process
works. The first state is state 1. This is a special state with
no “Last GPS” component, just the initial location. Then,
τ seconds later BreadCrumbs fixes the device’s location at
(42.276,−83.747), and creates the new state 2. The remain-
ing states in the example are generated in a similar fashion.

For each state in the model, BreadCrumbs updates the
Markov transition matrix whenever the model is in the state
and transitions to another. These transitions occur everyτ
seconds. Note that if the user remains at one location for long
periods, the model will have a heavy transition probabilityto-
wards the self-loop (back to the same state) at that location.
This is an easy way for BreadCrumbs to identify what others
have termedhubs [13]—popular, long-term destinations.

3.2 Forecasting Future Conditions

Section 2.1 above described our prior work on determining
the application-visible quality of WiFi access points. We
use similar techniques here to build an AP quality database.
The purpose of maintaining this database is to estimate the
“quality” of a connection to the Internet, for all the differ-
ent access points a mobile device encounters. As with Virgil,
when BreadCrumbs first encounters an unencrypted AP, it at-
tempts to associate and obtain an IP address through DHCP.
If successful, BreadCrumbs then opens three connections to
a remote reference server, to estimate (1) downstream band-
width, (2) upstream bandwidth, and (3) latency to remote In-
ternet hosts.

One reference server cannot possibly represent the myriad
network destinations that applications might contact. But
note that the first hops—the wireless AP and its backend con-
nection, e.g. a DSL or cable modem—are constant no mat-
ter what the remote destination of a connection ultimately is.
From there, the path through the network core depends on
the peering agreements between the AP’s ISP and that of the
destination. We argue that when choosing between two APs,
it is far more likely that the overall quality of an end-to-end
link depends on edge effects rather than core routing issues.

BBW (statex)

best ← 0.00
foreach ap ∈ {APs previously seen at statex}

if ap.bandwidth > best
best ← ap.bandwidth

return best

(a) Best bandwidth algorithm

CF (statexi, int steps)

if steps ≤ 1
return ∑∀ j{pi j · BBW(x j)}

else
return ∑∀ j{pi j ·CF(x j,steps−1)}

(b) Connectivity forecast algorithm

Figure 2:Pseudocode: best bandwidth at a state and connectiv-
ity forecasts. The best bandwidth algorithm has been simplified to
assume BreadCrumbs tracks one type of bandwidth, when in fact it
differentiates between upstream and downstream connectivity.

A subtle point is that one access point may be visible from
multiple grid locations, since our chosen grid size (0.001◦×
0.001◦) is only 110m×80m at Ann Arbor’s latitude. The
quality of an AP may vary at different grid locations, how-
ever, because of varying distances from the AP, physical in-
terference, et cetera. BreadCrumbs therefore tags all AP test
results with the GPS coordinates at which they were taken.
Multiple test results for a single AP co-exist in the quality
database if they were probed at different GPS grid locations.

BreadCrumbs combines the custom user mobility model and
the AP quality database to provideconnectivity forecasts.
Figure 2(b) describes a simplified version of this algorithm.
This example takes two arguments: a state in the mobil-
ity model, and an integer number of steps in the future. In
our actual implementation of BreadCrumbs, the algorithm
also considers what network quality is to be forecast (down-
stream/upstream bandwidth, or latency). To simplify the
pseudocode we assume the algorithm only considers one net-
work quality metric,bandwidth.

First, consider the limiting case wheresteps is one. This is
a request for the projected network bandwidth one transition
past the specified state. In other words, for the model tran-
sition periodτ, one step isτ seconds in the future. Bread-
Crumbs calculates this forecast as the weighted sum, across
all states in the model, of the best bandwidth previously seen
from an AP at that potential next state. This sum is weighted
by the transition probability that model will transition from
statexi to a statex j. Thus, the best bandwidth seen at states
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Figure 3:Example Markov model with best-bandwidth results.

which are likely successors of the state contributes more to
the connectivity forecast than transitions which are unlikely.
In practice, the number of successor states from any given
state will be small as compared to the whole state space, be-
cause states are grounded in geographic reality.

If steps is greater than one, connectivity forecasts are calcu-
lated recursively as shown in Figure 2(b). At each step up the
recursion tree, results from leaf nodes are weighted-summed
in proportion to the transition probabilities.

3.3 Example

Consider the Markov chain in Figure 3. The value below each
state’s name is the best downstream bandwidth probed while
at that state—for a statexi, this is BBW(xi). The current state
is x0. We want to know the expected downstream bandwidth
at the next time step. From Figure 2(b) above, this yields:

CF(x0,1) = ∑
∀ j

p0 j · BBW(x j) (1)

In other words, the expected downstream network bandwidth
one step in the future is the sum (over all states in the Markov
chain) of the best bandwidth observed at each state, weighted
by the probability that the Markov chain will transition from
the current statex0 to each given statex j. When calculating a
connectivity forecast, we need not actually sum across all the
states in the Markov chain, but only across those with a non-
zero transition probability. Returning to our example, we see
from Figure 3 that the only possible transitions out of statex0

are to statesx1 andx2, and a self-loop back tox0. Therefore,
Equation 1 above is simplified to:

CF(x0,1) = p00 · BBW(x0)+ p01 · BBW(x1)+ p02 · BBW(x2)

= 0.12·174.91+0.70·45.07+0.18·0.00

= 52.54KB/s

For instance, if the time step of the model was ten seconds,
then this would be the estimated downstream network band-
width available to the device ten seconds from the current
time. To calculate connectivity forecasts further into thefu-
ture, the connectivity forecast algorithm calls itself recur-
sively as shown in Figure 2(b). The downstream bandwidth
20 seconds ahead (two steps) is therefore the following:

CF(x0,2) = ∑
∀ j

p0 j ·CF(x j,1)

= p00 ·CF(x0,1)+ p01 ·CF(x1,1)+ p02 ·CF(x2,1)

4 Implementation

We have implemented a BreadCrumbs prototype on Linux, as
a user-level privileged process. This process consists of two
threads, each of which is described in a subsection below.

4.1 Scanning Thread

One thread periodically scans for access points and fixes the
device’s GPS coordinates by triangulating on the locations
of AP beacons in the Place Lab database. This scanning pe-
riod is a configurable parameter (τ), set to 10 seconds in our
current implementation. The scanning thread also handles
the probing of AP connection quality, as described in Sec-
tion 2.1, whenever an open AP is encountered that has not
been probed at the current GPS grid location. Test results are
then stored in a local database.

After fixing its current GPS location everyτ seconds, this
thread then updates the Markov model. This consists of up-
dating the transition probability from the previous state to the
new current state (because of the new location estimate).

The reference server used to estimate AP connection qual-
ity was located on the campus of the University of Michigan,
connected directly to the Internet on the wired EECS net-
work with no firewall. Given that our subsequent evaluation
took place in Ann Arbor, one might be skeptical that con-
necting to this server from different wireless access points
in the same city would truly approximate the average la-
tency and bandwidth one would encounter when connect-
ing to arbitrary remote destinations. The peering points be-
tween the university’s ISP and the common ISPs seen around
Ann Arbor—overwhelmingly, Comcast and AT&T—are not
located in Ann Arbor, however. In fact, for a subset of lo-
cations around Ann Arbor we performed atraceroute to
the reference server, and in all cases the shortest path from
the wireless AP to the EECS network was through Chicago,
Illinois. In some cases, in fact, packets went from the wire-
less AP in Ann Arbor to Chicago, to New York City, back
to Chicago, then to the EECS network in Ann Arbor, only
a few kilometers away. We are therefore confident that this
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configuration reasonably approximates the latency and band-
width one would encounter when contacting typical Internet
destinations that require a trip through the network core.

4.2 Application Interface

The other thread handles application requests for connectiv-
ity forecasts. Applications send requests to BreadCrumbs via
a named pipe. These requests consist of two values: (1)
the criterion of interest—downstream bandwidth, upstream
bandwidth, or latency—and (2) an integer number of seconds
in the future.

BreadCrumbs converts the value in seconds into the number
of corresponding state transitions in the future of the model.
This depends both on the scanning periodτ and the number
of seconds left until the start of the next scan, because the
mobility model is a discrete time Markov chain where a state
transition fires everyτ seconds.

First, BreadCrumbs subtracts the time left until the start of
the next scan from the value passed by the application. Then,
it performs integer division of the remaining time byτ. The
result is the number of steps in the future of the model at
which to generate a connectivity forecast.

For example, assume that BreadCrumbs scans for APs and
updates the mobility model every 10 seconds (as in our im-
plementation), starting att = 0. At t = 9, an application
queries for the forecasted downstream bandwidth 25 seconds
in the future (att = 36). This isb(36−1)/10c= 3 steps in the
future. BreadCrumbs then generates the connectivity forecast
at that point in the future, for the given criterion, and returns
the value to the calling application through the named pipe.

5 Evaluation

In evaluating BreadCrumbs, we sought answers to the fol-
lowing questions:

• How accurately does BreadCrumbs forecast AP quality?

• How beneficial are such forecasts for applications that
are commonly found on mobile devices?

• Is the overhead BreadCrumbs imposes reasonable for
resource-constrained devices?

The error bars in all figures below represent the standard error
of the mean:SE = σ/

√
n.

5.1 Methodology

Rather than rely on existing mobility traces or synthetic mod-
els, we installed BreadCrumbs on an iPAQ h5555 hand-

Figure 4: Visited grid locations and commute ground truth.
Small squares are all GPS grid locations fixes from two weeks of
user mobility traces collected. The black line is the “ground truth”
path through the map taken by the user on his daily commute be-
tween home and work.

held, with an integrated 802.11b WiFi card, running Famil-
iar Linux (a distribution targeted for handheld devices [16]).
One of the authors carried the handheld with him contin-
uously for two weeks during daytime hours (before seven
pm). All data points lie in Ann Arbor, Michigan—population
114,000, density 1630/km2 [8].

BreadCrumbs ran continuously in the background, scanning
for new access points every ten seconds. After each scan,
BreadCrumbs estimated the device’s current GPS coordinates
by cross-referencing the MAC addresses of detected APs
with the Place Lab database (as described in Section 2.2).
The GPS coordinates and MAC addresses were then logged,
along with a timestamp. For each AP in the scan set that
had not been previously probed at those coordinates, Bread-
Crumbs attempted to associate and probe AP quality as de-
scribed in Section 2.1. The probe results (upstream band-
width, downstream bandwidth, latency) were then appended
to a test results database.

Recall from Section 3.1 that BreadCrumbs divides the world
into grid locations, where each grid box is 0.001◦ of latitude
by 0.001◦ of longitude. At Ann Arbor’s latitude (approxi-
mately 42.2◦N), this is 110 m×80 m. All GPS fixes that fall
within the same box are considered to be the same position.
The small squares in Figure 4 are all the unique grid locations
visited during the two weeks of user traces. The solid black
line represents theground truth path of the user’s daily com-
mute between home and work. This trip is a mix of walking
and bus riding, and is responsible for the vast majority of mo-
tion during the two week period. The spread of visited grid
locations is not strictly limited to the commute path, however.
This is a result both of Place Lab GPS error and noise intro-
duced by other, non-commuting trips. For example, the trace
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mean σ max min n
APs per scan 10.23 7.73 32 0 5227

unique APs 1621
open APs 282 (17.40%)

encrypted APs 1339 (82.60%)
grid locations visited 110

locations with usable AP 61 (55.45%)

Table 1: Access point statistics. Locations with usable AP are
those grid locations where at least one access point had a probed
downstream bandwidth greater than zero.

set includes instances of the user walking from home to var-
ious downtown destinations, and driving to several different
locations.

Tables 1 and 2 summarize the frequency and quality of net-
work connectivity that BreadCrumbs encountered during the
course of our evaluation. As Table 1 shows, BreadCrumbs
saw a widely-varying number of APs each time it scanned.
While only 17% of all access points encountered were un-
encrypted, BreadCrumbs was able to discover a usable AP
at over half of all visited grid locations. We defineusable
to mean there existed an AP at that location whose probed
downstream bandwidth was greater than zero.

Our prior work [25] showed that the application-visible qual-
ity of publicly-available access points varies significantly.
The results in Table 2 support this conclusion. For each of
the 110 grid locations visited during the two weeks of trace
collection, we calculated the best upstream and downstream
bandwidth available. Even when those locations where no
AP had a non-zero bandwidth are omitted, the variance is
quite large. This bolsters our claim that network connectivity
fluctuates significantly as users move around the world.

5.2 Forecast Accuracy

We first wanted to quantify how accurate connectivity fore-
casts are, given the two weeks of traces we collected. As a
reminder, BreadCrumbs estimates its GPS coordinates at a
fixed frequency. For our evaluation we set this period to ten
seconds. Thus, the traces are a series of scan sets—listing
all AP beacons detected, plus current GPS coordinates and a
timestamp—separated by ten seconds of real time.

We used the first week of traces as the training set that built
BreadCrumbs’ mobility model. The second week of traces
was then the evaluation set. For each step (scan set) in the
evaluation set of traces, we compared the grid location where
BreadCrumbs predicted the device would be in the next step
with where it actually did move. We repeated this, varying
the number of steps BreadCrumbs looked ahead (k) from one
through six. The white bars in Figure 5 indicate the per-
centage of steps across all two weeks of traces where Bread-

mean σ max min n
down BW 68.38 114.41 385.54 0.00 110

down non-zero 123.30 129.74 385.54 0.29 61
up BW 33.98 49.85 241.66 0.00 110

up non-zero 64.44 52.44 241.66 4.10 58

Table 2: Bandwidth at grid locations. Values in KB/s. Accord-
ing to Place Lab estimates, during the evaluation period the mobile
device visited 110 unique grid locations (0.001◦ latitude by 0.001◦

longitude). Non-zero refers to omitting those locations where no
encountered AP had a probed bandwidth greater than zero.
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Figure 5: Mobility model prediction accuracy. k indicates the
number of steps into the future BreadCrumbs forecasts.

Crumbs’ predicted grid location was correct, for 1≤ k ≤ 6.
The accuracy is over 70% fork = 1 but quickly degrades as
BreadCrumbs must extrapolate further into the future.

The crucial insight, however, is that we are not really con-
cerned with predicting the user’s mobility perfectly. If Bread-
Crumbs predicts the user will move to one location, and they
in fact move to another, as long as the quality of network
connectivity available at the two locations is comparable this
“mistake” is unimportant. The gray bars in Figure 5 repre-
sent the percentage of steps where BreadCrumbs’ prediction
and the actual next location matched with regard to binary
connectivity. A given location is consideredconnected if at
least one AP seen at that location had a probed downstream
bandwidth greater than zero. BreadCrumbs was over 90%
accurate in predicting binary connectivity one step ahead.
This accuracy remained high when looking further into the
future—nearly 80% accurate six steps ahead.

Next, we examined how the bandwidth predicted by connec-
tivity forecasts matched the bandwidth actually encountered.
Figure 6 charts the difference between predicted and actual
bandwidth as a cumulative distribution function (CDF). Even
six steps in the future, BreadCrumbs’ bandwidth forecasts
were within 10 KB/s of the actual value for over 50% of the
trace period, and within 50 KB/s for over 80%.
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Figure 6:CDF: bandwidth prediction error. k indicates the num-
ber of steps into the future BreadCrumbs forecasts.

It is important to note that these results were achieved witha
training set of only one week duration. As users run Bread-
Crumbs for increasingly-long periods, the device-centricmo-
bility model can only benefit from increased exposure to the
user’s patterns.

5.3 Sample Applications

The primary aim of BreadCrumbs is to improve the
application-level and (most importantly) user-visible experi-
ence for mobile devices. To truly evaluate our system, then,
we need to examine how both the operating system and dif-
ferent mobile applications could benefit from connectivity
forecasts.

We evaluate the performance of different applications using
the traces we collected, rather than executing the applications
“live” on a mobile device. This allows us to directly com-
pare the performance of prediction-unaware algorithms and
BreadCrumbs on identical sequences of user motion and APs
seen, to ensure an accurate comparison.

The subsections that follow investigate three such scenar-
ios. Clearly, connectivity forecasts are most useful for back-
ground or opportunistic tasks, where an application has some
flexibility in when a network operation must occur.

As in Section 5.2, the first week of traces was the training
set that built the mobility model, and the second week the
evaluation set. For each scenario we devised two algorithms
that accomplished the same objective—one that was ignorant
of any future predictions, and another that utilized Bread-
Crumbs’ connectivity forecasts. For each trace in the eval-
uation set, we ran both algorithms, recorded the results, and
subsequently averaged across all the runs.
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Figure 7: Opportunistic writeback. By utilizing BreadCrumbs’
connectivity forecasts, the prediction-aware algorithm delays data
writeback briefly to selectively use high-bandwidth access points.
As a result, the total time until data was safe on the remote server
is comparable, but the wireless radio is active 45% less often. This
translates into significant energy savings.

5.3.1 Opportunistic Writeback

Our first scenario considers a user who has generated some
content on his handheld device while away from home. These
files are digital photos taken by the camera on his smart-
phone. The user previously configured a distributed file sys-
tem client to ensure all content he generates will be safely
reintegrated to his remote file server. This file server could
be a dedicated machine at his home or work, or a web ser-
vice such as Flickr. We assume the only network connec-
tivity available to the smartphone is whatever open WiFi is
available.

For evaluation purposes, we set the number of photos that
our hypothetical user took at eight, each with a filesize ran-
domly uniform between 1 MB and 5 MB. The set of eight
random filesizes was generated once and then the same set
used across the entire evaluation for consistency.

The prediction-unaware algorithm simply tried to transmit
the eight image files as quickly as possible, at each step us-
ing the AP with the best upstream bandwidth available at that
location. The algorithm that utilized BreadCrumbs sought
to reduce the amount of time the WiFi radio was active,
while not delaying data writeback unreasonably. Our sim-
ple prediction-aware algorithm worked as follows. At each
step of trace playback:

1. Determine which AP has the best upstream bandwidth
at the current location.

2. Query BreadCrumbs for its connectivity forecast of up-
stream bandwidth 10, 20, and 30 seconds in the future.
If any of those three future points are predicted to have
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better upstream bandwidth, do nothing at this time. Else,
transmit data to the remote server as fast as possible dur-
ing this step.

This algorithm is admittedly somewhat naı̈ve. This was in-
tentional as we sought to evaluate how useful BreadCrumbs’
connectivity forecasts could be for applications that have
made very minimal modifications.

We ran both algorithms once each for each of the traces in the
evaluation set. Our evaluation metrics were (1) total elapsed
time until the all data was safely on the remote server, and
(2) total time the WiFi radio was actively transmitting. Fig-
ure 7 illustrates the results. On average, the prediction-aware
algorithm completes writeback only slightly slower than the
aggressive, prediction-ignorant algorithm. In fact the differ-
ence is nearly within the error bounds of the mean for both
algorithms.

On the other hand, utilizing BreadCrumbs’ connectivity fore-
casts lets the prediction-aware algorithm activate the WiFi
radio 45% less often. By attempting to only transmit data
at high-bandwidth locations, the prediction-aware algorithm
makes more efficient use of the wireless radio. While small
for desktops or even laptops, this is significant for mobile de-
vices where wireless NIC usage is a large fraction of total
energy expenditure. For example, Anand et al [4] found that,
for a iPAQ handheld, the power required to actively transmit
data over the WiFi interface (even in power-save mode) was
nearly equal to the measured quiescent power consumption
of the entire device when the radio was inactive.

5.3.2 Radio Deactivation

The previous section illustrated how a user-level application
could employ BreadCrumbs’ connectivity forecasts. Now
consider how the operating system itself might make use of
such information. A simple case is deciding when to deac-
tivate a WiFi network interface in order to save power. The
optimal policy would deactivate the interface whenever no
usable access points are available, and activate it otherwise.

Determining if any usable APs exist at a given location re-
quires power, however. Scanning for AP beacons, and possi-
bly probing the bandwidth available via an AP, are all expen-
sive operations. If the operating system activated the radio
every few seconds, scanned for APs, and then made a deci-
sion, it may consume as much energy as simply leaving the
radio active in power-save mode the entire time. Ideally, the
operating system could query an oracle that would tell it what
the current network conditions are, without having to turn on
the wireless radio.

We devised two algorithms that sought to approximate this
unattainable ideal–one that used BreadCrumbs’ connectivity
forecasts, and the other remaining prediction-unaware. Asa
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Figure 8:Radio Deactivation. All values are normalized to those
of a baseline algorithm that keeps the WiFi interface active through-
out the entire trace. The prediction-aware algorithm uses Bread-
Crumbs’ connectivity forecasts to transfer more data while activat-
ing the WiFi interface less often than the prediction-unaware algo-
rithm.

reminder, each step the evaluation traces corresponds to ten
seconds of real time (because BreadCrumbs scans for APs
and calculates its GPS fix at that period).

The prediction-unaware algorithm tracked the downstream
bandwidth available to the device over the past 30 seconds
in a sliding window. If at any point it detected that the device
was disconnected for all of that time, it deactivates the wire-
less radio for the next 60 seconds. At the end of that period,
the radio reactivates and the sliding window begins anew.

The algorithm that utilizes BreadCrumbs’ connectivity fore-
casts works as follows. At each step of trace playback:

1. Query BreadCrumbs to get a connectivity forecast of the
expected downstream bandwidth at the next three steps
(10, 20, and 30 seconds in the future).

2. If the radio is on, and BreadCrumbs predicts no connec-
tivity in the next 30 seconds, then turn the radio off.

3. Else if the radio is off, turn it on if BreadCrumbs predicts
some connectivity in the next 30 seconds.

For the prediction-aware algorithm, when the radio is deac-
tivated it obviously cannot calculate its GPS fix (because we
are not assuming that a separate GPS radio exists on the de-
vice). Instead, when the radio is off this algorithm tracks real
time and fires a state transition in the Markov chain every 10
seconds—choosing the state with the highest probability in
the transition matrix. The next time the algorithm reactivates
the WiFi radio, it can calculate its GPS location and “get back
on track” if it strayed too far from the physical reality.
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We also ran a third algorithm, which was simply a baseline
that kept the radio active for the entire duration of all evalua-
tion traces. All of the results for the other two algorithms are
normalized percentages of this baseline. Our evaluation met-
rics were (1) total trace time the radio was active, and (2) data
throughput from a remote host if downloading at full speed
whenever the radio was active. Figure 8 illustrates the results.

The algorithm using BreadCrumbs’ connectivity forecasts
activates the WiFi interface for 47% of the trace, as opposed
to 52% for the prediction-unaware algorithm. Despite this,
the prediction-aware algorithm downloaded over 10% more
data, 94% as much as the baseline algorithm that kept its ra-
dio active for the entire trace period. Connectivity forecasts
let the prediction-aware algorithm only bother to “come up
for air” when it is most likely to encounter usable APs, in-
stead of just checking back periodically like the prediction-
unaware algorithm.

5.3.3 Phone data network vs. WiFi

So-calledsmartphones, such as the Apple iPhone or the
Nokia N95, are increasingly replacing traditional PDAs as
users’ mobile computing platform of choice. These devices
can connect to the Internet through either a WiFi interface or
over the mobile phone data network through a GPRS, EDGE
or 3G connection. Each technology has positive and negative
aspects. WiFi connections typically enjoy high bandwidth
to the Internet, and are usually free of charge. Their range
is limited, however, and coverage is nowhere near universal.
Phone data networks, on the other hand, offer seamless cov-
erage in most areas, but have much slower bandwidth and
possible service charges. While 3G phone standards promise
throughput rivaling that of WiFi, such services have not yet
been widely deployed.

Even if 3G is available, however, one must still consider the
power required to communicate with a distant phone tower,
as compared to a lower-power connection to a nearby WiFi
AP. In fact, Armstrong [5] found that WiFi was more energy-
efficient than GSM data networks for all but the smallest
transfers—those on the order of 30 KB. In a separate study,
Agarwal [1] measured power consumption of both WiFi and
EDGE during VoIP phone calls. Their results showed the
WiFi interface consumed less than 75% as much energy as
the EDGE link, for the same low-bandwidth (32 Kbps) call
traffic.

For this portion of the evaluation, we consider an arbitrary
application that is downloading data from a remote server.
For example, this could be a file sharing client that is fetch-
ing files in the background, and can switch back and forth
between using the WiFi interface and using the phone net-
work. The current theoretical maximum throughput of EDGE
is 384 Kbps (48 KB/s). Performance in real-world conditions
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Figure 9: Phone data network vs. WiFi. The algorithm using
BreadCrumbs’ connectivity forecasts relies on the EDGE link 14%
less often than the prediction unaware algorithm, but both achieve
similar data throughput across the total trace duration. WiFi is pre-
ferred to EDGE when possible to conserve both energy and money.

is rarely this robust, however. Measurements of deployed net-
work environments have found average EDGE bandwidth to
be around 100 Kbps [15]. Even service providers themselves
advertise these lower average rates. For example, AT&T (net-
work provider for the iPhone in the United States) advertises
average download speed on its EDGE network as 80-140
Kbps [6]. We chose a value near the middle of this range,
120 Kbps (15 KB/s), as the EDGE download bandwidth for
the evaluation.

We designed two algorithms to represent this application’s
behavior. They both attempt to use WiFi instead of the
phone network as much as possible, while maximizing data
throughput. The first is a prediction-unaware algorithm that
simply uses the WiFi interface whenever there exists a WiFi
AP whose downstream bandwidth is greater than the EDGE
download bandwidth.

The second is a prediction-aware algorithm, which works as
follows:

1. If there exists a WiFi AP at the current location whose
downstream bandwidth is greater than the EDGE band-
width, use WiFi at this location.

2. Else, query BreadCrumbs for its forecast of downstream
bandwidth via WiFi during the next 30 seconds. Only
switch to EDGE if BreadCrumbs forecasts there will be
no WiFi bandwidth greater than the EDGE bandwidth
during that interval. Otherwise continue using WiFi.

Briefly, the goal of the prediction-aware algorithm is to only
resort to the EDGE network if the user is entering a true
WiFi dead zone. One must consider the overhead required
for handoff and association between WiFi networks, since
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# states in model 652
model size 27984 bytes (42.92 B/state)

# test results 1335
test DB size 92132 bytes (69.01 B/entry)

Table 3: Overhead: space requirements. The test database is
currently stored in unoptimized, ASCII format.

such associations are short-lived in comparison to GSM net-
works. If the mobile device could associate simultaneously
with multiple WiFi APs using one radio, BreadCrumbs could
associate with and probe the quality of upcoming APs in the
background while still connected to the AP currently used for
data transmission. Such a capability is provided by Virtual-
Wifi [10] for Windows-based devices, as well as by a virtual
link layer we have developed for Linux.

We compare the results of these two algorithms with a pol-
icy that simply uses the EDGE link exclusively. Our evalua-
tion metrics were (1) total trace time the application used the
EDGE connection to transfer data, and (2) total data through-
put. Figure 9 illustrates the results. Note the two y-axes inthe
figure. At left, we compare the percentage of total trace time
the EDGE link was utilized. The baseline algorithm utilized
the EDGE link 100% of the time, so both algorithms’ results
are a normalized percentage of this time. At the right, we
compare the total download throughput of our sample appli-
cation if transferring data continuously. This is scaled from 0
to 300% because the baseline algorithm that used EDGE ex-
clusively transferred about one-third as much data as the two
algorithms that were allowed to use WiFi when available.

The results are somewhat mixed. The algorithm that uti-
lized BreadCrumbs’ connectivity forecasts used the EDGE
link 57% of the time, whereas the prediction-unaware al-
gorithm did for 71% of total trace time on average. Since
the WiFi link is more energy efficient in terms of joules-per-
byte—particularly for large transfers such as this—this result
is good news for device energy consumption. The through-
put results, however, show the prediction-aware algorithm
transferred 4% less data than the prediction-ignorant algo-
rithm. Note that these values represent a theoretical cap on
the throughput the device could achieve if actively download-
ing during the entire trace period.

5.4 Overhead

Table 3 shows the storage required on the iPAQ to store the
mobility model and test database generated in the course of
our evaluation. With 652 different states in the model, the
total model size is approximately 27.3 KB, or 43 bytes per
state on average. Recall that, because ours is a second-order
Markov model, each state represents the current GPS grid lo-
cation of the user and their previous location. From Table 1,
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Figure 10:Connectivity forecast overhead. Results on a Compaq
iPAQ handheld (400 MHz CPU), 128 MB RAM.

we know that BreadCrumbs visited 110 different grid loca-
tions during the evaluation period. If every combination of
current location and previous location were generated as a
state, the model would have 110×110= 12100 states. Even
a model of such complexity would only require 508 KB of
space on the mobile device. Given the sparseness of these
models in practice, a model of that size would be most likely
be sufficient to cover an entire metropolitan area.

Likewise, the overhead imposed to store the test database is
reasonable—69 bytes per test entry on average. For conve-
nience, the database was implemented as an ASCII flat file,
unoptimized. Even so, the records for the 1335 test results
generated by our evaluation require 90 KB of storage space,
but only 7.04 KB when in compressed form.

Figure 10 examines the CPU overhead imposed when gener-
ating connectivity forecasts. The parameterk is the number
of steps in the future of the model, given a current state, that
we requested a connectivity forecast of downstream band-
width from BreadCrumbs. This graph represents only the
instrumented CPU time required for the calculation, not any
communications overhead between BreadCrumbs and the ap-
plication requesting the forecast. All results were measured
on a Compaq iPAQ h5555, with a 400 MHz ARM processor
and 128 MB of system RAM.

We requested a connectivity forecast for each of the 652
states in the model our evaluation generated, varying the size
of k from 1 to 10. Because this is a recursive algorithm (see
Figure 2) we expect the overhead to grow exponentially. Up
to six steps ahead, the overhead is less than 2.5 ms. Even the
mean overhead of 75 ms atk = 9 is not prohibitive for ap-
plications that perform such intensive operations rarely.Note
that we made did not implement caching of calculated fore-
casts or other possible optimizations in our implementation.
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6 Related Work

MobiSteer [24] focuses on improving wireless network con-
nectivity in one specific usage setting—while in motion in
a motor vehicle. Their system uses a directional antenna to
maximize the duration and quality of connectivity between a
moving vehicle and stationary access points in the commu-
nity. This goal is complementary to that of BreadCrumbs,
because MobiSteer performs well in situations where Bread-
Crumbs does not. While portions of the evaluation traces
collected in our paper track the user riding on a city bus,
during this period the user only has reliable connectivity
while stopped at intersections. As explored in detail by By-
chkovsky et al [9], this reduced performance was due to the
brief time the client has to associate with the AP, obtain a
DHCP address, and do useful work. On the other hand,
BreadCrumbs does not require any specialized hardware and
works with whatever users already carry in their pocket. Mo-
biSteer’s cached mode operation is also reminiscent of the
way BreadCrumbs, and our earlier project Virgil [25], opti-
mize future resource discovery by caching historical access
point quality information.

Song et al [28] studied the efficacy of applying different mo-
bility prediction methods to the problem of improving band-
width provisioning and handoff for VoIP telephony. Much
like our work, they use real client traces to evaluate the suc-
cess of a concrete application that is prediction-aware. They
assume the existence of a centralized authority, however, that
collects all mobility information, makes predictions, anddis-
seminates instructions to the various wireless access points.
We are focused on applications that are still useful when the
device itself keeps its mobility history, and this information
need not be disclosed to any other party.

Ghosh et al [13] predict the probability that users visit pop-
ular locations, known ashubs. Their focus is on extrapo-
lating sociological orbits from the client mobility data by
identifying the frequency with which users encounter one an-
other at these hubs. The authors do not evaluate how ac-
curately their Bayesian techniques predicted explicit client
paths (rather than just the hubs they visit). We therefore were
unable to compare the accuracy of their technique with that
of our second-order Markov model.

Our prior work [31] concentrated, as did Kim et al [18], on
deriving realistic mobility models from actual user mobility
traces. The idea is to take many different client traces and
build a probabilistic model that can be used to generate ar-
bitrary client tracks. These traces, while still artificial, more
closely model the real movements of users than do synthetic
models like Random Waypoint [30]. In this paper, we con-
sider only the situation where devices maintain their actual
mobility history themselves, and predict their future behavior
“on-the-fly” rather than base predictions on mobility models
derived from multiple users’ behavior.

Marmasse [23] argues, as we do, in favor of a user-centric
mobility model. HercomMotion system is concerned chiefly
with tracking users’ movement through various semantically
meaningful locations, such as “home” or “work”. We, on the
other hand, focus on lower-level waypoints—namely, GPS
grid locations. The semantic concept of user-defined loca-
tions could easily be layered atop such low-level information,
however.

Haggle [17] is a framework for disseminating data between
mobile users based on the fleeting occasions when they come
into physical contact with each other. In these situations in-
frastructure such as WiFi networks need not be used, because
users are within range of low-power, point-to-point link tech-
nologies like Bluetooth or ZigBee. Their system is clearly
dependent on user-centric mobility information, but seeksto
predict when pairs of users will come into contact with each
other. Our work, on the other hand, is focused more on lever-
aging information about wireless access points the user will
soon encounter.

Most applications of location prediction have been in mo-
bile phone networks. Typically, a central network operator
seeks to know the sequence of network towers with which a
handset will associate. Given this information, the network
operator can reserve resources, such as bandwidth, at the up-
coming nodes, so handoff proceeds as smoothly as possible.
Bhattacharya and Das [7] use a variant of the LZ predic-
tor described above to predict the next cell users will asso-
ciate with. Yu and Leung [32] extend this idea to predict
not only where a mobile device will hand off but also when
this will occur. Liang and Haas [21] use a Gauss-Markov
model in a similar way. Others use Robust Extended Kalman
Filtering (REKF) [26], integrate individual path information
with system-wide aggregate data [2], or estimate future lo-
cations through trajectory analysis [3]. Liu et al [22] use
a similar hybrid approach for mobility prediction in wire-
less ATM networks, rather than for mobile telephony. They
combine system-wide information with local mobility history
and path trajectories to reduce system resource consumption
while maintaining user QoS.

All of these location predictors are enabled by accurate esti-
mates of a mobile device’s location. In some cases, all that is
needed is information on which access point or mobile phone
tower the device is associated with. For predictors and ap-
plications requiring more fine grained location information,
there are a wide variety of solutions. Place Lab leverages
publicwar-driving databases of WiFi AP GPS coordinates to
triangulate one’s location based on the APs seen at a given
location and their signal strengths [20]. The same idea has
recently been extended to use GSM phone towers rather than
WiFi APs [11]. Fox et al [12] showed the benefit of Bayesian
filtering to coalesce results from multiple location sensors
and smooth transient uncertainty in location estimates. Other
work focuses on indoor localization at very small scales, ei-
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ther by deploying custom hardware [27] or mapping existing
WiFi beacon sources [14].

7 Conclusion

Operating systems currently focus on immediate conditions
when managing wireless network connections. But today,
users are more mobile than ever, utilizing a patchwork of
public access points of varying capabilities and uneven ge-
ographic distribution. Applications would like to use this
public connectivity opportunistically to perform background
or low-priority work, but cannot make reliable assumptions
about connection quality at any given moment in the future.

We argue that the increased mobility of users demands a fo-
cus on how connectivity changes over time—itsderivative.
This paper described BreadCrumbs, our system that let a mo-
bile device track this trend of connectivity quality as its owner
moves around the world. BreadCrumbs maintains a person-
alized mobility history on the device, and tracks the APs en-
countered at different locations. BreadCrumbs also probes
the application-level quality—bandwidth and latency to the
Internet—of the open connections the device encounters.

Together, the predictions of the mobility model and the AP
quality database yieldconnectivity forecasts. These fore-
casts let applications take domain-specific action in response
to upcoming network conditions. We evaluated the efficacy
of these forecasts with several weeks of real-world usage.
BreadCrumbs was able to predict downstream bandwidth at
the next step of the model within 10 KB/s for over 50% of
the evaluation period, and within 50 KB/s for over 80% of
the time, with only one week of training data to build the
model and AP quality database. We also evaluated how three
example applications, with minimal modification, can utilize
connectivity forecasts. Our results found two applications
saw both improved performance and energy efficiency, while
the results were somewhat mixed for the third.
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