
Splash: Integrated Ad-Hoc Querying of Data and
Statistical Models

University of Michigan Technical Report #CSE-TR-553-09

Lujun Fang, Kristen LeFevre
{ljfang,klefevre}@eecs.umich.edu

Electrical Engineering and Computer Science, University of Michigan
2260 Hayward Ave, Ann Arbor, MI 48109

Abstract— This paper presents a system called Splash, which
integrates statistical modeling and SQL for the purpose of ad-
hoc querying and analysis. Splash supports a novel, simple,
and practical abstraction of statistical modeling as an aggregate
function, which in turn provides for natural integration with
standard SQL queries and a relational DBMS. In addition,
we introduce and implement a novel representatives operator
to help explain statistical models using a limited number of
representative examples.

We present a proof-of-concept implementation of the system,
which includes several performance optimizations. An experi-
mental study indicates that our system scales well to large input
datasets. Further, to demonstrate the simplicity and usability of
the new abstractions, we conducted a case study using Splash to
perform a series of exploratory analyses using network log data.
Our study indicates that the query-based interface is simpler
than a common data mining software package, and for ad-hoc
analysis, it often requires less programming effort to use.

I. INTRODUCTION

Data mining is often performed as an iterative, exploratory
process involving multiple ad-hoc tasks. Recent work has
begun to consider exploratory mining paradigms [22], but most
data mining software still supports a rigidly-defined set of
tasks (e.g., classification with a fixed training set and class
label, or anomaly detection based on a fixed set of models). In
contrast, relational databases have been extremely successful
in providing simple languages that allow users to specify a
variety of ad-hoc queries. Further, many years of research have
resulted in database systems that easily scale to large data.

The goal of this work is to develop a system that combines
the power of data mining (particularly statistical modeling)
with the ad-hoc query power and scale of SQL and relational
databases. One motivating application for such a system,
which we find particularly interesting, is the flexible ad-hoc
analysis and exploration of logs for the purpose of anomaly
and misuse detection.
A. Motivating Example: Log Analysis

Maintaining audit logs is a fundamental component of a
comprehensive security [5] and privacy [19] infrastructure.
Logging is complementary to access control and other security
mechanisms, and it is particularly useful for recording and
detecting inappropriate access and misuse by insiders.

To illustrate the importance of audit logs in database man-
agement, consider a large healthcare organization, which must

take precautions to safeguard sensitive information, including
patients’ medical records. The organization has deployed a
comprehensive security infrastructure, but due to the evolving
nature of care (e.g., residents and nurses who change depart-
ments frequently), it is often impossible to specify comprehen-
sive access control policies. In fact, overly-restrictive policies
interfere with patient care. Instead, rather than preventing
inappropriate access, it is often necessary to take steps to
detect such access after the fact by keeping a record of what
information has been accessed, and by whom [16]. As a recent
example, Kaiser Permanente recently fired fifteen employees
for inappropriately viewing the medical records of Nadya
Suleman, the highly-publicized mother of octuplets [21].

Legislation and regulatory oversight have required organi-
zations in a variety of domains to track their use of sensitive
data [1], [15], [14], but few tools have been developed to allow
auditors to systematically and proactively analyze the resulting
logs. In healthcare compliance, it is common to focus auditing
efforts on a few VIPs (high-profile patients) [16], but this is
not a comprehensive solution.

Anomaly detection is one common tool for behavior-based
log analysis and intrusion detection, which has been researched
extensively for operating systems [27], networks [43], and
more recently for database systems [33]. At a high level, the
idea is to learn a model of “normal” behavior, and then detect
deviations from normal as potential misuse. Unfortunately,
even in domains such as operating systems and networks,
where anomaly detection has been studied extensively, it is
known to have significant disadvantages, including the both-
ersome problem of false positives [43], and a notable lack of
flexibility. For example, a security administrator must decide
(a priori) the granularity at which to model behavior (e.g., user,
role, process, source IP, etc.), and the output of the system is
limited to simple boolean decisions (raise a warning or not).

Thus, inspired in part by the log analysis problem, we set out
to build a system that marries statistical models (following the
past successes of anomaly detection) with the ad-hoc flexibility
and simplicity of high-level query languages.

B. System Requirements

We identified three high-level requirements for Splash:
• Scalability: Our system should be able to scale gracefully

to large input datasets, particular those that are signifi-
cantly larger than main memory.

• High-Level Query Language: The system should sup-
port a simple high-level query language that allows easy
specification of ad-hoc queries and analyses with minimal
programming effort.

• Natural Abstraction for Statistical Models: The data
model and query language should provide a simple and
natural abstraction for ad-hoc creation and direct manip-
ulation of models.

While statistical software (e.g., Matlab [7], R [9], Stata [12],
SAS [11]) and data mining packages (e.g., Weka [13]) provide
a great deal of statistical modeling functionality, to the best of
our knowledge all assume that the data to be analyzed is small
enough to fit in main memory. Recent work has proposed tech-
niques that allow R to scale to larger datasets [50]. However,
none of these software packages provides a high-level query
language, which makes ad-hoc exploratory analysis somewhat
more difficult than in a typical SQL database because the user
must write a custom program for each new analysis. Further,
these tools do not typically support automatic optimization and
operator re-ordering as is found in relational databases.

For all of these reasons, several systems have proposed
incorporating support for statistical and data mining models
into relational databases and SQL. Two specific abstractions
have been proposed. However, we find that neither provides
a natural abstraction for ad-hoc model creation and manipula-
tion, specifically in the log analysis domain.

MauveDB [24] provides a novel abstraction called a model-
based view. The idea of this abstraction is to expose to the user
data interpolated from the model, as if this data were part of
an ordinary database view. While this abstraction is natural
for data interpolation (e.g., in the sensor domain), it suffers
two main shortcomings when it comes to ad-hoc analysis: (1)
Each model must be declared using syntax similar to SQL’s
CREATE VIEW, which leads to a tedious process if an analyst
wants to create many models (e.g., one per system user in
the log analysis domain), and (2) Aside from the interpolated
views, models are completely hidden from the user. This
makes it difficult, for example, to use a model-based view
for the purpose of detecting anomalies (records that deviate
significantly from a given model), or for comparing models.

Microsoft SQL Server’s DMX [2] and OleDB for DM [41]
expose classification and regression models through an ab-
straction known as a prediction-join. This abstraction provides
a natural way of assigning class labels to data, but it does not
allow a user to compare a record to a model, or to compare two
models (e.g., for the purpose of detecting anomalies). Also,
like MauveDB, the user must specify each model separately
using extended SQL DDL, which can be cumbersome.

C. Summary of Contributions

We have designed and built a system called Splash. Splash
supports the novel abstraction of statistical models as SQL
aggregates, which allows for easy, ad-hoc, set-oriented spec-
ification and manipulation of models using standard SQL

(Section II). In addition, we propose a novel representatives
operator, and algorithms, which help to explain a model using
a small set of examples (Section III). Section IV describes
the details of out prototype implementation, including perfor-
mance optimizations.

An extensive experimental study (Section V) evaluates three
main aspects of Splash: First, we evaluated performance and
scale. Second, we compared algorithms for implementing the
representatives operator. Finally, we conducted a case study
using network attack logs to evaluate our newly-proposed
abstractions; we found that ad-hoc analyses are often more
easily expressed using the query language of Splash than using
a common open-source data mining package.

II. DATA MODEL & QUERY LANGUAGE

The data model and query language supported by Splash
are based on the relational model and SQL, but incorporate
support for statistical models as a new data type (like an integer
or string). Ad-hoc model construction is naturally viewed in
terms of a new aggregate function (similar to SUM or AVG).
A. Basics

Splash allows ad-hoc creation and querying of profiles,
statistical models describing the contents of any set of records.
In the log analysis example, where each record represents
a system interaction or request, a profile can be used, for
example, to describe the typical behavior of a user, or requests
issued from a particular IP address.

Of course, before constructing a profile, it is common to
extract appropriate features from the input records. This is
done via the feature extractor function.

Definition 1 (Feature Extractor): The feature extractor, de-
noted features(), is a user-replaceable function, which takes
as input a database record, and produces a feature vector of
the form 〈X1, ..., Xn〉.1

Using a set of extracted feature vectors as input, a profile
aggregation operator constructs a profile, which is a proba-
bilistic model describing the input feature vectors.

Definition 2 (Profile): A profile is an estimated joint prob-
ability density function (pdf) over the space of features.2 We
will denote a profile constructed over features X1, ..., Xn as
f̂X1,...,Xn

(x1, ..., xn).
Definition 3 (Profile Aggregation Operator): Let D be a

set of records with extracted features X1, ..., Xn. profile(D)
is an aggregate function that produces a profile object.

The profile aggregation operator is also easily extended to
first partition D based on some attribute P , and then construct
one profile per unique value p of P . (This is similar to a SQL
GROUP BY query.)

These basic building blocks are nicely integrated with stan-
dard SQL, and this is best illustrated with an example. Suppose
that we have a relation AuditRecords(RID, USER ID,

1We will use capital letters X1, .., Xn, P to denote feature/attribute names,
and lower-case letters x, p, etc. to denote values.

2In practice, we expect a combination of discrete and continuous features;
the generalization is straightforward.

A1,..., Am), where RID is a key, and USER ID identifies
the system user associated with each audit record. In (slightly
extended) SQL syntax, feature extraction is expressed follows:
CREATE VIEW FeatureVectors(RID, USER_ID,
featureVector) AS
SELECT RID, USER_ID, features(A1,...,Am)
FROM AuditRecords

Ah-hoc profile aggregation is easily expressed using stan-
dard SQL aggregation and GROUP BY syntax. For example,
we can create one profile per user:
SELECT profile(featureVector), USER_ID
FROM FeatureVectors
GROUP BY USER_ID

B. Sample Profile Aggregation Operator

The idea of a profile as a probability density function
is very general, and there are countless ways to estimate
f̂X1,...,Xn(x1, ..., xn) from D. Our main objective is to provide
a clean abstraction for integrating SQL and probabilistic
models, not to develop new machine learning techniques. This
section briefly describes the profile operation that we have
implemented in our prototype system; however, this is not
fundamental to the data model, and can easily be replaced.

For the purposes of our prototype, we constructed a profile
aggregation operator using the simplifying assumption that
features X1, ..., Xn are conditionally independent, given pro-
file attribute P .3 That is, assume that fX1,...,Xn

(x1, ..., xn) =∏n
i=1 fXi

(xi), and estimate each f̂Xi
(x) separately.

When Xi is discrete-valued, fXi
is a probability mass

function, and it is easy to estimate using counts: f̂Xi
(x) =

|{d∈D:d.Xi=x}|
|D| . (To avoid the case where some counts are

zero, a simple adjustment adds one to the numerator and
denominator.)

When Xi is continuous, we estimate the probability density
function using a Gaussian kernel density estimator. If h is a
smoothing parameter and K(x) = 1√

2π
e−

1
2x

2
, then we define

f̂Xi
(x) = 1

|D|·h
∑
d∈DK(x−d.Xi

h).

C. Query Language

In providing extensions to SQL, our goal was to integrate
standard ad-hoc relational queries with direct manipulation
of statistical models. In Splash, profiles are exposed and
manipulated primarily through two new primitive functions:

Similarity between a feature vector and a profile: The
similarity between a feature vector and a profile is denoted
sim(〈x1, ..., xn〉, p), and is a real number in the range [0, 1].
Suppose that profile p is defined by estimated distribution
f̂X1,...,Xn

. One way of defining the similarity is to let
sim(〈x1, ..., xn〉, p) = f̂X1,...,Xn(x1, ..., xn). When one or
more of the features Xi is continuous, a simple adjustment
integrates fXi

over an interval (±δ) surrounding xi.

Similarity between two profiles: The similarity between two
profiles is denoted sim(p1, p2), and is also a real number in

3This is closely related to the Naive Bayes assumption.

AuditRecords

features()

AuditRecords

features()

profile()

GROUP BY

USER_ID

USER_ID

! sim() <

threshold

<>

Fig. 1. Sample query plan involving profiles

[0, 1]. Suppose that profiles p1 and p2 are defined, respec-
tively, by estimated distributions f̂X1,...,Xn

and ĝX1,...,Xn
. The

KL-divergence is one common information-theoretic way of
measuring the difference between two distributions:4

DKL(f̂X1,...,Xn
||ĝX1,...,Xn

) =∫∞
−∞ ...

∫∞
−∞ f̂(x1, ..., xn) log

bf(x1,...,xn)bg(x1,...,xn)dx1...dxn

We can use this to construct a similarity function:

sim(p1, p2) =
1

1 +DKL(f̂X1,...,Xn
||ĝX1,...,Xn

)

Using the primitive similarity functions as building blocks, it
is possible to compactly express a variety of useful composite
queries, combining standard SQL data manipulations with
queries on profiles. This list is not intended to be exhaustive;
for more examples, see the case study in Section V-B.

Detecting anomalous records: Of course, we can easily
express the query requesting anomalous records, defined as
any record such that the similarity between the record and
its associated profile is less than a given threshold. This
is expressed as follows; a sample query plan is shown in
Figure 1.
SELECT F.RID
FROM FeatureVectors F,

(SELECT profile(featureVector), USER_ID
FROM FeatureVectors
GROUP BY USER_ID) AS Profiles(P, USER_ID)

WHERE F.USER_ID = Profiles.USER_ID
AND sim(F.featureVector, P) < threshold

Instead of profiling behavior at the level of individual users,
this query could easily be modified to construct profiles in a
different way. For example, if we had an attribute ROLE ID,
we could easily use that instead.

Ranking anomalous records: It is also easy to request a
ranked list of potentially anomalous records. This can be
done by removing the threshold, and adding ORDER BY
sim(featureVector, P) ASC to the previous query. In
Figure 1, the selection operator (σsim()<threshold) would be
replaced with a sort operator.

Detecting changes over time: Continuing with the log anal-
ysis example, we can also construct a query to discover

4Of course, KL-divergence is not symmetric, so a common trick computes
both values and takes the average.

the users whose behavior has changed significantly since the
previous month. (For this example, suppose that the view
FeatureVectors also contains an attribute MONTH.)
SELECT Profile1.USER_ID
FROM (SELECT profile(featureVector), USER_ID

FROM FeatureVectors
WHERE MONTH = ’May’
GROUP BY USER_ID) AS Profile1(P, USER_ID),
(SELECT profile(), USER_ID
FROM FeatureVectors
WHERE MONTH = ’June’
GROUP BY USER_ID) AS Profile2(P, USER_ID)

WHERE Profile1.USER_ID = Profile2.USER_ID
AND sim(Profile1.P, Profile2.P) < threshold

III. PROFILE EXPLANATION AND FINDING
REPRESENTATIVES

Aggregation provides a natural way of creating profiles, and
the sim() functions provide for basic interaction with profile
objects. However, the user may want to further understand the
meaning of certain profiles. For example, in log analysis, a
system administrator may have detected an abnormal profile,
which he would like to understand better.

As one means of explaining a profile, we propose an
operator that, given a profile p and dataset D, selects a small
subset of D to represent the profile distribution. (To keep the
operator as general as possible, we do not require that D be
a sample from the same distribution as p.) This results in the
following optimization algorithm. While related problems have
been considered in the literature (see Section VI), to the best
of our knowledge, this problem has not been addressed.

Definition 4 (Representative Set): Given a profile p, a set of
feature vectors D, and user-defined parameter k, the optimal
representative set, denoted rep(p,D, k), is the set D′ ⊆ D
such that |D′| ≤ k and sim(p, profile(D′)) is maximized.

In the above, profile(D′) represents the pdf derived from
the points in D′ after applying kernel density estimation, and
sim(p1, p2) is the same similarity function described earlier.

Due to the combinatorial nature of the problem, we have
developed several heuristics for selecting representative sets.
Empirically (Section V-D), we observe that one of the algo-
rithms (GREEDY-R) works extremely well in practice.

A. Algorithms

When describing the algorithms, we regard each of the m
feature vectors in D as a point in an n-dimensional space.

Sampling Algorithm (RAND-R): The simplest (naive) ap-
proach is to choose a simple random sample from D. While
sampling is widely used in statistics, there are two clear
problems to using this approach here. First, while profile(D′)
will converge to p (for large k) if D is drawn from the
distribution p, RAND-R is only effective in this case. When
profile(D) 6= p, profile(D′) converges to profile(D) rather
than p. Second, even when RAND-R is guaranteed to converge
for large k, we would ideally like to choose a subset that is
as small as possible.

Histogram-Based Sampling (HIST-R): To overcome the
shortcomings of RAND-R, one approach is to actively allocate
the positions of representative points. This can be done by
partitioning the space into subregions, and allocating repre-
sentatives to each subregion based on the region’s probability
mass in p.5

To partition the space, we leverage the well-known multi-
dimensional histogram partition rule MHIST [44] and the
partition constraint V-optimal [32]. The partition algorithm
is recursive; it begins by dividing the whole space into two
regions, and then recursively partitions each of the resulting re-
gions until a stopping criterion is met. Each iteration proceeds
as follows. (Suppose that we are working on subregion R,
which contains m∗ points from D, and based on probability
mass, we need to select k∗ representative points from this
subregion).

1) Select a dimension to divide. (The dimension with max-
imum variance in p is selected, following the MHIST
heuristic.)

2) Choose the point at which to divide the selected dimen-
sion. (We choose the point according to the V-optimal
criterion.)

3) Divide the m∗ points between the resulting subregions
R1 and R2, and set k∗1 and k∗2 (the number of representa-
tives that need to be chosen from R1 and R2) according
to the probability mass of p in R1 and R2.

The partitioning process continues recursively until m∗ =
k∗ or k∗ = 1, at which point we randomly select k∗ points
from those in D that fall in the subregion (R).

There are O(k) iterations. In each iteration, Step 1 takes
O(n) time, Step 2 takes O(c) time where c is the number of
distinct values in the chosen dimension, Step 3 takes O(m)
time. Therefore the running time for the algorithm is O((c+
n+m)k).

While this approach eliminates some of the problems of
RAND-R in that it can be used when D and p do not have
the same distribution, it is also highly dependent on the
partitioning algorithm. In high-dimensional space, histograms
are known to deteriorate in quality. (This is confirmed by our
experiments.) Thus, we propose a third and final algorithm.

Greedy Algorithm (GREEDY-R): To overcome the limi-
tations of HIST-R, we propose a third algorithm called
GREEDY-R, which incrementally selects the next most rep-
resentative point.

Remember that a kernel density estimation based on k
points just sums up the k kernels, using a weight w = 1

k for
each. The process of the greedy algorithm is to incrementally
add representative points into D′; for each new point d, we
incrementally maintain a partial profile p′ by adding the kernel
for d using weight w = 1

k . (For |D′| < k, p′ is not a true
probability distribution.) The difference between p and p′ at d
is denoted δ(p, d) = p− p′.

5Suppose that a space partitioning algorithm divides the space into l
subregions {R1, R2, ..., Rl}. For the region Ri (1 ≤ i ≤ l), we need to
pick k ∗

R
Ri

p points as representatives for that region.

The greedy algorithm works as follows: At each step, we
choose the point d from D−D′ that maximizes δ(p, d). This
process repeats until all k representative points are chosen. The
intuition behind the heuristic is that at each step we always
look for points that minimize the gap between the profile p and
the sum of the kernels p′. We demonstrate the effectiveness of
the algorithm in Section V.

The greedy heuristic takes k steps. At each step it takes
O(mn) time to pick the best point as next representative point
and to update the partial distribution after a point is picked.
Therefore the running time for the greedy heuristic is O(kmn).

IV. IMPLEMENTATION

We have built a prototype of Splash using extensions to
PostgreSQL [8]. In addition, we have implemented several
performance optimizations based on materialization and com-
pression of profiles.
A. Overview

The prototype was built using extensions to PostgreSQL
[8], an open-source DBMS that supports user-defined types,
operators, functions, and aggregates. It is noteworthy that
all of the functionality can be implemented without costly
modifications to the database engine. We defined new types to
represent profiles and feature vectors, and functions to support
operations on profiles and feature vectors. All of the extensions
are implemented using C. The following is a list of the new
types, functions, aggregates, and operators:
• Feature is a new type representing a feature vector. (The

dimensionality of a Feature instance is the length of the
vector.) In the current implementation, we support feature
entries of types integer, varchar, varbit, and real.
• Profile is another new type. In our prototype, we
implement a profile using a collection of n hash tables,
where n is the total number of different features. The ith

hash table contains all distinct values of feature Xi (the
keys) and an integer count for each. Thus, the space required
to store a Profile instance is O(cn), where c is the
average number of different values per feature. We use this
representation for both discrete and continuous features;
the differences in probability estimation (i.e., count-based
or kernel density estimation) are encapsulated by the two
similarity functions.
• profile(Feature) is a new aggregate function, which

produces a Profile instance, given a set of Feature
instances. In PostgreSQL, user-defined aggregates are ex-
pressed in terms of state values and state transition func-
tions. For this reason, we have defined the transition func-
tion profile(Profile, Feature) to enable adding
one Feature instance to an existing Profile. Assuming
that there are m Feature vectors, each with dimensional-
ity n, in this implementation, the time complexity of adding
one Feature value to a Profile is O(n), and the time
complexity of building a Profile from m Feature
vectors is O(mn).
Of course, this approach assumes an implementation of
Profile that is incrementally updatable. This is clearly

a desirable characteristic of the profile model. For other
profile models, we might need to maintain additional state.
In addition, the query optimizer treats queries involving
profile aggregation just as it would treat any other aggregate
query. For the most part, this works reasonably well, but
there are some unexpected problems, as we discuss in more
detail in Section V.
• sim(Feature, Profile) is a function that evaluates

the similarity between a Feature instance 〈x1, ..., xn〉 and
a Profile instance p, as described in Section II. For
discrete feature Xi, we can compute f̂Xi|P=p(xi) in O(1)
time from the internal profile representation. For continuous
feature Xi, we can compute

∫ xi+δ

xi−δ f̂Xi|P=p(x), in time
O(c), where c is the number of distinct values for Xi.
Therefore, when all features are discrete, we can compute
this function in O(n) time; otherwise it takes O(cn).
• sim(Profile, Profile) is a function that evaluates

the similarity between two Profile instances using the
KL-divergence as described in Section II. We observe
that, due to the conditional independence assumption, it
is possible to compute the KL-divergence for each feature
independently. The observation is captured by following
theorem:

Theorem 1:
If f̂X1,...,Xn =

∏n
i=1 f̂Xi and ĝX1,...,Xn =

∏n
i=1 ĝXi ,

then DKL(f̂X1,...,Xn ||ĝX1,...,Xn) =
∑n
i=1DKL(f̂Xi ||ĝXi).

Proof:

DKL(f̂X1,...,Xn ||ĝX1,...,Xn)

=
∫
...

∫
Rn

f̂X1,...,Xn
(x1, ..., xn) · log

f̂X1,...,Xn
(x1, ..., xn)

ĝX1,...,Xn(x1, ..., xn)
dx1...dxn

=
∫
...

∫
Rn

n∏
j=1

f̂Xj
(xj) · log

∏n
i=1 f̂Xi

(xi)∏n
i=1 ĝXi

(xi)
dx1...dxn

=
∫
...

∫
Rn

n∏
j=1

f̂Xj
(xj) ·

n∑
i=1

log
f̂Xi

(xi)
ĝXi

(xi)
dx1...dxn

=
n∑
i=1

∫
...

∫
Rn

n∏
j=1

f̂Xj (xj) · log
f̂Xi

(xi)
ĝXi(xi)

dx1...dxn

=
n∑
i=1

(∫
R
f̂Xi

(xi) log
f̂Xi(xi)
ĝXi

(xi)
dxi ·

∏
j 6=i,1≤j≤n

∫
R
f̂Xj

(xj)dxj
)

=
n∑
i=1

∫
R
f̂Xi(xi) log

f̂Xi(xi)
ĝXi

(xi)
dxi

=
n∑
i=1

DKL(f̂Xi
||ĝXi

).

Thus, this function is straightforward for discrete features,
and can be computed in O(cn) time, where n is the
dimensionality of the feature vector, and c is the number
of distinct values per feature. When one or more of the
features Xi is continuous, we handle that by discretizing

the range of Xi into r discrete ranges, and then estimate
the probability density within each range using the stored
counts and kernel density estimator. In this case, the time
complexity is O(rcn).

B. Materialization

Aggregate materialization is commonly used to improve
performance in OLAP-style data analysis. In much the same
way, it may be useful to materialize profiles to improve the
performance of certain workloads in Splash. For example, each
of the sample queries in Section II-C required computing one
profile per USER ID. However, it is also likely that the user
would like to view profiles at different levels of granularity
(e.g., one profile per RBAC ROLE ID). Just like OLAP, it is
convenient to think of these different granularities as forming
a partial order [28].

Of course, even for conventional aggregates (which are
typically integers or reals), fully-materializing an entire data
cube is space-consuming, and because profile objects are larger
than integers or reals, dealing with space consumption is an
even bigger issue here. To select the best set of profiles,
given limited space, we implemented the heuristic proposed
by Harinarayan et al. [29] in a separate Planner module.

To answer queries involving a particular profile, when the
profile cube has been partially materialized, we first check to
see whether the desired profile has been materialized. If it
has, then it can be used directly. Otherwise, ideally, we would
like to compute the desired profile from a set of (materialized)
constituent profiles at a finer level of granularity. (For example,
if a query requests profiles grouping-by ROLE ID, we would
like to be able to compute these profiles directly from the set of
profiles grouping-by USER ID, rather than using the original
data.) Like standard aggregate data cubes, this is captured by
the idea of distributive and algebraic aggregates; an aggregate
function is algebraic if it can be computed from intermediate
statistics at finer levels of granularity [28]. Our internal profile
representation is algebraic; the internal counter representation
can be computed from profiles at finer granularities without
accessing the underlying data. More generally, recent work
showed that Naive Bayes classifiers and kernel density esti-
mators are algebraic aggregates [22].

C. Profile Compression

Materializing profiles can still be space-consuming, particu-
larly if there are many distinct values for certain features. Thus,
it is beneficial to consider compressing materialized profiles.
One approach is to replace each of the n counter vectors
with a histogram. We apply V-Optimal histogram [32] to each
dimension to compress the vector of counts representation.
The effect of compression is demonstrated in Section V-C.

Practically-speaking, compression is incorporated into our
prototype via a function compress(Profile). We envi-
sion applying compression to archived profiles constructed
over historical data (e.g., from past years or months) that is
no longer being updated.

V. EXPERIMENTAL EVALUATION

We conducted an extensive experimental study using the
Splash system, designed to measure the following:
• Performance and Scale: One of our guiding principles

was to develop a system that scales to large datasets.
We measured the performance and scalability of Splash,
including the effects of materialization and compression.
• Query Language and Profile Abstraction: To provide a

greater understanding of the flexibility provided by Splash,
we performed a case study comparison. Using a well-
known dataset from the network intrusion domain, and
an interesting set of ad-hoc exploratory analysis tasks, we
compared the process of expressing these tasks in Splash
with the process of expressing these tasks in an open-source
data mining package called Weka [13].
• Generating Representatives: Finally, we evaluated and

compared the algorithms described in Section III for gen-
erating representatives.
We ran our experiments on a machine with Pentium dual-

core 2GHz CPU and 2GB memory. We used the Ubuntu 8.04
operating system and PostgreSQL 8.3. The size of shared-
memory for PostgreSQL was set to 512MB.
A. Performance & Scale

Our first set of experiments were designed to measure the
performance and scalability of Splash when used for large
input datasets.

1) Data Generator: For these experiments, we used a
simple synthetic data generator, which produces data with the
following schema:
SynData(yy, mm ,dd, featureVector)

yy, mm, and dd are hierarchical dimension attributes represent-
ing the date. featureVector is a 10-dimensional feature
vector. We generated the values of the features using Gaussian
distributions; however, since the synthetic data is used only for
testing performance and scale, the distribution is of relatively
little importance. Each resulting record is approx. 150 bytes.

For each distinct day, we generated 1000 records. (The
average profile size per day is 40KB.) In the experiments,
we vary the number of days (months, and years), in order to
vary the size of the dataset. The maximum data size is 30
years (roughly 100 million records), which consume 15GB
of total space.

2) Scale-Up: To evaluate how Splash scales to large input
datasets, we varied the input data size from 100 days (150MB
of data) to 10,000 days (15GB of data), and we issued the
following profile construction query:
SELECT profile(featureVector)
FROM SynData
GROUP BY yy,mm,dd

The size of the profiles resulting from this query ranges
from 40MB to 4GB. For the sake of comparison, we also
tested the built-in aggregate sum() on the same input. The
results of this experiment are shown in Figure 2(a-c).

In Figure 2(a), notice that when the data size is small, the
profile() aggregate works pretty well (using approximately

 0

 20

 40

 60

 80

 100

 120

 140

 1000 4000 7000 10000

T
im

e
(s

)

Number of Days

Hash-based Profile

Sort-based Profile

Hash-based Sum

Sort-based Sum

(a) Total profile size 40M - 400M

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000 20000 30000 40000 50000

T
im

e
(s

)

Number of Days

Hash-based Profile

Sort-based Profile

Hash-based Sum

Sort-based Sum

(b) Total profile size 400M - 2G

 0

 500

 1000

 1500

 2000

 50000 60000 70000 80000 90000 100000

T
im

e
(s

)

Number of Days

Sort-based Profile

Hash-based Sum

Sort-based Sum

(c) Total profile size 2G - 4G

Fig. 2. Scalability of the aggregate profile()

4 times as much time as sum()). However, as the data
size grows, the running time for profile() suffers signifi-
cantly. After analyzing the query plan, we discovered that
the PostgreSQL query optimizer always selected a hash-based
aggregation operation instead of a sort-based plan. However,
the total size of the resulting profiles grows much larger than
traditional aggregates, and when the hash table containing
these profiles can no longer fit in the shared buffer, the query
begins to thrash.6

On the other hand, if we force the system to use a sort-based
plan to evaluate profile() aggregates, we do not encounter
this problem. To force PostgreSQL to use a sort-based plan,
we explicitly perform the sort as part of the query:
SELECT profile(featureVector)
FROM (SELECT * FROM SynData ORDER BY yy,mm,dd)
GROUP BY yy,mm,dd

In Figure 2(a), when the data is small, the sorting-based
profile() is a bit slower than the hash-based profile() due
to the overhead of sorting. However, as the data size grows,
and the hash-based profile() begins to thrash (Figure 2(b)),
the sort-based operation is not significantly affected. As we
keep growing the total size of profiles to 4GB (Figure 2(c)),
which is larger than 512MB shared-buffer and 2GB memory,
the sort-based profile() still scales well.

3) Effects of Materialization: To demonstrate the effective-
ness of materialization, we vary the size of data from 1 year
(500M data) to 10 years (5GB data). Suppose that we have
constructed (using the synthetic data) a partial materialization
including one profile per day, as defined by the following view:
CREATE MATERIALIZED VIEW ByDay AS
SELECT yy, mm, dd, profile(featureVector)
FROM SynData
GROUP BY yy, mm, dd

The size of the materialized view varies from 133MB (for
1 year) to 1.33GB (for 10 years). Now, consider the following
three queries, each of which can be evaluated either using the
materialized table (ByDay) or using the base data (SynData).

1) SELECT sim(profile,featureVector)
FROM SynData F,

6Interestingly, the current interface for user-defined aggregation in Post-
greSQL does not reflect the size of the aggregation results (i.e., a large profile
object as opposed to an integer). However, we expect that a simple addition
to the interface would provide the optimizer with better information, allowing
it to choose hashing vs. sorting.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Number of Years

Q1 with Mat

Q1

Q2 with Mat

Q2

Q3 with Mat

Q3

Materialization

Fig. 3. Effect of materialization

(SELECT yy,mm,dd, Profile(featureVector)
FROM SynData
GROUP BY yy,mm,dd) AS P(yy,mm,dd,profile)
WHERE P.yy=F.yy AND P.mm=F.mm AND P.dd=F.dd

2) SELECT sim(profile,featureVector)
FROM SynData F,
(SELECT yy,mm, Profile(featureVector)
FROM SynData
GROUP BY yy,mm) AS P(yy,mm,profile)
WHERE P.yy=F.yy AND P.mm=F.mm

3) SELECT sim(profile,featureVector)
FROM SynData F,
(SELECT yy Profile(featureVector)
FROM SynData
GROUP BY yy) AS P(yy,profile)
WHERE P.yy=F.yy

Figure 3 shows the performance of each query using the ma-
terialized table (“Mat”) and using the base data. The running
time drops substantially when the materialized table is used.
For the two queries that use profiles grouping by month and
by year, although no materialized table can be used directly
(i.e., ByMonth or ByYear), calculating these profiles from the
materialized ByDay is still more efficient than building them
from scratch.

B. Application Case Study

Our next set of experiments evaluates the flexibility afforded
by a high-level query language incorporating profiles. For this
purpose, we conducted a case study for network attack logs.
The idea is to consider a security administrator and the ad-hoc
exploratory tasks he or she would conduct to understand the
logged information. We chose this particular domain because

anomaly-based intrusion detection has been well-studied for
networks, and there exist established benchmark data sets.

Existing data mining and statistical software packages (e.g.,
Weka [13], Matlab [7], and R [9]) do not provide flexible
high-level query languages. This means that if a user wants
to make advanced use of statistical or mining primitives (e.g.,
embedding in a larger analysis), then she must write a custom
procedural program each time. Further, query optimization
strategies cannot be automatically incorporated into these
programs, so the user also needs to worry about optimization
each time she writes such a script.

For our case study, we developed a sequence of exploratory
tasks, and we compared the programming effort required to
express these tasks using Splash and using Weka [13]. We
observed that it is relatively easy to express conventional tasks
(e.g., simple classification) in both systems, primarily because
Weka provides a custom API for these tasks. However, when
the analysis task involves additional data processing, or com-
pound tasks, it is necessary to embed calls to the Weka API in
a larger (custom-coded) program, which is inconvenient and
time-consuming for ad-hoc analysis. In contrast, compound
tasks can usually be expressed quite easily in Splash.

1) Network Attack Data: For the case study, we used the
KDD Cup 1999 dataset[6], which has been heavily studied,
and is considered a benchmark for data mining techniques
and intrusion detection. The data set consists of a set of
Internet connection records (a connection is a sequence of TCP
packets), each with 41 pre-extracted features (including, for
example, the protocol type of the connection, network service
type of the destination, and number of data bytes transferred
from source to destination).

The connections are divided into five main classes: nor-
mal connections (normal), probe attacks (probe), denial-of-
service attacks (dos), user-to-root attacks (u2r), and remote-
to-local attacks (r2l). In addition, the four main attack classes
can be further decomposed into sub-classes. For example,
the dos attack is decomposed into sub-classes that include
dos.apache2, dos.mailbomb, and dos.updstorm. The data
set consists of 494,021 training records, and 311,029 testing
records. We store these data sets (including extracted features)
in two tables, where id uniquely identifies each record,
featureVector stores the 41 features associated with the
connection, class stores the main class label associated with
the connection, and subClass stores the sub-class:
TrainingData(id, featureVector, class, subClass)
TestingData(id, featureVector, class, subClass)

The KDD Cup contest posed a classification task: Using
the training data, construct a model that accurately predicts
the attack category (among the 5 main classes) for each of
the testing connections. Classification results were evaluated
by taking the average error across all classification decisions
(on the testing set), so a lower score implies better results.
The best reported score in the contest was 0.2331, and results
within the range [0.2331, 0.2684] were considered good [10].

2) Case Study Tasks and Results: We performed a series of
exploratory tasks (including, but not limited to, simple classi-

fication) to help understand the information contained in these
logs. For each task, we compared the process of performing
the task using Splash with the process of performing the task
in Weka [13].

For this comparison, we found a meaningful quantitative
measure elusive. When we began the study, we started by
comparing the number of lines of code necessary to perform
each task in Splash vs. Weka. However, we found that this
did not fully convey the distinctions between the two systems.
(As one example, some of the tasks could be accomplished in
Weka by modifying the engine with a small amount of code,
or by writing a larger amount of application code, and it was
not clear how to quantify the difference between these two
solutions.) Thus, we deliberately chose to provide a qualitative
comparison, rather than quantitative measurements.

1. Classification
Task: Classification is a common data mining technique that

can be used in network intrusion detection when training data
is available describing both normal behavior and attacks [43].

Splash: For simplicity, suppose that we begin by construct-
ing one profile for each of the 5 main class labels:
CREATE VIEW Profiles(class, profile)
AS SELECT class, profile(featureVector)
FROM TrainingData
GROUP BY class

Classification of the testing records is performed by com-
paring each record with all of the profiles to find the profile
with maximum similarity. (For the sample profile construction
and similarity functions described in Sections II-B and II-C,
the following implicitly trains a Naive Bayes classifier, and
uses it to classify the testing records.)
CREATE VIEW MaxSim(id, maxsim) AS
SELECT T.id, max(sim(P.profile, T.featureVector))
FROM TestingData T, Profiles P
GROUP BY T.id

SELECT T.id, P.class
FROM TestingData T, Profiles P, MaxSim M
WHERE T.id = M.id
AND sim(P.profile, T.featureVector) = M.maxsim

We observe that this simple classifier produces a score of
0.258 for the KDD Cup Dataset, which is considered good
[10]. While our goal is not to test the profiling algorithm,
this is a reasonable model to use when evaluating the query
processing and exploratory analysis tool.

Weka: Classification is one of the standard data mining tasks
for which Weka provides an explicit API. It is useful to note
that training and testing a classifier (e.g., a Naive Bayes model)
uses around ten lines of code, which is comparable to the size
of the query required by Splash.

2. Anomaly Detection
Task: In contrast to classification, anomaly detection is prac-

tical when the only available training data describes normal
behavior, rather than malicious or attack behavior. Intuitively,
the goal is to construct a model describing normal behavior,
and then mark those records that are dissimilar to the model
as potential attacks [43].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Anomaly detection

Classification

Anomaly detection with attack info

Fig. 4. Leveraging attack info. in anomaly detection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5

T
ru

e
P

os
iti

ve
 R

at
e

Average Number of Results

PROBE

DOS

U2R

R2L

Normal

Fig. 5. Tuning recall for classification

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

PROBE

DOS

U2R

R2L

Fig. 6. Tuning false positive rate for anomaly det.

Splash: We can express anomaly detection in Splash as
follows, where thres1 is a parameter provided by the
security administrator:
SELECT T.fid
FROM TestingData T, Profiles P
WHERE P.class = ’normal’
AND sim(P.profile, T.featureVector) < thres1

Weka: Weka does not provide an explicit API for anomaly
detection, which leaves the user with two options: (1) She
can modify the Weka engine (altering the API) in order to
add such functionality. (In doing this, she can re-use some
of the existing engine-level classification code.) (2) She can
write a custom application from scratch to implement anomaly
detection.

3. Anomaly Detection Leveraging Attack Data
Task: We observed that classification and anomaly detection

each have strengths and weaknesses. In particular, classifica-
tion cannot identify unknown attacks that do not appear in
the training data. However, anomaly detection cannot lever-
age training data for known attacks [25]. A logical solution
exploits both tools: An audit record is considered part of an
attack if it is classified as an attack by a classifier, or it is
marked as anomalous by an anomaly detector. (Related ideas
have been considered in [38], [46], [49].)

Splash: This task combines anomaly detection and classi-
fication, and is expressed using the following simple query:
SELECT T.id
FROM TestingData T, Profiles P, MaxSim M
WHERE P.class = ’normal’

AND (sim(P.profile,T.featureVector) < thres1
OR sim(P.profile,T.featureVector) != maxsim)

The effects of integrating anomaly detection and classi-
fication are shown in Figure 4. Interestingly, this approach
outperforms both anomaly detection and classification.

Weka: While Splash provides a convenient set of declarative
query operators, in Weka we need to write custom application
code encapsulating the basic data mining operations. In this
case, the custom application consists of four steps (provided
that we have already written a new anomaly-detection module
for Weka): (1) Train the classifier; (2) Classify the testing data,
and filter those records with class labels other than “normal”;
(3) Train the anomaly detector; (4) Identify the anomalies
in the remaining testing data. This process consists of two
training and two testing phases, which are redundant compared

to the Splash query, which constructs a single set of profiles.
This redundancy is rooted in the rigid API design of Weka,
which does not capture the underlying relationship between
statistical anomaly detection and statistical classification. Fur-
ther, it is the security administrator’s responsibility to take care
of interleaving the four phases to make the code efficient.

4. Classification Using a Class Taxonomy
Task: We also observed that the KDD cup data actually

includes class labels that are expressed at multiple levels of
granularity. While each of the main categories (i.e., dos, etc.)
is present in the training data, the testing data contains some
new sub-categories that are not present in the training data.
Thus, we considered the classification problem of assigning
the best class label (at any granularity) to each testing record.

Splash: Splash is particularly well-suited to handle this task.
The following constructs a view which contains profiles for all
class and sub-classes in the training data:
CREATE VIEW Profiles(class, profile) AS
SELECT class, profile(featurevector)
FROM TrainingData
GROUP By class
UNION
SELECT subClass, profile(featurevector)
FROM TrainingData
GROUP BY subClass

Using this view, the same query as in the classification
task can be used to classify each testing record to the most
appropriate class (at any level of granularity). In order to
compare this to the original result, we mapped the results
back to the 5 main classes. Our main goal, of course, is to
demonstrate that it is simple to express even complex tasks
using Splash. On the other hand, it is interesting to point out
that this approach attains a score of 0.228, which is better than
any result reported as part of the KDD Cup contest!

Weka: We see two ways of approaching this task using
Weka. The first option would extend one of Weka’s classifiers
(e.g., Naive Bayes) to make the classifier aware of the hierar-
chical class labels present in the training data. This requires
modifications to the Weka engine and API.

The second option is done entirely at the application level.
Notice that the hierarchical relationships between class labels
can be handled without modifying the classifier by producing
additional training data. For example, if there exists a train-
ing record with label attack.dos.apache2, we can generate

three training records with labels attack, dos, and apache2.
However, this approach unnecessarily expands the size of the
training data by a factor of three.

5. Tuning Classification Recall
Task: While classification and anomaly detection tools are

powerful, they do not provide the built-in ability to tune the
results according to a security administrator’s specification.
For example, in the KDD Cup contest, even the winning
solution observed very low true positive rates for detecting u2r
and r2l attacks (13.2% and 8.4%, respectively). Thus, when
conducting an exploratory analysis, the security administrator
might consider examining more than one class label per
request, as a way of boosting the number of true positives.

Splash: Using Splash, the classification recall can be easily
adjusted, simply by modifying thres2 in the following query:
SELECT T.id, P.class
FROM TestingData T, Profiles P, Maxsim M
WHERE T.id = M.id

AND sim(P.profile,T.featureVector)
>=M.maxsim-thres2

The effects of tuning thres2 are shown in Figure 5. Notice
that by returning an average of 1.4 class labels per testing
record, the security administrator can achieve 79.0% and
37.4% recall for the u2r and r2l attacks, which are 3.3 and 4.2
times better, respectively, than the recall rate when returning
just one class label per test record.

Weka: The problem of tuning classification recall should
be easy to handle in Weka. However, the Weka API is not
designed to accept the parameter thresh2, or to return multiple
class labels. Thus, to evaluate this task would require some re-
design and modifications to the Weka software package.

6. Tuning False Positives for Anomaly Detection
Task: Finally, high false positive rates are a major concern

when adopting anomaly detection techniques [43], and the
security administrator may want to compromise some true
positives for a lower false positive rate. In either case, the
ability to tune the result set is critical for exploratory analysis.

Splash: False positives are easily tuned using parameter
thres1 in the above anomaly detection query. Figure 6 shows
the tradeoff between true positives and false positives.

Of course, finding an appropriate thres1 is important in
anomaly detection. Given a set of training data, and the
maximum allowable false positive rate r, we can estimate the
parameter thres1 from the training data. In the following, let
n = r · |TrainingData|.
SELECT sim(P.profile,T.featureVector) as thres1
FROM TrainingData T, Profiles P
WHERE T.class = ’normal’ AND P.class = ’normal’
ORDER BY sim(P.profile,T.featureVector)
LIMIT 1 OFFSET n

This query orders the training records based on their sim-
ilarity to the profile of normal behavior, finds the nth most
similar training record, and uses its similarity to the normal
profile to set the threshold.

Weka: Weka does not currently support anomaly detection,
but if we were to add this functionality, we would need to

 0.6

 0.7

 0.8

 0.9

 1

 1000 3000 5000 7000 9000

S
im

ili
ar

ity

Avg Size of Profiles

Compressed Profile

Fig. 7. Effect of compression on similarity to original profiles

 0.6

 0.7

 0.8

 0.9

 1

 1000 3000 5000 7000 9000

A
cc

ur
ac

y

Avg Size of Profiles

Training Data

Testing Data

Fig. 8. Effect of compression on classification accuracy

incorporate thresh1 as a parameter in the API in order to
support this task.

C. Effects of Compression

While compression based on histograms, as described in
Section IV-C, is effective in reducing the size of profile objects,
it also removes some detail from the profiles. To measure
the effects of compression, we performed several experiments
using the KDD Cup data. In particular, we used four metrics
to evaluate the loss of content resulting from histogram-based
compression: (1) Similarity between the compressed profile
and the original profile (Figure 7), (2) Accuracy of a classifier
constructed using the compressed profiles (Figure 8), (3) True
positive rate for anomaly detection (Figure 9), and (4) False
positive rate for anomaly detection (Figure 10). We notice that
we can reduce the profiles to 25% of their original size without

 0.6

 0.7

 0.8

 0.9

 1

 1000 3000 5000 7000 9000

T
ru

e
P

os
iti

ve
 R

at
e

Avg Size of Profiles

Training Data

Testing Data

Fig. 9. Effect of compression on true positive rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

RAND-R

HIST-R

Max Likelihood

(a) Gaussian, 1-Dim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

RAND-R

HIST-R

Max Likelihood

(b) Gaussian, 2-Dim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

RAND-R

HIST-R

Max Likelihood

(c) Gaussian, 5-Dim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

HIST-R

(d) D = Zipf, p = Uniform, 5-Dim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

HIST-R

(e) D = Gaussian(20), p = Gaussian(10), 5-Dim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
im

ila
rit

y

Size of Representative Set

GREEDY-R

RAND-R

HIST-R

(f) KDD Cup Dataset, 5-Dim.
Fig. 11. Finding representative set from data set of various dimension

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 3000 5000 7000 9000

F
al

se
 P

os
iti

ve
 R

at
e

Avg Size of Profiles

Training Data

Testing Data

Fig. 10. Effect of compression on false positive rate

substantially altering any of the four evaluation metrics.

D. Generating Representatives

Our final set of experiments evaluated and compared al-
gorithms for finding representative sets. We tested the three
algorithms described in Section III – HIST-R, RAND-R, and
GREEDY-R – as well as an algorithm that selects the k
maximum likelihood records. This last approach is equivalent
to the notion of typical tuples proposed in [31]; this work was
driven by a different problem formulation, and as will show,
the resulting algorithms do not suit our purposes.

The first experiments use an input data set D containing
10, 000 records. Profile p is taken to be an n-dimensional
Gaussian distribution, and D is generated according to the
same distribution. The results for d = 1, 2, 5 are shown in
Figure 11. GREEDY-R produces the best results; in addition,

we note that although HIST-R is more effective than RAND-R
in low dimensions, as the dimensionality increases, HIST-R is
not better than RAND-R. The maximum likelihood method is
clearly not suitable for this problem. We also observed similar
results for other distributions (zipf and uniform), but the results
are omitted for space.

We also test the case where D comes from a distribution
other than profile distribution p. Figure 11(d) shows the case
where D comes from a 5-dimensional Zipf distribution, but
p is a 5-dimensional uniform distribution; Figure 11(e) shows
the case where D comes from a Gaussian distribution (σ = 20)
and p is Gaussian (σ = 10). It is interesting to observe that
using GREEDY-R it is still possible to select from D a limited
number of tuples that represent a different distribution p.

Finally, we compared the algorithms using five features
extracted from the KDD Cup data. The results (Figure 11(f))
are as expected; GREEDY-R works the best, but due to the
dimensionality, HIST-R and RAND-R do not perform as well.

VI. RELATED WORK

Querying Statistical Models: Splash is built on the idea of
simultaneously querying profiles (statistical models) and data
in a database. A body of related literature describes several
other abstractions and systems for incorporating data mining
and statistical models into standard or extended SQL.

One recent example is the model-based views of MauveDB
[24], which expose interpolated data as a standard relational
view. However, we find that this abstraction is not suitable
for our system for two reasons: (1) Each model must be

declared independently using SQL DDL, which makes ad-
hoc exploration and interactions difficult, and (2) The models
themselves are completely hidden behind the interpolated
views. More practically, MauveDB provides no API for re-
placing the underlying statistical models used by the system
(e.g., linear interpolation).

Microsoft SQL Server’s DMX [2] and OleDB for DM [41]
also integrate data mining models (primarily classification and
regression) with standard SQL. However, we also find that
this abstraction is not suitable for our purposes because it too
requires separate definition of each model and does not allow
direct manipulation of models.

IBM DB2 Intelligent Miner [3] supports a variety of data
mining tasks, which can be applied to data residing in a
relational database. However, to the best of our knowledge,
mining models need to be specified one-by-one, either using
PMML (a markup language) or the graphical interface.

Exploratory Data Mining: Recent work in exploratory data
mining has proposed to view data mining tasks in terms of
cube space. For example, Chen et al. proposed the idea of
a prediction cube, where classifiers are trained over various
data subsets in multidimensional cube space [22]. While
this approach is related to our view of statistical models as
aggregate functions, to the best of our knowledge, none of the
past work has considered integrating cube-based data mining
with a relational DBMS or query language.

Representative and Typical Tuples: As part of our system,
we also studied the problem of generating “representative”
examples to help explain a profile (Section III).

To the best of our knowledge, the problem of explaining
a statistical model using a small number of examples has
not previously been considered. However, related work has
considered various formulations of the following problem:
Given a dataset D, produce a “representative” subset thereof,
where “representative” is defined in different ways.

Hua et al. considered finding the top-k most “typical”
(maximum likelihood) tuples [31]; however, as we showed in
Section V-D, the typical tuples often fail our goal of clearly de-
scribing the underlying distribution. Liu and Jagadish present
a problem formulation based on distance; that is, minimize the
distance between the points in D and their representatives [39].
While this approach captures the diversity of data records, it
also does not convey the frequency distribution in D. Finally,
Pan et al. [42] developed an objective function based on
information theory, but it has a different goal from ours in
finding a subset from a transactional (itemset) database that
simultaneously has high coverage and low redundancy.

Anomaly and Fraud Detection: One of the motivating
applications for Splash is ad-hoc log analysis. The idea of
anomaly-based intrusion detection goes back to the work of
Denning [23]. Typically, however, anomaly detection is viewed
as a binary decision (i.e., produce a warning or not), and false
positives are often cited as a shortcoming. This provides strong
motivation for an ad-hoc query tool in this domain.

Anomaly detection has been studied extensively in operating

systems [27], [36], [37], [48], networks (e.g., see recent survey
[43]), and for detecting fraud [20], [26]. It is distinct from
signature-based intrusion detection (e.g., [4]) which detects
pre-defined patterns of abnormal behavior.

Recent work has begun to consider applying anomaly de-
tection to databases. Kamra et al. [33] developed a simple
data mining approach, which selects features from the text of
SQL queries, and constructs a Naive Bayes classifier to predict
the most likely profile (in this case, the RBAC role) for new
queries. Other work includes [30], [35], [45], [47].

Auditing for Compliance and Disclosure Control: Recent
research has studied the problem of querying the audit logs
produced by general-purpose database systems [18], [40].
The interface is usually the following: An auditor specifies
a portion of the data in an enterprise database (e.g., Bob’s
medical record) using a stylized audit expression. Then, the
auditing system is tasked with retrieving all past database
queries [18] and sets of queries [40] such that the specified
data could have influenced the result. In contrast to this kind
of system, which takes a data-centric approach to auditing,
when used for log analysis, Splash is behavior-centric.

Tools for auditing disclosure by statistical databases typi-
cally aim to detect when successive aggergate queries reveal
“too much” about the underlying data, as defined by a dis-
closure policy [17], [34]. In contrast, when applying Splash
to audit logs, our goal is to provide a flexible platform for
detecting anomalies in user behavior, rather than detecting
disclosure with respect to any particular policy.

VII. CONCLUSION

In this paper, we presented Splash, a novel system support-
ing ad-hoc simultaneous querying of statistical models and
relational data. The fundamental new abstractions supported
by Splash are the view of statistical models as aggregation
operations, as well as novel operations for interacting with
models, including the generation of representative examples.
We provided an implementation of Splash, as well as several
performance optimizations. Further, an extensive experimental
study indicates both that the system scales well, and that the
novel abstractions provide a simple alternative to the existing
(more complex and rigid) APIs supported by data mining
software packages.

REFERENCES

[1] http://www.hhs.gov/ocr/hipaa/.
[2] Data mining extensions (DMX) reference. SQL Server 2005 Books

Online. http://technet.microsoft.com.
[3] Db2 intelligent miner. http://www-01.ibm.com/software/data/iminer/.
[4] http://www.snort.org. Retrieved July 16, 2008.
[5] An introduction to computer security: The NIST handbook. NIST

Special Publication 800-12.
[6] Kdd cup 1999 dataset. http://archive.ics.uci.edu/ml/

databases/kddcup99/kddcup99.html.
[7] Matlab: The language of technical computing.

http://www.mathworks.com/products/matlab/.
[8] Postgresql. http://www.postgresql.org/.
[9] The r project for statistical computing. http://www.r-project.org/.

[10] Result of kdd cup 1999 contest. http://www-
cse.ucsd.edu/ elkan/clresults.html.

[11] Sas: Business intelligence software. http://www.sas.com.
[12] Stata. http://www.stata.com.

[13] Weka 3: Data mining software in java.
http://www.cs.waikato.ac.nz/ml/weka/.

[14] Gramm-Leach-Bliley Financial Services Modernization Act, 1999.
Pub.L. 106-102, 113 Stat. 1388.

[15] Public Company Accounting Reform and Investor Protection Act of
2002 (Sarbanes-Oxley), 2002. Pub.L. 107-204, 11 Stat. 745.

[16] University of Michigan Health System Compliance Office. Personal
communication, 2008.

[17] N. Adam and J. Wortmann. Security-control methods for statistical
databases. ACM Computing Surveys, 21(4):515–556, 1989.

[18] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and
R. Srikant. Auditing compliance with a Hippocratic database. In VLDB,
2004.

[19] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases.
In VLDB, 2002.

[20] F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedreschi. A classification-
based methodology for planning audit strategies in fraud detection. In
SIGKDD, 1999.

[21] J. Cart. Kaiser fires staffers who snooped into suleman’s files. The Los
Angeles Times, March 31 2009.

[22] B. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. In
VLDB, 2005.

[23] D. Denning. An intrusion-detection model. In IEEE Symposium on
Security and Privacy, 1986.

[24] A. Deshpande and S. Madden. MauveDB: Supporting model-based user
views in database systems. In SIGMOD, 2006.

[25] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. Tan.
Data mining for network intrusion detection. In Proceedings of NSF
Workshop on Next Generation Data Mining, 2002.

[26] T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and
Knowledge Discovery, 1, 1997.

[27] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self
for UNIX processes. In IEEE Symposium on Security and Privacy, 1996.

[28] J. Gray, S.Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1), 1996.

[29] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cube
efficiently. In SIGMOD, 1996.

[30] Y. Hu and B. Panda. Identification of malicious transactions in database
systems. In IDEAS, 2003.

[31] M. Hua, J. Pei, A. Fu, X. Lin, and H. Leung. Efficiently answering
top-k typicality queries. In VLDB, 2007.

[32] Y. Ioannidis and Y. Poosala. Balancing histogram optimality and
practicality for query result size estimation. In SIGMOD, 1995.

[33] A. Kamra, E. Terzi, and E. Bertino. Detecting anomalous access patterns
in relational databases. VLDB Journal, 2007.

[34] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In
PODS, 2005.

[35] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In
ACM Conference on Computer and Communications Security, 2003.

[36] W. Lee and S. Stolfo. Learning patterns from unix process execution
traces for intrusion detection. In AAAI Workshop on AI Methods in
Fraud and Risk Management, 1997.

[37] W. Lee and S. Stolfo. Data mining approaches for intrusion detection.
In USENIX Security Symposium, 1998.

[38] W. Lee, S. Stolfo, and K. Mok. A data mining framework for building
intrusion detection models. In Proceedings of IEEE Symposium on
Security and Privacy, Oakland, 1999.

[39] B. Liu and H. Jagadish. Using trees to depict a forest. In VLDB, 2009.
[40] R. Motwani, S. Nabar, and D. Thomas. Auditing sql queries. In ICDE,

2008.
[41] A. Netz, S. Chaudhuri, U. Fayyad, and J. Bernhardt. Integrating data

mining with SQL databases: OLE DB for data mining. In ICDE, 2001.
[42] F. Pan, W. Wang, A. Tung, and J. Yang. Finding representative set from

massive data. In ICDM, 2005.
[43] A. Patcha and J. Park. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer Networks,
51:3448–3470, 2007.

[44] Y. Poosala and Y. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In VLDB, 1997.

[45] A. Spalka and J. Lehnhardt. A comprehensive approach to anomaly
detection in relational databases. In Proceedings of the 19th IFIP WG
11.3 Working Conference on Data and Applications Security, 2005.

[46] E. Tombini, H. Debar, L. Me, and M. Ducasse. A serial combination of
anomly and misuse idses applied to http traffic. In Computer Security
Applications Conference, 2004.

[47] F. Valeur, D. Mutz, and G. Vigna. A learning-based approach to the
detection of SQL attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2003.

[48] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using
system calls: Alternative data models. In IEEE Symposium on Security
and Privacy, 1999.

[49] J. Zhang and M. Zulkernine. A hybrid network intrusion detection
technique using random forests. In First International Conference on
Availability, Reliability and Security, 2006.

[50] Y. Zhang, H. Herodotou, and J. Yang. Riot: I/o-efficient numerical
computing without sql. In CIDR, 2009.

