
DSearch: Distributed search for a personal area network

Garrett Brown
garretto@umich.edu

Daniel Fabbri
dfabbri@umich.edu

Brett Higgins
brettdh@umich.edu

Azarias Reda
azarias@umich.edu

Department of Computer Science Engineering
University of Michigan

ABSTRACT
Searching through a user’s distributed data set effectively is
crucial. User created content is increasingly stored on mul-
tiple devices away from home. Conventional desktop search
and distributed file systems have relied on kernel modules
and practically unlimited resources to organize and search
user content. These designs do not consider the complex
set of constraints and challenges in the distributed search
domain. We propose a distributed architecture, DSearch,
to manage the complexities of a mobile data set to improve
query performance across all the devices in a user’s personal
area network. First, we provide a light-weight infrastructure
that can effectively organize and search a set of devices.
Second, we develop a membership system to manage the
dynamics of multiple devices in a network that records the
current set of active devices and distributes information to
the group. Third, we examine three search index replication
schemes - no replication, centralized replication, and device-
based replication - to improve query performance. We de-
veloped the DSearch distributed system and evaluated its
performance.

1. INTRODUCTION
Searching through a user’s distributed data set effectively is
crucial. User created content is increasingly stored on mul-
tiple devices away from home. In fact, it has been estimated
that 55% of all digital information resides on personal com-
puters [12]. Furthermore, individuals continue to purchase
new cell phones, laptops and hand held devices with ever
growing memory capacities and functional specializations,
increasing physical location diversity. Previous search archi-
tectures tuned for single, stationary devices are not effective
at managing the challenges associated with querying data
across heterogeneous machines. To support the changes in
personal data storage patterns, alternative search organiza-
tions are necessary. This paper proposes a distributed search
architecture, DSearch, for multiple mobile devices in a user’s
personal area network.

Conventional desktop search and distributed file systems
have relied on kernel modules and practically unlimited re-
sources to organize and search user content. These designs
do not consider the complex set of constraints and challenges
in the distributed search domain. Specifically, these systems
take for granted devices’ physical location, varied connection
capabilities and intermittent periods of connectivity. Also,
complex file systems assume the presence of a particular op-
erating system running on a high-powered processor, in con-
trast to extremely heterogeneous mobile devices that have
limited processing power. Given these constraints, we exam-
ine the best way to replicate search indexes within a user’s
personal area network for improved query performance and
power efficiency.

We propose a distributed architecture, DSearch, to manage
the complexities of a mobile data set to improve query per-
formance across all the devices in a user’s personal area net-
work (PAN). First, we provide a light-weight infrastructure
that can effectively organize and search a set of devices. Be-
cause of mobile devices’ limited computation abilities, full-
fledged data indexing mechanisms are not practical. Second,
we develop a membership system to manage the dynamics
of multiple devices in a PAN that records the current set of
active devices and distributes information to the group. We
leverage a socket abstraction to manage our network com-
munication.

Third, we examine three search index replication schemes
to improve query performance. In the basic, no replication
architecture, queries are sent to each active device in the
PAN. Every device in this configuration searches its own
content and responds with a list of matching files. The ba-
sic design limits search performance since the slower devices
are queried and must be waited on for complete query ag-
gregation. A centralized architecture improves on the basic
design by replicating all search indexes to a coordinator,
which is assumed to be always-on, although this does in-
troduce a single bottleneck and point-of-failure. For each
query, only the coordinator is sent a request and compu-
tational slower devices are bypassed. Lastly, we provide a
device-based replication scheme that allows each machine
to select which other devices’ search indexes to store locally
based on query latency. We vary the number of replicas that
can be stored at each device and examine the query time for
all the designs.

This paper makes the following contributions:

1

• Light-weight search infrastructure. Python based
application architecture that runs on desktops, laptops
and mobile devices.

• Dynamic membership management. System to
manage the arrival, departure, and intermittent con-
nectivity of devices in the personal area network.

• Search index replication for improved query per-
formance. Three replications architectures (no repli-
cation, centralized replication, device-based replication)
tested and evaluated for query performance.

In Section 2 we provide a brief summary of the background
in search systems and discuss related work. We go into more
detail on DSearch itself in Section 3, and describe the im-
plementation in very granular detail in Section 4. We layout
a graphical model of our replication optimization scheme in
Section 5 and evaluate our system in Section 6. Lastly we
give our conclusion in Section 7 and future work proposal in
Section 8.

2. BACKGROUND AND RELATED WORK
Personal file search systems are now common; Windows
Desktop Search [1], Google Desktop [10], Apple’s Spotlight
[16], and the open source project Beagle [5] are several exam-
ples. Each maintains an up-to-date index of the user’s con-
tent, allowing them to quickly find matching content based
on a search query. However, as users tend to own multiple
devices, content is often spread across those devices, and
there is no unified interface from which to search the user’s
“cloud” of devices.

A distributed search system is one that allows a user to
query a set of devices from any one of those devices and
retrieve search results, identifying files and the devices on
which they are located. Each device is responsible for the
content it “owns” and therefore should maintain its own in-
dex. Such a system would need to have mechanisms for
devices to join and leave the system, to locate other devices
in the system and exchange messages with them, and to
distribute query requests and aggregate query results. The
distributed search system is similar to the aforementioned
desktop search systems in that each device can be seen as
an independent desktop search service, but the distributed
system must provide means to share the individual devices’
search results among all members of the system.

Various approaches have been applied to distributed search
thus far. For instance, some work has been done on ex-
panding the traditional distributed file system to effectively
address needs of more consumer electronics devices [13].
Others have approached the problem from the other end,
starting with the intermittently connected mobile devices
and trying to maintain or impose some overlaying struc-
ture. Flinn and Anand proposed PAN-on-Demand, a self-
organizing overlay network scheme which utilizes differing
radio capabilities and device heterogeneity for the ultimate
goal of achieving excellent power usage [2]. Differing modes
of membership have also been proposed and some studies
have focused on the cost differences between real-time dis-
covery versus connection maintenance [2]. Others have fo-
cused on the potential performance gains of using multiple

interfaces (e.g., Bluetooth and WiFi) simultaneously while
operating at the application layer [3] or by modifications at
the transport layer [11].

Similarly, researchers have also proposed various ideas for
distributing data to multiple mobile devices [17] as well as
the potential performance benefits from caching data on a
device-by-device basis [12]. Consideration has been given to
the importance of how data is stored or distributed across a
p2p network in order to preserve locality of data while still
maintaining effective and scalable query throughput [14].
Other approaches have aggregated a user’s devices into a
single addressable virtual device focusing on higher level
“person-level routing” [6, 4], while others have focused on
lightweight development frameworks [15].

3. DSEARCH
An increasing amount of data is being stored on mobile de-
vices with growing storage capacity and functional special-
izations. Similarly, users now own an increasing number of
devices, dividing their content among them. As a result, the
ability to search through a user’s mobile data set becomes
important. Unlike desktop search, however, searching a net-
work of mobile devices presents a different set of constraints
and challenges due to devices’ locational diversity, varied
connection capabilities, intermittent periods of connectivity
and device heterogeneity.

First, because of the limited computational capacities of
these devices, full fledged data indexing mechanisms are not
practical. Instead, there is a need for a light-weight indexing
infrastructure that can effectively target these devices. Sec-
ond, personal devices are by nature mobile, and any system
that searches among these devices needs to consider inter-
mittent availabilities and changes in the location of devices.
This calls for a technique for managing the personal area
network (PAN) and identifying and maintaining members
of the group. These and other challenges make distributed
mobile search an interesting domain to work in.

We developed DSearch, a light-weight distributed search ap-
plication. DSearch manages devices leaving and joining the
network. We provide a basic infrastructure to search con-
tent on all the connected devices and provide three search
index replication schemes to evaluate their impact on query
performance.

4. DSEARCH IMPLEMENTATION
DSearch is a Python application that runs on each device in
the PAN. Our system is platform independent and only re-
quires that Python and SQLite be installed on each device.
The implementation operates on Mac OS X and Linux based
operating systems. Python was specifically chosen since it
is good for quick development and prevalent on a wide va-
riety of platforms. Python scripts do not execute as fast as
statically typed, compiled programs, but we chose it for its
portability and ease-of-use.

One device acts as the coordinator of the PAN. This de-
vice is assumed to be always-on and has a high-performance
processor. Various settings control the type of replication
scheme, the port to listen on and the address of the coor-
dinator. When DSearch is started at a device, the system

2

registers with the coordinator and is assigned an identifica-
tion number, which is distributed to all other active mem-
bers along with other member information. The coordinator
keeps track of devices as they leave and rejoin the network.

The owner of the device interacts with DSearch through a
command-line interface. This interface allows the user to
specify directories to be indexed to satisfy future queries.
Queries are initiated through the command-line interface.
The DSearch architecture multiplexes the query to the other
members of the PAN depending on the replication scheme.
All search indexes in the PAN are examined on each query.
Our current implementation does not incorporate query his-
tory into the search model and does not provide any pre-
query filtering to reduce the number of empty results. Re-
sults are aggregated and ranked locally and displayed to the
terminal.

The DSearch implementation is divided into four categories:
communication systems, data management, membership man-
agement, and searching infrastructure. The communication
system provides the networking interfaces for DSearch. The
data management system indexes local data and stores it
for future queries. The membership module manages the
dynamic joining and leaving of members in the group. The
search infrastructure implements the basic query system as
well as three search replication schemes.

Figure 1: DSearch High Level Design

4.1 Communication
We developed a network layer abstraction over the Python
socket module to manage all DSearch network connections.
The socket manager listens on a specified port for incom-
ing messages and provides functionality to send data to
members in the PAN through TCP connections. All mod-
ules within the DSearch architecture that require network
communication utilize the socket manager. This design ap-
proach unifies all socket programming in a single location
and creates a uniform message format for all data commu-
nications, an important objective for a developer within a
pervasive environment [15].

We use function-callback semantics for all network com-
munication. On the send of data, the developer provides
the socket manager with a reference to a function to pro-
cess causally-related received messages. All data sent to
and received from the socket manager is organized into text
buffers, thus greatly reducing the complexity of interacting
with TCP sockets. Furthermore, to simplify our network

interactions, we developed a messaging module that con-
verts Python structures into XML messages and transforms
XML text strings into Python structures. For future iter-
ations, we will consider a less verbose message protocol to
better suit mobile devices’ resource constraints. However,
this construction allows us to easily send and receive data
structures over the wire while also making it easy to read
and debug the messages being sent and received.

4.1.1 Consideration of Tradeoffs
DSearch pushes the message delivery guarantee down into
the network stack and does not provide strict message or-
dering. We utilize TCP sockets to ensure reliable delivery of
messages between the devices in the PAN. Python provides
an easy interface to TCP sockets, therefore allowing us to
push the delivery details down into the network stack. We
do not provide any message order guarantees such as causal
or total ordering. Specific message ordering is not neces-
sary since all messages are idempotent and are independent
of the order in which they are executed. As a result, some
devices may have different views of the PAN. Varied views
are acceptable for short durations in a distributed search ap-
plication as query results will contain subsets of the entire
result space and individual views eventually converge.

4.2 Data Management
The Data Manager provides a mechanism to examine file
content and provides a search facility. Search systems usu-
ally use some variation of an inverted index, in which key-
words map to files containing those words. We take a similar
approach in DSearch. Since our system involves several de-
vices storing different content, our index maps keywords to
(memberId, filepath) pairs, where a memberId (assigned
by the coordinator) identifies a member uniquely within the
system.

4.2.1 Index Manager
The IndexManager maintains a list of root directories that
are currently being indexed. On program startup, the In-
dexManager spawns a thread and scans through each of the
directories in the list recursively, looking for keywords and
adding mappings to the index. The user can add and remove
directories through the command-line interface, and the in-
dex is immediately updated in response to those commands.
In the absence of add and remove requests, the IndexMan-
ager thread will periodically wake up and refresh the index
by scanning all the root directories and repopulating the
index structure.

4.2.2 Data Manager
The DataManager module implements the backend data
structure used by our indexing mechanism: a SQLite3 database.
We chose this approach both to speed development and be-
cause SQLite3 is available on our handheld device and in
the default Python installation. The DataManager abstrac-
tion includes methods to insert (word, file) matches as the
IndexManager thread processes files. In addition, the Data-
Manager provides a method to construct an XML message,
encapsulating the index structure it stores, to be sent to
other members upon request. This functionality forms the
bedrock for our index replication strategies, as follows.

3

4.2.3 Index Shipping
In order to allow members to request and receive search
index replicas, the IndexManager keeps a list of subscribers,
or members who have requested this member’s index. Upon
receiving a requestIndex message, the IndexManager adds
the requester to the subscribers list if it is not already present
and responds by sending an XML message containing its
index. From then on, whenever the member updates its
index (whether periodically or due to a user command), it
will re-send its index to all of its subscribers. Though this is
more costly than sending incremental index updates, it also
greatly simplifies the message-passing semantics, since each
index update sent to a subscriber is idempotent.

4.2.4 Consideration of Tradeoffs
As we designed our search and indexing mechanisms, some
clear tradeoffs presented themselves. First, there is a sig-
nificant computational cost involved in crawling through di-
rectories and extracting keywords from files. Initially, this
cost is compulsory; the first time a directory is added to the
index, the content has never been seen before and must be
scanned and read completely. After the initial scan, how-
ever, it is sufficient to only re-scan files that have changed
since the last scan. The general point is this: by updating
the index (with a full re-scan) frequently, we increase the
likelihood that searches have the most up-to-date view of
the indexed content, but with the computational cost in-
curred by frequent scans.

Second, there is a clear tradeoff between the size of the index
and the robustness of the search. Currently, we keep a count
of the number of times each keyword appears in each file, but
we do not store any positional data (for example, to allow
searching for phrases). Whereas most personal file search
systems are first optimized for speed, a search system in-
tended for deployment on mobile devices must carefully con-
sider how much storage to spend in return for better query
results. Given our simplistic indexing implementation, we
defer a rigorous exploration of this tradeoff to future work,
though it is worth noting that our current indexing mecha-
nism requires an 924KB database to index the content of 22
files totaling 26MB in size.

Third, since we are targeting mobile devices with limited
computational, storage, and power resources, there is an im-
portant tradeoff between the spending of those resources on
frequent and thorough indexing and the freshness and ro-
bustness of search results from the mobile device. Crawling
directory structures and reading many files is particularly
slow and costly on mobile devices, and we would like to do
this work as infrequently as possible. As discussed previ-
ously, however, infrequently updating the index may lead to
stale search results, depending on how quickly the searched
data set is changing. Also, as the size of the total con-
tent being indexed on a mobile device grows, the database
queries involved in finding keyword matches become more
costly. It is at this point that shipping indexes to more well-
provisioned (e.g. 2GHz, 2GB RAM, AC power vs. 400MHz,
128MB RAM, battery power) devices becomes attractive,
since avoiding executing the query at the mobile device will
save time and power.

A key consideration in making the decision whether to ship

an index is the rate of queries vs. the rate of content updates.
If the query-to-update ratio is high, then it probably will
benefit the mobile device to ship its index to a more powerful
device; if the ratio is low, it may not make as much sense,
since the device may spend more time sending indexes than
responding to query requests, resulting in an overall loss.
Though we do not currently incorporate these considerations
into our system, it would be a high priority for future work.

In the design of DSearch data management modules, our aim
was only to provide the base functionality required to index
and search file content; we were not concerned with provid-
ing the robustness of a consumer desktop search application.
We speculate that a more polished indexing and searching
backend could be easily incorporated into our system in the
future, given our highly modular design.

4.3 Membership Protocol
As a distributed search system, DSearch needs to manage
its members in an efficient manner. One of the basic as-
sumptions that we made while designing the membership
management modules for DSearch is that one of the mem-
bers will act as the coordinator and the other members will
have to register with the coordinator to be part of the sys-
tem. Because of the way the code is implemented, any one
of the members could act as the coordinator. However, we
have not currently implemented an election algorithm for
DSearch. We imagine either the token passing algorithm
or the bully algorithm [8] could be easily plugged into the
system.

There are two membership management modules in DSearch.
The first is aptly called Membership Manager and the other
is called Pulse. Membership Manager is the global member-
ship manager that handles member registering, ID assign-
ment and member list distribution. It also supplies Pulse
with new information about the system as it becomes avail-
able.

After one device is started as the coordinator for the system,
other devices can register themselves using their IP address
and port. When the coordinator receives a register request
from a device, it looks up its members list and assigns the
new device a unique ID, which is broadcast to the rest of the
system along with the new device’s IP and port. With this
information, devices can set up TCP connections to other
members in the group. In the current implementation of
DSearch, IDs are not persistent, although persistence could
be added in the future. Any device registering from the
same IP and port is guaranteed to have the same ID as long
as the coordinator was alive between sessions. Membership
Manager also defines the basic object that is used to fully
characterize a member. This object is easily extensible to
handle any future improvements on DSearch. The proper-
ties defined in the Member Info class could be used to deter-
mine the best way to connect to a device considering factors
like context and proximity. Finally, Membership Manager
provides a basic n-way unicast mechanism to reach mem-
bers, although this role is often taken by Pulse for liveliness
reasons as we will discuss in the next paragraph.

Pulse is the activity manger of the system. It maintains a
current view of the system from a particular device rather

4

than the global state kept in Membership Manager. The
basic mechanism used to achieve this is heartbeat messages
sent periodically from the members to the coordinator. A
member is allowed a few cycles of “grace” to send its heart-
beat to the coordinator before deemed inactive. This value,
set by the administrator of the system, determines how long
a coordinator waits before removing a member from the ac-
tive list, and hence it also determines the upper bound on
how long the active member list could be stale on any partic-
ular device. Setting the grace to be higher will give member
a longer duration to reconnect to the system with out having
to go through the registration process again. This might be
especially important in mobile devices where the connections
are likely to be intermittent. On the other hand, setting the
grace to be smaller gives a more current view of the system
at any given time at the expense of re-registering.

Pulse propagates the active list to the members in one of
two modes. The default mode is event triggered, in which
the active list is distributed to members whenever an event
occurs on the coordinator that changes the current active
list; these are mainly leaves and joins. The other mode is
an on-demand mode in which a member receives the active
list only when needed, either to make caching decisions or to
send out messages. When a member receives the active list,
it also gets a lease time on the current active list, which is as
long as the grace. If the list is any older, a member will have
to request it again. Setting the lease to be equal to the grace
makes sense because that is also the earliest a coordinator
publishes the deletion of a device from the members list.

The on-demand mode is most efficient when the join/leave
rate is much higher than the rate of requests for the active
list. By requesting the active list only when needed, mem-
bers avoid getting unnecessary updates that are potentially
going to be out of date soon. On the other hand, when there
is low join/leave activity on the system, event-triggered up-
dates is more appropriate because the list distributed is po-
tentially going to be useful for a while.

Pulse exposes a variety of methods that can be invoked to
learn about the current state of the system. Pulse also
provides a way to send messages to active members imple-
mented using an n-way unicast. The sending mechanism
provided by Pulse is used to connect to the most up-to-date
list of members known by the system. It is important to
note that Pulse runs in its own thread of execution than the
main thread, and is synchronized to the main thread using
basic primitives provided by Python.

4.4 Query Management
We created a single module responsible for distributing queries
to all active members of the DSearch network as well as
merging and aggregating the individual responses into a
easy-to-read summary. The current implementation defines
a query as one or more text terms which are associated with
a file (either explicitly such as in a text document or PDF
file or more loosely such as the metadata of an MP3 file). As
with other user commands in the system, queries are entered
in through the console.

4.4.1 Query Distribution

The goal of query distribution is to efficiently disseminate a
user’s query to all currently active members of the DSearch
network. To that effect, how exactly this is accomplished
varies significantly depending on the replication scheme be-
ing used. With the default no-replication scheme, the query
is sent to each active member of the network who is entirely
responsible for his own indexed content. When utilizing the
centralized replication scheme, a single query is sent to the
coordinator with the specification to search across all in-
dexes on behalf of all members, in essence a global system
search is performed locally by the coordinator. Lastly, with
the device-based replication scheme, queries are distributed
strategically to exploit the more efficient processing capabil-
ity or lower network latency exhibited by certain members
of the network. Regardless of the replication scheme, ev-
ery member of the current system is queried either directly
or indirectly and its response is required before the query
search results are presented to the user.

As a side note, there is a querying capability to allow the user
to query only a specific device. This is useful in situations
where the user is only interested in files residing on a laptop
or MP3 player rather than all devices. This feature meshes
as expected with the various replication schemes as only the
member responsible for the device specified is queried.

4.4.2 Query Response Aggregation
Utilizing the Socket Manager’s callback functionality, a cu-
mulative query aggregation function is utilized once a query
response is returned to the issuer. After distribution, the is-
suer knows how many responses are expected and will wait
until it has received either a valid response or some type of
notification that the user is disconnected from everyone be-
fore continuing. It should be noted that since global ordering
constraints are not guaranteed in the DSearch implementa-
tion as mentioned above, we assume that a single user only
issues one query per device at a time (that is does not issue
a second query from the same device before the first query
results have been collected and processed for the user) other-
wise the results may be jumbled and displayed out of order
(this assumption could be relieved if we utilized sequence
numbers on queries, but this would pull back some of the
messaging responsibilities we delegated to the networking
protocol, currently TCP). Once all queried devices have re-
sponded, the results are ranked according to the believed
relevance. Our current ranking scheme orders the results by
(Number of Search Term(s) Found in File) / (Total Num-
ber of Terms in File). More complex ranking schemes are
certainly feasible, but this metric proved simple and useful
enough to satisfy our current requirements. Once the results
have been ranked they are displayed to the user through the
console as MemberId | Filepath | Frequency / Total Terms.

4.4.3 Consideration of Tradeoffs
Currently all queries are distributed and responses collected
for each query issued by the user. Although the user can
reprint the results of the last query executed on the given
machine, any other query, no matter how many times exe-
cuted in the past, will be sent across the network consuming
bandwidth and incurring some type of network latency. The
advantage of this approach is that if queries are infrequent
and tend to vary in terms of keywords searched, this method
requires no per-device memory allocation or local store in-

5

The client on the left has requested and received the index of
the slowest client. It (1) sends query requests and (2) receives
query responses as in the no-replication mode when querying
the coordinator and the faster client on the bottom. When
querying the slow client, it (3) uses its local copy rather than
sending a message to the slow client.

Figure 2: Querying in device-based replication mode

validation requirements. On the other hand, if queries are
much more frequent and tend to typically involve common
search terms or locality of reference, it has been shown that
much more efficient query response and network utilization
is possible by using a local store and clever query response
schemes [12].

4.5 Replication Schemes
Replication is used in DSearch as a method for improving
availability and performance. DSearch replicates search in-
dexes of devices at various places in the system. There are
three modes of operation implemented in DSearch. These
modes are device-local, which means the selection affects
only a particular device, and a system might be made of
devices running different modes of replication.

The first mode implements no replication. Each device is
responsible for its own index, and whenever a member needs
to query the contents of another member, it simply sends a
direct network message to it. This is the most obvious way
of doing things, and its biggest advantage (besides being
simple) is that it always produces up-to-date search results.
On the other hand, it generates great amounts of network
traffic, and introduces search latency based on that of the
slowest device. There is no need for consistency here because
indexes are updated in each device as soon as crawling for
new data is done.

The second mode is a coordinator replication mode. This
mode assumes a coordinator that has a higher network band-
width and storage capacity. If the coordinator is running
this mode, whenever a device registers, it is informed of the
mode and requested to ship its index to the coordinator.
This is potentially an expensive operation upfront. How-
ever this approach might make sense when the coordinator
is relatively faster and queries are done at a consistently
high rate. In these cases, the up-front cost will be amortized
quickly. Once a coordinator has all active members’ indexes,
all searches are performed at the coordinator. When a device

needs to perform a query, it sends a single message to the
coordinator, the search is performed on behalf the member,
and the results are sent back to it.

The local replication mode (Figure 2) is a more involved
replication scheme than the previous two and is implemented
using the Member Rank module. Whenever a device starts
up, the user provides a hint for the memory space available
for locally caching other device indexes. The Member Rank
module sends messages to the active devices requesting what
indexes they already have cached. It then uses the round trip
time to rank the various members according to the latency.
Because DSearch waits for all devices to respond to queries
(either with results or some form of notification of a process
crash, such as a socket error or timeout), the entire query
execution time is as slow as the slowest of the members. So,
ideally a member benefits most by replicating the slowest of
the devices locally.

However, this is complicated by two issues. First, there is a
limit on how many devices each member can replicate, and
second there might be faster devices who have already repli-
cated slower devices’ indexes, so that it might be faster to
use those existing replicas than creating a new one, and in-
stead use the available space to replicate some other device’s
index. This replication analysis problem is an NP-complete
problem that is most similar to the Weighted Directed Dom-
inating Set problem.

DSearch implements an approximation algorithm which puts
into consideration these various factors. The algorithm first
significantly prunes the search domain and then greedily sug-
gests the best devices to replicate at each step. Although
the algorithm is an approximation, this actually plays to
our favor because it introduces some randomness into the
system. This alleviates the fastest devices in the system
from unfairly being overloaded with requests. Once a device
determines the best devices to replicate, it requests those
member devices to ship their indexes to it.

A replication mechanism tailored to the capabilities of indi-
vidual devices is ideal in a heterogeneous system of devices
in which various members have different storage, latency
and bandwidth limitations, and has been shown to be very
effective [2]. In those cases, local replication tries to find
the optimal replication scheme given the current state of
the system. It is also interesting to note that under the
assumptions for the coordinator replication mode, in which
the central device is faster and has plenty of storage space,
local replication mode converges to the coordinator replica-
tion mode when we are able to replicate all members’ in-
dexes locally. By paying a limited upfront cost, a device can
minimize its query response time, and upfront cost will be
amortized quickly.

In any replication system, it is important to consider consis-
tency among replicas. DSearch uses a primary-based consis-
tency in which one device owns a particular copy of its own
index. Also, we notice that DSearch has a unique feature
in that only the source of an index ever writes to it, and
all other members simply read from it. Because we have an
authoritative replica, implementing consistency is straight-
forward. We achieve consistency using subscriptions to the

6

In this representation, Z is a new member, A, B, C, D are
members already in the system, and an edge from Zx to y
represents a replica of y’s index at x. This figure shows the
system with no replication. The proxy nodes Zx represent
the new node Z querying the other nodes, either by sending
messages or by querying a local replica of their indexes.

Figure 3: Basic DSearch Graphical Representation

owner of a copy. Whenever a device requests some other
member’s index, it also subscribes to be notified about any
changes in the index. So, after a device re-crawls its folders,
it sends its index to all its subscribers. The window of stale
indices is then reduced to the time it takes for a network
update message from the source to reach subscribers. We
believe this is sufficient to get current results in a personal
area network.

5. GRAPHICAL MODEL
Selecting the optimal replica to store locally is essential
for minimizing query run time. The objective is to select
the replica(s) that will maximize the performance gains.
Our current implementation uses various techniques such as
graph pruning to select which search indexes to store. We
present a graphical model that reduces the selection problem
to a directed, weighted dominating set problem.

Given a graph, each device must select the optimal replica
to store locally. We specify a constant k that determines the
maximum number of replicas that can be cached, where k is
representative of the device’s memory capacity. When a new
member joins the network, it subscribes to at most k other
devices and receives their search indexes. Each device makes
this selection through a calibration technique that ranks the
time to get to every device in the PAN and also accounts for
other search indexes already replicated to other nodes.

We present a graphical model to assist in this optimization
problem. When a device joins the PAN, it creates a graphi-
cal representation of the network. Before the graph can be
created, all the members of the PAN are ranked based on
query latency. Given four members {A, B, C, D} with la-
tency costs 1 < C(A) < C(B) < C(C) < C(D) and a new
node Z with a cost of zero, we create the graph seen in Fig-
ure 3. This graph assumes that no replicas have been sent
up to this point in time.

The graph is divided into three columns of nodes. The left

Same as Figure 3, but in this example, C stores a replica of
D’s index.

Figure 4: Graph Model With Replica

column contains the new member Z, which has a directed
edge to {Za, Zb, Zc, Zd}. These edges represent device Z′s
ability to send a query to node X through node Zx. The
right column represents the possible replicas that can be
stored locally. Our construction only allows k of these nodes
can be selected at a time. An edge is added from node Zx
to node Y if X has Y ′s search index stored locally.

To select the optimal replica, we solve the directed, weighted
dominating set optimization problem. A dominating set is a
set of nodes in the graph such that every node in the graph
is either in the dominating set or is connected to a node in
the dominating set. For a directed graph, this implies that
if A is in the set and there is an edge from A to B, both A
and B are covered; however, if the edges goes from B to A,
B is not covered by the set. We also must reduce the total
cost of the dominating set, which corresponds to the query
time. Notice that Z is always added to the set since it has
no cost and the cost to store a replica is less than the cost
to send a query.

For the case of k = 0 in Figure 3, no replicas can be stored
and a query must be sent to each device. The dominating
set for this network contains {Z, Za, Zb, Zc, Zd}.

For the case of k = 1 in Figure 3, since Zd has the highest
cost, it is best to choose the dominating set of {Z, Za, Zb,
Zc, D}.

For the case of k = 1 in Figure 4 where C already has D′s
search index stored locally, it is not optimal to store D′s
search index since it can be accessed more efficiently through
C. Therefore, the optimal set is {Z, Za, Zc, B}. Note that
storing C is not optimal since node D would then need to
be queried, added the highest possible cost.

The dominating set optimization problem is NP-complete [7,
9]. The reduction is trivial since our representation is a more
specified version of the problem. We apply approximation
techniques that greedily select the replicas to store. This
algorithm runs in O(N) time, where N is the number of
members in the PAN.

7

Figure 5: Replication Scheme Performance

6. EVALUATION
6.1 Evaluation Methodology
To analyze DSearch, we preformed a set of experiments to
compare the performance of the three replication schemes.
We deployed DSearch on multiple Linux and Mac OS X
desktops and laptops as well as on one Nokia N800 handheld
device. The desktops and laptops had processors clocked
from 1.5-2 GHz and had 1-2 GB of main memory compared
to the N800’s 400 MHz processor and 128 MB of main mem-
ory. We measured the total query execution time, defined
as the time for all query responses to be received and aggre-
gated at the querying device.

We performed the following tests. First, we measure the
query performance as the number of members in the PAN
increased while no data was indexed at each device. This
test measures how the network performance of the system
scales as new members join. We also collected network traffic
to measure the growth of the system’s bandwidth consump-
tion as the PAN size increases. Second, we gathered per-
formance data for the three replication schemes. We tested
the no-replication method, the centralized approach and the
device-based scheme and compared their performance. For
each of these tests, we indexed a test set of 22 files that in-
cluded MP3, text and PDF files totaling 26MB in size and
requiring an 924KB database. The handheld had a smaller
set of files (approximately 688KB) since it takes orders of
magnitude longer to index data with the slower processor
(e.g. 20 minutes vs. 30 seconds for the same data).

6.2 DSearch Query Performance
First, we analyzed how the DSearch query architecture scaled
as devices joined the PAN without any data indexed on the
device. Querying empty databases provides us with a bound
on the query time and provides insight into the networking
costs of a distributed system. When the PAN did not in-
clude the handheld device, the query times were extremely
small (e.g., 0.008s) and negligible due to the fast intercon-
nects of the LAN. When the handheld was included, query
times increased to approximately 0.1 seconds, demonstrat-
ing the impact of wireless networks on query performance.

Next, we indexed the data stored on each device and ex-
ecuted queries for the three replication schemes. Figure 5

shows the performance plots for the three designs. The ba-
sic, no-replication method issues queries to each device in
parallel. When one member is in the PAN, the query is the
fastest since no network connection is required. As more
devices are added, the query time increases because of the
network latency and extra time required to aggregate queries
from multiple sources. Note that the query performance re-
mains almost constant when the handheld is not included
and when more than one device is in the PAN. Query per-
formance does not vary since each query is issued in parallel
and the devices have similar processors. When the hand-
held joins the PAN, the query time increases by a factor of
seven, due to the N800’s slower processor and large wireless
network latency.

The centralized and device-based replication schemes im-
prove the overall query performance when the handheld is
included in the PAN. For the centralized approach, a sin-
gle query is sent to the coordinator, which then searches in
its database for all matching files from throughout the PAN.
Since the coordinator contains the aggregate databases from
all the devices in the PAN, searching at the coordinator is
comparatively slower than the no-replication method. There-
fore, for queries not including the handheld, the basic ap-
proach outperforms the centralized method, where query
time increases almost linearly with the number of devices.
However, the centralized method more efficiently processes
queries that include the handheld since there is no need to di-
rectly query the slower device. Furthermore, the delay from
sending indexes is amortized over time due to the improved
query performance.

The device-based replication scheme improves on the weak-
nesses of the centralized model. A drawback of the central-
ized method is that query time grows linearly with the num-
ber of devices, since more data must be searched at the co-
ordinator. We observed from the no-replication model that
query time remains constant when multiple, similar perform-
ing devices are queried in parallel. Considering this observa-
tion, the device-based replication scheme stores a subset of
the replicas locally. From Figure 5, we find that the coordi-
nator and device-based methods perform similarly when up
to three members are in the PAN, but as more members are
added, the device-based replication model maintains a con-
stant performance in contrast to the worsening centralized
method. Our observations also hold when the handheld is
included in the PAN.

6.3 Alternative Metrics
Shipping search indexes from device to device to improve
query performance utilizes more network bandwidth than
the no-replication model. When we transfer a search index,
we send an XML message containing all the relevant file in-
formation stored in the database. For our tests, this message
was approximately 140 KB in contrast to approximately 4
KB of data to send and receive query responses from each
node with no replication. Since devices are often left on for
long durations of time, we believe sending the larger data
stream over period of time is an acceptable tradeoff for im-
proved query performance. Also, many mobile devices come
with unlimited data plans where this extra bandwidth does
not directly cost the user.

8

Initially, we hoped to measure the N800’s power utiliza-
tion for the various replication schemes. Unfortunately, we
were unable to set up the device to perform these exper-
iments. We expect that the power usage would increase
when the various replication schemes were utilized. If we
tuned DSearch to only index files and send search indexes
when the device is connected to AC power, the resulting net-
work configuration would have query performance similar to
what we found in the centralized or device-based replication
models and not reduce the mobile device’s battery life. Since
mobile devices are typically plugged in at night, this would
be the optimal time to re-index and ship data between the
various devices in the PAN.

7. CONCLUSION
We have presented DSearch, a system which enables users to
search files distributed across their set of personal devices.
We developed three different index replication mechanisms
and evaluated their performance, showing that careful index
replication can improve query performance and scalability.
We feel that DSearch will be a useful framework for future
endeavors in managing content in many personal distributed
networks with mobile devices.

8. FUTURE WORK
As we have mentioned throughout this paper, there are
many ways that DSearch can be expanded to provide bet-
ter reliability, efficiency, and user interactivity. Instead of
relying on a centralized store to keep track of all currently
“active” members of the system, it would be more ideal to
“discover” other devices when needed [2] or move towards
a distributed directory [15] or even a DHT-based approach
[14]. Furthermore, for a given user it may be advantageous
to provide permanent naming or even name resolution across
a unified collection of devices [6, 4]. Clearly, the user would
benefit from a more intuitive/graphical user interface. The
search capabilities and services offered by DSearch can be
strengthened by more advanced indexing schemes or by het-
erogeneous distribution of indexing responsibilities across
the devices [2]. Similarly, querying can be bolstered by al-
lowing looser or “fuzzy” query term matching, more intelli-
gent abstractions of query distribution such as only search-
ing files that can exist on the querying device (e.g., only
JPEG files if a camera issues a search), and more relevant
or context-aware query response sorting and aggregation.
Lastly, the user experience, system reliability, and perfor-
mance can be enhanced by utilization of other avenues of
communication like Bluetooth, Wide Area Network (WAN)
Interfaces, and ad-hoc connections [3, 2].

9. REFERENCES
[1] Windows search.

http://www.microsoft.com/windows/desktopsearch/.
[2] M. Anand and J. Flinn. Pan-on-demand: Building

self-organizing wpans for better power management.
Technical report, 2006.

[3] G. Ananthanarayanan, V. N. Padmanabhan,
L. Ravindranath, and C. A. Thekkath. Combine:
leveraging the power of wireless peers through
collaborative downloading. In MobiSys ’07:
Proceedings of the 5th international conference on
Mobile systems, applications and services, pages
286–298, New York, NY, USA, 2007. ACM.

[4] G. Appenzeller, K. Lai, P. Maniatis, M. Roussopoulos,
E. Swierk, X. Zhao, and M. Baker. The mobile people
architecture. Technical Report CSL-TR-99-777, 1999.

[5] Main page - beagle. http://beagle-project.org.
[6] C. Carter and R. Kravets. User devices cooperating to

support resource aggregation. In Mobile Computing
Systems and Applications, 2002. Proceedings Fourth
IEEE Workshop on, pages 59–69, 2002.

[7] S. A. Cook. The complexity of theorem-proving
procedures. In STOC ’71: Proceedings of the third
annual ACM symposium on Theory of computing,
pages 151–158, New York, NY, USA, 1971. ACM
Press.

[8] H. Garcia-Molina. Elections in a distributed
computing system. Computers, IEEE Transactions on,
C-31(1):48–59, 1982.

[9] M. Garey and D. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman.

[10] Google desktop. http://desktop.google.com.
[11] K.-H. Kim and K. G. Shin. Improving tcp

performance over wireless networks with collaborative
multi-homed mobile hosts. In MobiSys ’05:
Proceedings of the 3rd international conference on
Mobile systems, applications, and services, pages
107–120, New York, NY, USA, 2005. ACM.

[12] C. Lindemann and O. P. Waldhorst. A distributed
search service for peer-to-peer file sharing in mobile
applications. In P2P ’02: Proceedings of the Second
International Conference on Peer-to-Peer Computing,
Washington, DC, USA, 2002. IEEE Computer Society.

[13] D. Peek and J. Flinn. Ensemblue: integrating
distributed storage and consumer electronics. In OSDI
’06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 219–232,
Berkeley, CA, USA, 2006. USENIX Association.

[14] T. Scholl, B. Bauer, B. Gufler, R. Kuntschke,
D. Weber, A. Reiser, and A. Kemper. Hisbase:
histogram-based p2p main memory data management.
In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1394–1397.
VLDB Endowment, 2007.

[15] K. Senthivel. Person - a framework for service overlay
network in pervasive environments.

[16] Spotlight overview. Technical Report 2006-04-04,
Apple Corp., Cupertino, CA, 2006.

[17] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, and
K. Ramamritham. Broadcast on demand: efficient and
timely dissemination of data in mobile environments.
In Real-Time Technology and Applications Symposium,
1997. Proceedings., Third IEEE, pages 38–48, 1997.

9

