
TrapperKeeper: Using Virtualization to Add Type-Awareness to File Systems

Daniel Peek and Jason Flinn
{dpeek, jflinn}@eecs.umich.edu

Computer Science and Engineering
University of Michigan

Abstract

TrapperKeeper is a system that enables the develop-
ment of type-aware file system functionality. In con-
trast to existing plug-in-based architectures that require
a software developer to write and maintain separate code
modules for each new file type, TrapperKeeper requires
no type-specific code. Instead, TrapperKeeper executes
existing software applications that parse the desired file
type inside virtual machines. It then uses accessibil-
ity APIs to control the application and extract desired
information from the application’s graphical user inter-
face. We have implemented metadata extraction and
document preview features that use TrapperKeeper, and
we have used TrapperKeeper to capture the type-specific
cognizance of over 20 applications that collectively parse
more than 100 distinct file types. Our experimental re-
sults show that TrapperKeeper can execute these two fea-
tures on hundreds of files per hour, a pace that far exceeds
the rate that files are modified or created on the average
desktop.

1 Introduction

Type-awareness is increasingly important in modern
storage systems. Traditionally, such systems managed
files as a simple array of bytes; they were generally ag-
nostic to the internal content of the files. However, cur-
rent file systems store more files that have rich internal
structure, such as music files that have ID3 headers, pho-
tos that have EXIF information, and documents that con-
tain formatting data and information about their pedi-
gree. Storage systems are quickly adding exciting new
functionality based on understanding data internal to the
files they store. For example, Apple’s Spotlight tool [21],
Windows Desktop Search [26], and Google Desktop [13]
allow users to locate files based on internal metadata such
as artist names in music files and comments in photo
files. Graphical user interfaces (GUIs) such as the Mac
OS X Finder and Gnome display icons that preview what
documents would look like if they were opened by appli-
cations that parse their particular file type.

However, much human effort is required to support
this new functionality. The almost universal approach to
understanding the internal structure of files is to require
a software developer to write a plug-in that parses the
file type and generates output for a general-purpose file
system tool. For instance, given a new file type, a devel-
oper must write a plug-in to enable Spotlight to search
through its metadata. She must write another parser to
enable Google Desktop search for Windows, and yet an-
other for Windows Desktop Search. To enable document
preview, she must write a different parser to generate a
suitable image for files of that type.

As the above discussion highlights, there are several
problems with the existing plug-in approach to adding
type-awareness to file systems:

• It does not scale. In total, developers must write
a different parser for each file type, for each fea-
ture (e.g., preview and search), and for each file
utility (e.g., Spotlight and Google Desktop). Thus,
type-awareness has a large development cost; this
cost is incurred not only during the initial creation
of plug-ins, but also during the lifetime of that file
type because developers must keep the plug-ins in
sync with the applications that parse that file type
(e.g., document preview should reflect the current
appearance of documents in their corresponding
applications).

• It inhibits innovation. If an organization holds
a dominant position in a market such as operat-
ing systems or search, then that organization is in
a position to dictate to developers that they must
write plug-ins to support new features. Develop-
ers will generally acquiesce since they want their
applications to work correctly for the majority of
their users. But, innovators, who often do not enjoy
a position of dominance in the marketplace, are left
out in the cold. It is hard to convince developers
to write plug-ins for operating systems or utilities
that currently have small market shares, since the
developers will only satisfy a small percentage of

1



their users in return for their hard work. If an inno-
vator creates a new feature, such as a novel preview
format, he will have a hard time convincing devel-
opers to support that feature. Thus, the innovator
will usually find himself in the position of having
to write plug-ins for most popular file types in order
to bootstrap his innovation, even though he is prob-
ably unfamiliar with the details of those file types.

• It ignores the long tail. While the most common
file types may account for the majority of the files
on a computer, the distribution of file types has a
long tail. This means that even well-funded or-
ganizations willing to invest substantial amounts
of software developer time may find it difficult to
cover a very large percentage of files on a typical
computer. For instance, by analyzing the trace data
collected by Agrawal et al. [2], we found that even
if one were to write plug-ins to support the 50 most
popular file extensions, 24% of the files observed
during a large-scale study of corporate file system
usage would still not have a corresponding plug-in.
Thus, the total development effort required to write
plug-ins for a new feature is quite large. While it
may be economically feasible for a large organiza-
tion to write and support plug-ins for a few of the
most popular file types, rarer file types will neces-
sarily be unsupported. This will create an intrusive
disruption for users of the new feature because they
must remember which file types are unsearchable,
do not have previews, etc. when interacting with
their computers.

In this paper, we present a solution to these problems,
which we call TrapperKeeper. At the heart of our work
is the observation that the application associated with a
given file type already understands how to parse, manip-
ulate, and display files of that type. Thus, there is no
need to write separate plug-ins. Instead, TrapperKeeper
uses virtualization to run such applications in isolation in
order to extract specific features such as index terms or
an image of a document being displayed.

TrapperKeeper has three components: Trapper,
Keeper, and Grabber. Trapper is invoked once per file
type. It creates a checkpoint of an application inside a
virtual machine. By intercepting file system operations,
Trapper takes the checkpoint at the exact moment the ap-
plication opens a file of a specific type. Keeper is invoked
when a new file of that type is added to the file system.
It creates a virtual machine instance, and resumes it from
the checkpoint. However, rather than return the origi-
nal file requested by the application’sopen system call,
Keeper supplies the file that was just added to the file sys-
tem. Thus, the application within the virtual machine is

tricked into opening the new file. Grabber uses accessi-
bility interfaces supplied by popular windowing systems
to extract information from the application. For exam-
ple, it might read the label and contents of a text field
to generate a key/value pair that is stored in an indexing
database.

We have implemented file indexing and document
preview features using TrapperKeeper. Our system re-
quires no plug-ins or any other code to support a new file
type for either feature. Our results show that Keeper and
Grabber can extract metadata from and create previews
for several hundred files per hour. This rate is far higher
than necessary to support the amount of updates a typical
user makes in a day. We have also used TrapperKeeper
to capture the type-specific behavior of over 20 appli-
cations. Since many applications parse several different
file types (e.g., a music player may parse MP3, WAV,
AAC, and several other file types), TrapperKeeper cur-
rently supports over 100 distinct file types. Using Trap-
perKeeper, a single graduate student added metadata and
preview support for all of these file types with less than
eight hours of work.

We begin in the next section by discussing the goals
we hope to achieve with the design of TrapperKeeper.
Section 3 describes our implementation, and Section 4
details our file indexing and document preview features.
Sections 5 and 6 describe our evaluation and discuss re-
lated work, respectively.

2 Design goals

Before we started on this project, we listed the most
important properties for a type-awareness system to
have. These properties differentiate TrapperKeeper from
previous type-awareness systems.

2.1 Minimize work per file type

Ideally, we would like to allow new file types to ben-
efit from features such as metadata indexing and docu-
ment preview without requiring any additional work to
support the new type. While this goal may be impossible
to satisfy fully, we can take a large step toward achieving
it by moving functionality out of type-specific compo-
nents and into type-agnostic components, such as Trap-
per, Keeper, Grabber, and feature-specific code.

As shown in Figure 1, our design for TrapperKeeper
has three tiers. The bottom tier, which consists of
Trapper, Keeper, and Grabber, supplies generic func-
tionality that is common across different features and
file types. For instance, Trapper and Keeper check-
point and resume virtual machines, while Grabber im-
plements shared functionality to query and manipulate
GUIs through their accessibility APIs.

2



Figure 1. Tiers of increasing specificity

The second tier is feature-specific functionality. For
instance, our metadata extraction feature uses Grabber
to query the data in text fields and other GUI widgets.
Our document preview feature uses Grabber to generate
a screen snapshot of the application within the virtual
machine. Functionality in this tier may have to be im-
plemented for several different features, so we prefer to
move any feature-agnostic code to the bottom tier. How-
ever, we expect the number of features to be quite small,
say 10-20, compared to the number of file types, which
we estimate to be several thousand based on our analysis
of trace data in Section 5.6. Thus, it is reasonable to have
a small amount of feature-specific functionality.

The top tier is type-specific functionality. Some ex-
amples of type-specific functionality are manipulating an
application to generate the best screen shot for a docu-
ment preview and selecting particular widgets that con-
tain metadata to index. We wish to avoid implement-
ing type-specific behavior whenever possible since such
work is potentially multiplied by thousands of file types.

When we cannot avoid type-specific tasks, we aim to
make them as easy as possible. For instance, Trapper-
Keeper can amortize the support for a single application
across many distinct file types. Since TrapperKeeper op-
erates on the application GUI, which is typically com-
mon for all file types, a single application snapshot can
often be used for all types parsed by an application (e.g.,
for all image types accepted by an image viewer). In
contrast, plug-in architectures operate on file data and
thus require a separate plug-in for each distinct file type.
Making type-specific tasks easier is also the motivation
for our next design goal.

2.2 No code per file type

Current indexing tools such as Spotlight [21], Win-
dows Desktop Search [26], and Google Desktop [13] rely
on software developers to create and maintain plug-ins to
parse files. Each plug-in is a piece of code that parses a
particular file type, such as JPEGs or MP3s.

Although plug-ins are acceptable for the few most
popular file types, there are a large number of less popu-
lar file types for which the benefit gained by adding them
to the metadata system is outweighed by the develop-
ment cost of the associated plug-in. Further, the different
metadata systems require varying functionality from the
plug-in, compounding the effort. For many file types, the
original developers may be the only ones who know how
to parse that file type. Yet, these developers may have
gone out of business, lost interest, forgotten how to parse
the file type, declared the file type obsolete, or may not
have the engineering resources required to build plug-ins
for each metadata system.

Metadata features that require the writing of new code
for each file type will always run afoul of these problems.
Thus, our approach is toeliminateall code specific to a
file type. Instead, we run an application associated with
each file type (e.g., Exaile for music files) and use the
application to parse files of that type. When some human
guidance is required, that guidance is provided through
the application’s GUI. A user runs an application using
Trapper and clicks on widgets in the application’s GUI
to indicate which metadata should be indexed.

Our “no type-specific code” manifesto changes the
economics of supporting file types. With TrapperKeeper,
users with no programming expertise who are familiar
with an application can add support for new file types
simply by manipulating an application’s GUI. When any-
one can add support for a new type, even niche file types
can be supported through the efforts of a single inter-
ested individual. Further, since a single user’s efforts can
be leveraged to add support for a type for other users, a
participatory community can provide support for a wide
variety of file types. This community has the potential
for a much broader membership than, for example, the
community of open-source developers because program-
ming skill is not a prerequisite for membership.

3



2.3 Isolation

Our third design goal is to isolate applications used to
parse files for features such as metadata extraction from
the rest of the computer system. In plug-in-based sys-
tems, the plug-ins are typically run as part of a back-
ground process. Using applications to provide parsing
behavior requires care because these applications often
have complex, stateful interactions with other parts of
the computing system such as the network, file system,
and windowing system. A bug in a plug-in may cause
other software to crash unless the plug-in is run in a sand-
box. TrapperKeeper is potentially even more dangerous
because it runs a complete copy of an application.

For this reason, TrapperKeeper provides strong iso-
lation by running each parsing application in its own
virtual machine. Virtualization prevents changes made
within the virtual machine from being externalized to
the host computer. Further, TrapperKeeper prevents
buggy applications or malicious files designed to trigger
bugs [6, 7] from affecting the parsing of subsequent files
by reverting the virtual machine to a clean checkpoint
after parsing each file.

3 Implementation

As shown in Figure 2, TrapperKeeper has three com-
ponents that enable type-aware file system features.
Trapper captures the file parsing behavior of an applica-
tion and stores it for later use as an application-specific
virtual machine checkpoint. Keeper resumes the virtual
machine from the checkpoint to apply the captured appli-
cation’s behavior to a new file, generating a file-specific
virtual machine. Grabber provides routines that allow
features such as metadata extraction and document pre-
view to examine and use the application interface within
the virtual machine. We next describe each component.

3.1 Trapper: Capturing application behavior

Trapper checkpoints an application just as it is about
to execute its file parsing behavior but after it has com-
pleted its startup routines, displayed initial messages,
shown open file dialogs, and so on. This checkpoint is
later used by Keeper to parse file types associated with
the application in the checkpoint.

Trapper is only executed once for each application.
The checkpoint it generates is used by all features that
employ Keeper and Grabber. To create the checkpoint,
Trapper is given a virtual machine that has the applica-
tion to be captured installed. This virtual machine en-
capsulates the application, its dependencies, interactions

Figure 2. TrapperKeeper overview

with other processes, disk and memory state, and out-
put. The application runs in as natural a situation as pos-
sible while still isolating all of the application’s output
and side effects to prevent them from becoming visible
to applications running on the host computer. The virtual
machine also constrains input to prevent misbehaving ap-
plications from accessing confidential data.

Virtual machine encapsulation makes the checkpoint
captured by Trapper portable, which allows remote
servers or workstations with spare resources to perform
the parsing on behalf of other computers. This is espe-
cially convenient in the context of a distributed file sys-
tem, in which all computers share a common namespace
and can thus collaborate to extract type-specific features
from new files. For mobile, resource-constrained clients
such as cell phones, offloading parsing and feature exe-
cution to servers is especially attractive.

Trapper runs on the host operating system. Our cur-
rent implementation uses VMware Workstation version

4



6.0.2 to execute the guest operating system and the pars-
ing application. Trapper creates a file system that is
shared between the host and guest operating system for
communication. Trapper also creates a shim file system
in the guest OS that is used to detect when the application
opens a file. The shim file system is implemented using
FUSE [10]. It appears to contain a single file, which we
refer to as thedummy file.

Trapper is given the name of the application and any
arguments on its command line. It uses the VMware
VIX API to start the execution of the named applica-
tion within the virtual machine. The VIX API provided
by VMware Workstation allows applications on the host
to invoke virtual machine features such as snapshot cre-
ation, virtual machine suspension, and running applica-
tions in the guest.

If the application can be directed to open the dummy
file with a command-line argument, no further interven-
tion is needed. Otherwise, the user must open the file
using the application’s GUI.

The shim file system detects and blocks theopen sys-
tem call on the dummy file and, in response, creates a
file in the communication directory shared between the
guest and host operating systems. Trapper checkpoints
the virtual machine using the VIX API when this file ap-
pears. It stores the resulting checkpoint of the application
about to open the dummy file in a database of captured
applications.

3.2 Keeper: Running application parsers

Keeper uses the application checkpoints produced by
Trapper to run feature-specific code on individual files.
Keeper induces the application to load a specific file and
continue running from the checkpoint. The resulting
GUI will be parsed and manipulated by feature-specific
code using the Grabber library. This is typically done
whenever a new file enters the system or a file is modi-
fied.

Given a file to parse, Keeper must first determine
which application checkpoint to use. By default, Keeper
uses file extensions to determine the file type (e.g., files
that end in “.mp3” are currently parsed using a check-
point of the Exaile music player). While this default
method adheres to the common practice of using file ex-
tensions to specify the type of each file, Keeper is not
limited by this assumption. Because Keeper activity has
no side-effects and the failure to parse a file can be de-
tected, Keeper can try several parsers on a file, searching
for one that parses the file correctly.

Keeper places the file of interest in the communica-
tion directory and uses the VIX API to resume execution

from the checkpoint taken by Trapper. In the checkpoint,
the application was captured in the middle of anopen

system call that was being blocked by the shim file sys-
tem. Through the shared file system, Keeper signals the
shim file system to return fromopen. The shim file sys-
tem unblocks the application and returns normally from
open. However, instead of returning a file descriptor for
the dummy file the application was opening at the mo-
ment the checkpoint was taken, the shim file system in-
stead returns a FUSE handle that directs future opera-
tions for that file to the shim file system. The shim file
system allows applications to open a file for both reading
and writing. It applies read-only operations to the file of
interest rather than the dummy file. Write operations are
temporarily buffered and returned to the application if it
reads the same data that it wrote. However, no modifica-
tions are ever applied to the original file. This sleight-of-
hand replaces the contents of the dummy file with those
of the file of interest. Thus, when the application pro-
ceeds, it blithely parses and displays the file of interest.

3.3 Grabber: Capturing the interface

Grabber waits for the application to load the file and
display its contents. Unfortunately, there is no standard
method to detect when an application has finished pars-
ing the file and its interface has reached a stable state in
which it displays the file contents.

One possible solution would be for Grabber to wait
a fixed amount of time after the file is opened. This so-
lution is undesirable because choosing the right timeout
is hard. If a timeout is chosen that is too small, features
may read incorrect values from the display. If one is cho-
sen that is too large, much time would be spent idle and
the rate at which TrapperKeeper can process new files
would be limited. Further complicating matters, appli-
cations may take varying amounts of time to load files
depending on the size of the file being loaded or the cur-
rent load on the host CPU and disk.

Another solution we considered was for Grabber to
wait until no changes have been made to the GUI for a
fixed amount of time. However, this approach would fail
for applications that do not have a stable final state due
to activity such as animated GUI elements or automatic
playback of a media file.

The solution we chose detects a final state by com-
paring the current state with the final state generated by
the previous behavior of the same application. The first
time Grabber uses an application checkpoint to parse a
file, it waits a few minutes to be sure that the application
GUI has reached a final state. Grabber then uses acces-
sibility APIs to access a descriptive, hierarchical view of
the elements of the GUI. Accessibility APIs are a part

5



Window - ‘‘Sample Window’’
Close Button

Minimize Button

Zoom Button
Window Resizer

Button - ‘‘Print’’

Button - ‘‘Quit’’

Scroll Area
Scroll Bar

Text Area - ‘‘Lorem Ipsum...’’

Figure 3. Accessibility API view of a window

of every modern windowing system and allow applica-
tions to examine the GUI elements of other processes and
their properties such as displayed text and size. Grabber
writes a representation of each GUI element of the dis-
play to a file, with each GUI element on a single line.
Figure 3 shows a simplified example of how a window
and its child widgets appear when accessed through the
accessibility API. The file generated by Grabber during
the initial execution of the application checkpoint serves
as an example of what the final state of the application
GUI looks like after a successful parsing.

During subsequent invocations of the same applica-
tion, Grabber periodically reads the state of the applica-
tion GUI through the accessibility API. It then computes
the difference between the current state and the example
state. Our current implementation calculates the differ-
ence by counting the number of lines generated by the
diff tool when given the current and example GUI data.
More sophisticated methods are possible, but we have
found that thediff approach works well in practice.

Our method assumes that there should be a large dif-
ference between the current state of the application GUI
and that in the example while the application is parsing
the file. Once the file is loaded, some of the details of the
GUI may be different from the example, but we expect
much of the interface, such as the buttons, toolbars, and
menu items, to be the same.

Grabber checks the state of the interface every 100 ms.
If the fraction of lines that differ is above a threshold,
Grabber does not consider the interface to be in a final

state and it continues to wait. Grabber starts the threshold
at 40% and gradually increases it by 0.2% every 100 ms
to guarantee termination. When the parsing and display
is complete, Grabber invokes feature-specific code that
uses the current GUI state to implement features such as
metadata extraction and document preview.

3.4 Discussion

Unlike the plug-in approach, TrapperKeeper does not
need type-specific code to support a new file type. How-
ever, it does require support in the form of other software
systems, most of which are readily available.

First, TrapperKeeper needs an application that can
parse the file type in question. Ideally, the application
should be able to open a file specified by a command-
line argument. If this is not the case, a user must open
a particular file using the application’s GUI once. While
this does represent human effort, the level of involvement
is clearly much less than writing a plug-in. Further, the
activity can be performed by any user of an application,
not just by software developers.

TrapperKeeper also needs an instance of the file type
to let Grabber observe a successful parsing that estab-
lishes a baseline for comparison with future parsings.
The application must implement an accessibility inter-
face to provide the windowing system access to infor-
mation about the elements that make up the interface.
Accessibility APIs were originally designed to support
tools that assist visually impaired users by exporting in-
formation exposed by application GUIs. They are a part
of every popular modern windowing system.

There are several forces driving applications to imple-
ment the accessibility interface. First, the default GUI el-
ements (buttons, windows, text fields, etc.) automatically
implement accessibility functionality. Because many ap-
plications use these default widgets rather than imple-
ment their own, those applications support accessibility
without any extra development effort. Implementing the
accessibility interface is also desirable for its original
purpose, allowing visually impaired people to use the ap-
plication. Finally, implementing an accessibility solution
has become a requirement to sell software to the United
States government [24].

4 Features

Once Grabber determines that the parsing application
within the virtual machine has successfully reached its fi-
nal GUI state, it executes feature-specific code that uses
the interface state to gather information about the file that
has just been parsed. Grabber implements generic code
that each feature can use to query and manipulate each

6



application’s GUI. Besides reducing feature complexity
by providing a common mechanism, this implementa-
tion allows us to abstract away specific implementation
details of window managers and operating systems that
may run within the virtual machine.

We have implemented two features, metadata extrac-
tion and document preview, which are described in Sec-
tions 4.1 and 4.2. Additional features can be imple-
mented by hooking into the Grabber API. Section 4.3
describes ideas for additional features that we have yet
to implement.

Note that feature extensibility does not recreate the
original problem of requiring too many plug-ins. A de-
veloper only needs to write one feature; in contrast, she
would have to write a plug-in for every application on
each platform (because the plug-in interfaces are cur-
rently platform-dependent) to support the same feature.

4.1 Metadata extraction

The metadata extraction feature produces attribute-
value pairs for each file. It stores these pairs in a file
indexing system. Since the attributes extracted by the
feature are themselves type-specific, the file indexing
tool may be type-agnostic. For instance running the ex-
traction feature on an MP3 file might produce the pairs
{”composer”,”Beethoven”} and{”rating”,”five stars”}.

The metadata feature uses Grabber to acquire a dump
of all GUI widgets such as text fields, choice boxes, ta-
bles, etc. The feature then sifts through the GUI infor-
mation to find attribute-value pairs that describe the file.

We have implemented two ways to select which meta-
data to extract. The first way is completely automatic.
The metadata feature searches through the GUI informa-
tion to find widgets that supply both names and values.
For instance, a photo viewer might have a label widget
with an attribute called “name” that has the value “lo-
cation” and an attribute called “text” that has the value
“Paris”. From this data, the metadata feature identifies
{“location”,”Paris”} as an attribute value pair. Besides
labels, the automatic metadata extractor looks for text
and tables. Tables are especially valuable as they often
have column or row headers that describe cell contents.

The above method can gather more data than is
strictly necessary, so we implemented an alternative
method for extracting metadata. The person who uses
Trapper to create an application checkpoint subsequently
runs Keeper on a sample file and selects the GUI widgets
displaying metadata of interest by moving the mouse cur-
sor over them and pressing a special key sequence (Ctrl-
F11). The metadata feature makes a list of selected wid-
gets. It extracts metadata from only those selected wid-
gets in subsequent parsings. The selection is only done

once per file type. It does not require any programming
skills, just the ability to use the application.

In many applications, a button or menu item can be
used to display more detailed information about a file
after it is opened. To access this information, we have
added an option that allows the user to specify buttons
and/or menu items to be activated when parsing is com-
plete, but before features are executed. The user chooses
the buttons or menu items by parsing a sample file and
then pressing a special key sequence (Ctrl-F10) while
the mouse is hovering over the element to be activated.
These selections are saved for use on further parsings.

Once the metadata feature has extracted attribute-
value pairs for a file, it stores them in an indexing
database from which they can later be used as search
terms when searching for particular files. Our imple-
mentation uses Beagle [5] to store metadata. With Trap-
perKeeper, Beagle’s insertion and retrieval functionality
is similar to that provided by Apple’s Spotlight and Mi-
crosoft’s Windows Desktop Search, except that no plug-
ins are required to parse files and generate metadata.

As an added benefit, the metadata stored by Trapper-
Keeper is expressed in terms of what users see on the
screen when using applications, instead of in terms spec-
ified by a plug-in developer. For example, a music player
may display a “play time” value for each song while a
plug-in may refer to the same value as “length.” Users
making queries are more likely to use the former term
since they see it every time they use the music player.

4.2 Document Preview

The second feature we implemented is document pre-
view. This feature creates an image of the file being dis-
played by its parsing application; the image can then be
used as an icon for that particular file by a graphical file
browser. Windows, Mac OS X, and Gnome all provide
mechanisms to set a file’s icon. These captured images
can easily be used to provide custom icons for files that
reflect the contents of that file when rendered.

The document preview feature uses Grabber to gener-
ate a screen shot of the application window after it has
loaded a file. Grabber triggers the particular platform-
specific screen shot functionality for the guest operating
system running in the virtual machine. For better screen-
shots, the user can again use Ctrl-F10 to specify GUI el-
ements to be activated to perform actions such as switch-
ing software into presentation mode.

4.3 Other possible features

Besides the two features that we have built, we see
several other possible features that could use the Trap-
perKeeper infrastructure.

7



4.3.1 Format transcoding

Many applications that open files have the ability to
print those files. On modern platforms, the interface used
to direct an application to print is shared by most applica-
tions. Because of this standardization, it is easy to use the
accessibility API to direct applications to print the cur-
rent document to a file. By capturing the printed output,
a TrapperKeeper print feature can effectively transcode
documents into a common format such as PostScript.

Transcoding documents to a common format has sev-
eral benefits. It serves as a mechanism to create archival
versions of documents in file formats that may become
obsolete. The print feature also produces a preview of
the entire document. Unlike the document preview fea-
ture described in Section 4.2 that produces a single image
or thumbnail, the preview produced by the print feature
would be a complete, browsable, indexable, and search-
able representation of the document content. Further, by
producing content in a standard format such as PostScript
or PDF, the print feature enables content to be browsed
and searched by standard tools that manipulate the com-
mon format.

4.3.2 Building ontologies

Different applications often use different terms to re-
fer to the same thing. For example, one music player
may display an “author” field to describe the person who
wrote the music, while another may use the term “com-
poser”. An ontology feature could use such applica-
tion diversity to develop context-dependent lists of syn-
onyms.

The ontology feature could run multiple applications
that parse the same data type and then ask Grabber to
dump each application’s GUI. It could generate attribute-
value pairs for each application using the same method
employed by the metadata extraction feature. By exam-
ining which pairs have the same value but different at-
tribute names in two different application GUIs, the on-
tology feature could establish candidate synonyms.

4.3.3 Matching files to applications

A file matching feature could identify which applica-
tions parse a file of unknown type. Sometimes, users
encounter a file that is missing an identifying extension
in its name or one that has an unidentified extension. In
such circumstances, it is difficult to know which applica-
tions can view or manipulate that file.

A straightforward file matching feature could try to
use several applications captured by Trapper to open the
file. After Keeper resumes each application from its
checkpoint, Grabber can detect when the application suc-
cessfully parses the file (in which case the state of the

application GUI will be similar to the example provided
when Keeper first opened a file supported by the applica-
tion) and when the application cannot parse the file.

5 Evaluation

Our evaluation of TrapperKeeper sought to answer the
following questions:

• How fast can TrapperKeeper extract metadata?

• How fast can TrapperKeeper generate previews?

• Can TrapperKeeper handle a variety of applications?

• What is the typical distribution of file types?

5.1 Methodology

In the following experiments, the computer we used
was a Dell 690, with two quad-core 2.66 GHz Core 2 pro-
cessors and 4 GB of RAM. The virtual machine we used
was the 64-bit version of VMware workstation 6.0.2, and
the guest OS was Ubuntu Linux 7.10.

We measured the time to extract metadata from and
generate document previews of five files. The first is a
1 MB Microsoft Word file that uses several fonts and in-
cludes several images; the document is opened by Open
Office Writer. The second is a 4.9 MB MP3 music file
opened by the Exaile media player. Exaile cannot be
directed to open a file through its command line argu-
ments, so we used Trapper to checkpoint the applica-
tion after specifying the file to be opened using Ex-
aile’s GUI. The remaining files are a 4.1 KB JPEG im-
age, a 6.6 KB HTML file, and a 130 B saved chess game.
These files are opened by the Gthumb image viewer, the
Mozilla Firefox Web browser, and the GLChess chess
program, respectively; all three applications can open a
file through command line arguments.

5.2 Trapper performance

Figure 4 shows the time needed to create a checkpoint
for each application. Creating a checkpoint for Exaile
took the longest time because we had to manually open
the MP3 file using Exaile’s GUI. However, even with a
manual step, it still took less than 22 seconds to create
the checkpoint. Trapper created a checkpoint of all re-
maining applications in less than 9 seconds each.

We also measured the storage space consumed by
checkpoints. The Ubuntu virtual machine took 4 GB.
Each checkpoint consumed an additional 143-151MB of
storage. The checkpoints are relatively small because
they are based on deltas from the virtual machine they
were created from.

8



Open Office
Exaile

Gthumb
Firefox

GLChess
0

5

10

15

20

25
T

im
e 

(s
ec

on
ds

)

Checkpoint
Application
Start VM

This figure shows the amount of time needed by Trapper to cap-
ture checkpoints of five applications. Each result is the average
of 5 trials. The error bars show 90% confidence intervals.

Figure 4. Trapper performance

As the shadings within each bar in Figure 4 show,
starting a new virtual machine took less than three sec-
onds. Our initial checkpoint of Ubuntu Linux had all five
applications installed. If any of our applications did not
come with the base installation of the operating system,
we would have had to install them before running Trap-
per. Checkpointing the virtual machine took 1-2 seconds,
and the remaining time was spent waiting for the appli-
cation to load and open the dummy file.

From these results, it is clear that creating a Trapper-
Keeper checkpoint is far less time-consuming than writ-
ing a type-specific plug-in.

5.3 Executing features

Figure 5 shows the time needed to resume from a vir-
tual machine checkpoint and execute both features. As
shown by the bottom segment of each bar, Keeper takes
3.3–5.2 seconds to resume the virtual machine from a
Trapper checkpoint. Resuming from the Open Office
Writer checkpoint takes slightly longer than the other
applications, probably because Writer is more resource-
intensive and uses more memory.

The second segment of each bar shows the amount of
time that Grabber waits for the application to reach a sta-
ble GUI state. Grabber waits an average of 5.4 seconds
for each application. Again, Open Office Writer takes
the longest, 10.9 seconds, because it must convert and

Open Office
Exaile

Gthumb
Firefox

GLChess
0

5

10

15

20

T
im

e 
(s

ec
on

ds
)

Doc. Preview
Metadata Extraction
Application
Revert

This figure shows the amount of time needed by Keeper and
Grabber to execute two features, metadata extraction and docu-
ment preview, on five files parsed by different applications. Each
result is the average of 5 trials. The error bars show 90% confi-
dence intervals.

Figure 5. Keeper performance

display a complex document. In contrast, if we resume
Writer with a simple text document, a stable GUI state
is reached in only 4.2 seconds. The difference between
these two times, 6.7 seconds, shows the benefit of detect-
ing a stable GUI state rather than using a fixed timeout.
An algorithm with a fixed timeout would either wait too
long for simple documents or not correctly capture com-
plex ones.

As shown by the third segment of each bar, the execu-
tion of the metadata feature is almost instantaneous for
all applications. The reason is that Grabber must dump
the state of each application’s GUI to determine that the
interface has reached a stable state. Since the metadata
feature needs the identical information, Grabber can sim-
ply provide its cached values. Parsing the metadata to
extract attribute-value pairs takes negligible time.

The top segment of each bar shows the amount of time
for the document preview feature to capture a screen shot
of each application displaying its files. Document pre-
view takes an average of 1.7 seconds for all applications.

When the metadata extraction feature does not modify
the state of the application (as is true for these 5 appli-
cations), TrapperKeeper executes the document preview
feature immediately after the metadata extraction feature
finishes. When this is not the case, TrapperKeeper must
discard the virtual machine and again resume each appli-

9



Open Office
Exaile

Gthumb
Firefox

GLChess
0

20

40

60

80

100
R

es
ul

t d
iff

er
en

ce
 (

%
)

Figure 6. Difference in GUI states for different files

cation from its checkpoint prior to executing the docu-
ment preview feature.

Extrapolating from these results, TrapperKeeper
could extract metadata and make previews of 318 files
per hour. TrapperKeeper takes the longest amount of
time, 18.2 seconds, to process the Word document. At
this rate, it could still process 198 documents per hour.

According to a file system study performed by
Agrawal et al. [2], in 2004, the last year of their study
of corporate desktops, the average file system contained
approximately 90,000 files, 22% of which had been mod-
ified or created locally within the last year, a rate of only
2.26 per hour. The actual rate of file creation is higher
than this figure because the trace data does not capture
files that are created and subsequently deleted between
file system snapshots. Nevertheless, the more than two
orders of magnitude difference between the long-term
file creation rate and TrapperKeeper’s parsing rate gives
us confidence that TrapperKeeper can keep up with the
file creation rate of the average user. Further, all Trapper-
Keeper activity takes place asynchronously in the back-
ground, so it never blocks user file creation or modifica-
tion.

Further, the increasing popularity of multicore com-
puters on the desktop creates opportunities for paral-
lelism. First, TrapperKeeper can parse new files on an
idle core in the background while foreground applica-
tions use other cores. Additionally, because each Trap-
perKeeper application is encapsulated in a separate vir-
tual machine, TrapperKeeper can be executed in parallel

when more than one idle core is available. Since we had a
multicore computer available to us, we verified this pos-
sibility by creating a multithreaded version of Trapper-
Keeper. We verified that two instances of TrapperKeeper
could run in parallel and produce almost perfect speedup
on 2 cores (e.g., approximately 395 documents per hour
or 836 music files per hour). Beyond two cores, our im-
plementation was limited by thread safety issues with the
version of the VMware VIX API we used.

Further parallelism can be achieved in the context of
a distributed file system. Keeper can run on any client of
the distributed file system, leveraging the spare resources
of multiple computers. This is made easy by the portabil-
ity of virtual machines and distributed notification mech-
anisms such as persistent queries [18].

Performance can also be improved by hybridizing the
TrapperKeeper approach with a plug-in based approach.
By using plug-ins for a few of the most popular file types,
such as MP3 and JPEG, we can make the these common
cases fast for a small additional effort.

5.4 Detecting stable GUI states

We next verified that applications reach a stable GUI
state with a relatively small number of differences from
the initial example parsing (described in Section 3.3)
when they open a different file of the same type.

To test this, we opened each application with a file of
similar size but different contents than the one used by
Grabber to create the example parsing. Rather than use
Grabber’s algorithm for detecting the final state, we let
each application run and manually determined when the
final state had been reached. Figure 6 shows the results.
There is almost no difference in the final GUI state of
Gthumb when it displays two different images because
the image data is not part of the GUI state exported by the
application, which makes sense since the original pur-
pose of the accessibility APIs is to help visually impaired
users. The GUI state of the remaining applications differ
by 10.4–30.4%.

5.5 Experiences with TrapperKeeper

To demonstrate the general applicability of Trapper-
Keeper, we next captured the type-specific behavior of
every application listed in the applications menu on a
fresh installation of Ubuntu 7.10. We restricted our ex-
periment to the 20 listed applications that open user-
specified files (not just configuration files).

All 20 applications were able to work with Trapper-
Keeper. However, not every application behaved as we
expected. We discovered that choosing a minimal set
of devices for the initial virtual machine is a bad idea.

10



0 200 400 600 800 1000

Number of Extensions

0

20

40

60

80

100

F
ile

s 
no

t c
ov

er
ed

 (
%

)

Figure 7. Fraction of files left uncovered

Two applications, Gnome Sound Recorder and Serpen-
tine Audio CD Creator required audio devices and a CD
writer, respectively. We corrected this problem by hav-
ing the initial virtual machine come with a robust set of
virtual devices.

For some applications, the actions required to exe-
cute theopen system call are not obvious. For instance,
Gnome Sound Recorder only records the name of files
selected using its open file dialog. It does not execute
the open system call until the play button is pressed.
We handled such applications by experimenting with the
GUI until anopen system call was trapped by the shim
file system.

Some applications were picky about file locations.
Pidgin, an instant messenger client, only opens saved
chat logs in a particular location in the file system, so we
occupied that space with a symlink pointing to Trapper’s
dummy file. Fiddling was sometimes necessary to get
an application’s GUI to display file contents. For exam-
ple, Evolution, an email client, requires several buttons
to be pressed after opening a contact file before display-
ing its contents. We encountered one application, Exaile,
that derives the type of a file from its filename exten-
sion. Since our dummy file can have only one name per
application instance, we simply created snapshots with
different dummy file names for each file type.

Despite these unexpected behaviors, we found it quite
easy to capture type-specific behavior with Trapper-
Keeper. In fact, Applying TrapperKeeper to all of these
applications took a single person less than eight hours.
Further, because many applications parse more than one
file type, the 20 applications we handle allow us to sup-
port metadata extraction and document preview for over
100 distinct file types.

5.6 The long tail

One of our motivations for developing TrapperKeeper
is that there are a large number of file types in use.
Our hypothesis is that would take a Herculean effort to
get near total coverage of file types using a plug-in ap-
proach. To get an idea of how many file types are in
common usage, we examined the file system snapshots
from the most recent year (2004) of the file system study
performed by Agrawal et al. [2]. Their study captured
file system snapshots on 8,729 desktop computers at Mi-
crosoft.

We used the methodology of Agrawal et al. to count
the number of unique file name extensions and the per-
centage of files that appear for each extension. Their
methodology defines a file name to have an extension if
there are five or fewer characters following the last pe-
riod in the file name. The endings of compressed files
ending in .gz, .bz2, or .Z are removed before determin-
ing the file name extension. Using this methodology, ap-
proximately 7% of the file names captured by the study
have no extension. In total, we found 102,869 distinct
filename extensions in the study data. Although filename
extensions and file types are not necessarily in one-to-
one correspondence, this evidence certainly suggests that
there are a large number of file types.

Figure 7 shows that the distribution of file name ex-
tensions has a very long tail. If one were to write type-
specific code for each extension, even writing 50 plug-ins
would not cover 23.92% of the files in the study. Table 8
shows the maximum number of files that would be cov-
ered by writing type-specific code for different numbers
of extensions.

Because there are so many file types in the long tail,
a strategy that involves substantial developer effort per
file type will not achieve coverage. The cost of writing
and maintaining code is high. Thus, it does not make

11



Number of Most Popular ExtensionsFiles Covered
10 44.94%
20 59.94%
50 76.08%
100 85.14%
1000 98.05%

Figure 8. Coverage of most popular file name extensions

economic sense to invest developer effort in supporting a
file type whose percentage of the overall number of files
is small. However, as our results show, although many
individual file types are relatively unpopular, the collec-
tion of such unpopular types represents a substantial por-
tion of the total number of files.

The solution that we propose is to reduce the effort
needed to support each file type. TrapperKeeper requires
no programming per file type. For other types, ordinary
users can create snapshots using Trapper and an appli-
cation’s GUI. By greatly reducing the work required to
support new file types, TrapperKeeper aims to increase
the number of file types for which the benefit outweighs
the cost of adding support.

6 Related work

To the best of our knowledge, TrapperKeeper is the
first project to leverage existing applications in order to
extract metadata from files. This is in contrast to the tech-
nique first proposed by the Semantic File System [11],
which uses small, special-purpose programs to extract
metadata from files. The Semantic File System approach
is used by today’s popular metadata indexing and re-
trieval systems including Spotlight [21], Windows Desk-
top Search [26], Beagle [5], Google Desktop [13], and
X1 [27]. For these commercial products, the special-
purpose program is often a plug-in. The plug-in ap-
proach has also been used in academic projects including
Roma [22] and Stuff I’ve Seen [8], which is the basis for
Windows Desktop Search. More recently, document pre-
view techniques [4] based on the same principles have
emerged. Application developers provide plug-ins that
are invoked to render a preview of the document.

TrapperKeeper makes use of accessibility APIs to get
information from an application’s GUI. These interfaces
were designed to expose the structure and content of GUI
elements to screen reader software, such as JAWS [9],
VoiceOver [3], Narrator [1], and Gnopernicus [12], that
help visually impaired users operate a computer. Trap-
perKeeper uses accessibility APIs for a different pur-
pose: easy access to structured GUI information to ex-
tract information about displayed files.

DejaView [14] previously used accessibility APIs to
archive and search the text displayed by applications.

Thus, DejaView’s purpose is similar to that of Trapper-
Keeper’s metadata extraction feature. Both have differ-
ent strengths. DejaView indexes more than just file sys-
tem data. However, TrapperKeeper’s metadata extrac-
tion feature indexes data that the user has yet to view. It
also can manipulate application GUIs through recorded
actions similar to GUI scripting [16] to extract more in-
formation.

More generally, interposing on calls between the ap-
plication and windowing system has been used as a way
to access and even modify [20] the user-visible aspects
of applications.

These are not the only ways to access information dis-
played to users. Screen scrapers have long been used to
access information that programs display, but do not ex-
pose through other means. However, they are generally
undesirable as they require substantial custom code to
extract the desired information and can easily be broken
by changes in the application or its configuration.

TrapperKeeper also relies on a checkpoint and restart
mechanism to capture application activity at the moment
it begins to parse a file. This task is potentially difficult
because we need to capture not only the application it-
self, but also its interactions with the windowing system
and any processes or other entities with which the pro-
cess communicates. Encapsulating the application in a
virtual machine isolates the actions of the captured ap-
plication from other applications and provides a conve-
nient snapshot ability that captures the application at the
moment a file is opened. Capturing an application in this
way is similar to making a virtual machine appliance [25]
whose only function is to parse files.

We chose to use virtual machine checkpoint and
restart for TrapperKeeper. Potentially, we could have
used a different checkpointing solution implemented in
the operating system or at user level [15, 17, 19, 23].
Such a solution might provide better performance, but
the implementation would be more challenging. For in-
stance, special care would be needed to correctly han-
dle the stateful interactions between the captured process
and the window manager.

7 Conclusion

Understanding type-specific metadata encapsulated
within files has a great many benefits. In the past, unlock-
ing these benefits has required that software developers
build and maintain type-specific plug-ins for a wide va-
riety of features, tools, and operating systems. Since the
cost of developing such plug-ins is high, it is hard to de-
ploy innovative new features that exploit type-awareness.
Even for the most popular features, many files on a com-
puter will be unsupported because the distribution of file

12



types has a long tail and it is only possible to support the
most popular file types.

TrapperKeeper changes the economics of this equa-
tion by making it much easier to create type-aware com-
ponents. Our results show that checkpoints of new file
types can be created in less than a minute using Trap-
perKeeper. Further, any user of an application can cre-
ate a Trapper checkpoint since no programming is re-
quired. Our results also show that TrapperKeeper can
process hundreds of files per hour, a rate that far exceeds
the amount of files created or modified by a typical user.

References

[1] Accessibility in Windows Vista. http:

//www.microsoft.com/enable/products/

windowsvista/.

[2] AGRAWAL , N., BOLOSKY, W. J., DOUCEUR,
J. R.,AND LORCH, J. R. A five-year study of file-
system metadata. InFAST’07: Proceedings of the
5th USENIX Conference on File and Storage Tech-
nologies(Berkeley, CA, USA, 2007), USENIX As-
sociation, pp. 3–3.

[3] Apple - Mac OSX - VoiceOver. http://www.
apple.com/macosx/features/voiceover/.

[4] Quick look programming guide. http:

//developer.apple.com/documentation/

UserExperience/Conceptual/Quicklook_

Programming_Guide/Quicklook_

Programming_Guide.pdf.

[5] Main page - Beagle.http://beagle-project.
org.

[6] CADAR , C., AND ENGLER, D. Execution gener-
ated test cases: How to make systems code crash it-
self. InProceedings of the 12th International SPIN
Workshop on Model Checking of Software(August
2005).

[7] CADAR , C., GANESH, V., PAWLOWSKI , P. M.,
DILL , D. L., AND ENGLER, D. R. EXE: Auto-
matically generating inputs of death. InProceed-
ings of the 13th ACM Conference on Computer and
Communications Security(2006).

[8] DUMAIS , S. T., E. CUTRELL, E., CADIZ , J. J.,
JANCKE, G., SARIN , R., AND ROBBINS, D. C.
Stuff i’ve seen: A system for personal information
retrieval and re-use. InProceedings of SIGIR 2003
(Toronto, Canada, 2003).

[9] JAWS for Windows. http://www.

freedomscientific.com/.

[10] Filesystem in userspace. http://fuse.

sourceforge.net/.

[11] GIFFORD, D. K., JOUVELOT, P., SHELDON,
M. A., AND O’TOOLE, J. W. Semantic file sys-
tems. InProceedings of the 13th ACM Symposium
on Operating Systems Principles(October 1991),
pp. 16–25.

[12] The gnome accessibility project. http://

developer.gnome.org/projects/gap/.

[13] Google desktop.http://desktop.google.com.

[14] LAADAN , O., BARATTO, R., PHUNG, D., POT-
TER, S., AND NIEH, J. DejaView: A per-
sonal virtual computer recorder. InProceedings
of the Twenty-first ACM Symposium on Operat-
ing Systems Principles(Stevenson, WA, Oct 2007),
pp. 279–292.

[15] LAADAN , O., AND NIEH, J. Transparent
checkpoint-restart of multiple processes on com-
modity operating systems. InProceedings of the
2007 USENIX Annual Technical Conference(Santa
Clara, CA, June 2007).

[16] L ITTLE , G., LAU , T. A., CYPHER, A., L IN , J.,
HABER, E. M., AND KANDOGAN, E. Koala:
capture, share, automate, personalize business pro-
cesses on the web. InCHI ’07: Proceedings of the
SIGCHI conference on Human factors in comput-
ing systems(New York, NY, USA, 2007), ACM,
pp. 943–946.

[17] L ITZKOW, M., AND SOLOMON, M. Supporting
checkpointing and process migration outside the
unix kernel. InUsenix Winter Conference(January
1992).

[18] PEEK, D., AND FLINN , J. EnsemBlue: Integrat-
ing consumer electronics and distributed storage.
In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation(Seattle, WA,
November 2006), pp. 219–232.

[19] PLANK , J. S., BECK, M., K INGSLEY, G., AND

L I , K. Libckpt: Transparent checkpointing under
Unix. In Usenix Winter Technical Conference(Jan-
uary 1995), pp. 213–223.

[20] SATYANARAYANAN , M., FLINN , J., AND

WALKER , K. R. Visual proxy: Expoiting OS
customizations without application source code.
ACM SIGOPS Operating Systems Review 33, 3
(1999), 14–18.

13



[21] Spotlight overview, May 2007. http:

//developer.apple.com/documentation/

Carbon/Conceptual/MetadataIntro/

MetadataIntro.pdf.

[22] SWIERK, E., KICIMAN , E., LAVIANO , V., AND

BAKER, M. The Roma personal metadata service.
In Proceedings of the 3rd IEEE Workshop on Mo-
bile Computing Systems and Applications(Mon-
terey, CA, 2000).

[23] THEIMER, M. M., LANTZ , K. A., AND CHERI-
TON, D. R. Preemptable remote execution facili-
ties for the V-System. InProceedings of the 10th
ACM Symposium on Operating Systems Principles
(Santa Clara, CA, December 1985).

[24] Section 508 of the rehabilitation act, as amended by
the workforce investment act of 1998.

[25] Virtual appliance marketplace. http://www.

vmware.com/appliances/.

[26] Windows desktop home page. http://www.
microsoft.com/windows/desktopsearch.

[27] X1 - unified, actionable search.http://www.x1.
com.

14


