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ABSTRACT
This paper considers the problem of protecting individual anonymity
when continuously publishing a stream of location trace informa-
tion collected from a population of users. Fundamentally, the key
challenge that arises in this setting is the presence of evolving data,
and in particular, data that evolves in semi-predictable ways.
The main contribution of this paper is the first comprehensive

formal framework for reasoning about privacy in this setting. Through
careful analysis of the expected threat, we articulate a new privacy
principle called temporal unlinkability. Then, by incorporating a
model of user motion, we are able to quantify the risk of privacy
violations probabilistically. Within this framework, we develop a
simple initial set of algorithms for continuous publishing, and we
demonstrate the feasibility of the approach using both real and syn-
thetic location data.

1. INTRODUCTION
Streaming location data from sensors and GPS devices is driving

a broad new class of applications. In this paper, we consider an
organization that collects and distributes (online and in real-time)
a stream of location trace information from a population of users.
For example, cellular phone providers and car companies can track
users’ locations using the GPS devices attached to modern phones
and cars. Often, there is a compelling reason for the collecting
organization to share or sell these location traces to a third party.
For example, GPS traces provide valuable real-time traffic infor-
mation, and they can be used to price outdoor advertisements (e.g.,
billboards) based on viewership. At the same time, there are also
concerns for the privacy of the users carrying the GPS devices. For
example, a recent study tracking the locations of cell phone users
sparked heated controversy [30].
The majority of past work in location-based privacy and anonymity

has focused on one-time snapshots, applying techniques like spa-
tial k-anonymity (see [31, 32]) to mask the locations of users at a
single point in time [12, 16, 22, 29]. However, we are interested
in protecting privacy across time, which poses a distinct challenge
because the locations of a particular user at various points in time
are highly-correlated with one another. Thus, it is often possible
to infer the location of an individual by analyzing historical snap-
shots, a problem we will refer to as motion prediction inference.
This is best illustrated with an example. (The full threat model is
presented in Section 2.1.)

EXAMPLE 1.1. Consider the scenario shown in Figure 1. Sup-
pose that three users (Alice, Bob, and Charlie) live in the same

Figure 1: Example of De-Identified Location Data

neighborhood, and that their locations are being tracked via cell
phone GPS devices. At 7:45 AM, all three are at their homes, but
in the interest of privacy, the phone company releases a snapshot
of their locations containing the following anonymization group:
({Alice, Bob, Charlie}, {1, 2, 3}), indicating that Alice, Bob, and
Charlie are at locations 1, 2, and 3, but eliminating the association
between user and location. However, through access to auxiliary
information, for example the telephone book, an adversary can de-
termine the locations of some of the individuals. For example, lo-
cation 1 is Alice’s home.
Suppose now that the users leave their homes for work, and at

7:50 AM, the phone company releases another snapshot containing
({Alice, Bob, Charlie}, {4, 5, 6}). By examining locations 4, 5,
and 6, the adversary discovers based on his knowledge of motion
patterns (e.g., speed limits and traffic) that locations 5 and 6 are too
far away from location 1 to have been reached in the intervening 5
minutes. Thus, he can infer that Alice is at location 4.

1.1 Contributions
In this paper, we describe the first formal framework for reason-

ing about privacy in online location trace publishing. The frame-
work is highlighted by the following key features:
1. We carefully articulate a threat model, and use this to develop
a novel high-level privacy principle (temporal unlinkability)
that is well-suited to this domain. (Section 2.1)

2. To address the problem of data updates (specifically, the chal-
lenge of motion prediction inference), our framework includes
support for an extensible (“plug-and-play") motion model
that probabilistically describes the movements of users. (Sec-
tion 3)

3. Using the motion model, we can compute a breach proba-
bility, which measures the certainty with which an adversary
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can violate temporal unlinkability in the presence of motion
prediction. (Section 3)

4. Finally, we propose two initial protocols for continuously
publishing location traces without causing privacy breaches.
(Section 4)

An experimental study (Section 5) confirms that static anonymiza-
tion tools (e.g., spatial k-anonymity) are indeed vulnerable to pri-
vacy breaches if we fail to account for motion-prediction inference,
and are thus unsuitable for online location trace publishing. How-
ever, the experiments also indicate that our protocols can be used
effectively to mitigate this problem.

2. PRELIMINARIES
2.1 Threat Model & Privacy Principle
Though widely considered important, privacy is a somewhat neb-

ulous concept. So far, there is no single technical definition that is
universally accepted for all applications and all kinds of data. How-
ever, by carefully examining the application at hand, as well as the
potential threats, we arrived at a simple privacy principle, which
captures many of the necessary requirements.
When publishing location trace data, we expect to encounter one

or more adversaries who have access to some source of external
information associating individual users with particular locations
at specific points in time. Examples of this kind of auxiliary in-
formation include the Yellow Pages, employee directories, work
schedules, etc. More generally, this auxiliary information may as-
sociate users with spatio-temporal paths (e.g., a user’s route home
from work). However, in our setting, it is unreasonable to assume
that the organization collecting and distributing traces has access to
all of this auxiliary information.
Throughout this paper, we will consider a finite population of n

users, each with a unique identifier (u1, ..., un). For the sake of
illustration, consider a strawman protocol in which unique identi-
fiers are replaced with unique pseudonyms p1, ..., pn. For example,
Alice’s name might be replaced with a unique hash value. Unfor-
tunately, this simple protocol is insecure. In particular, using the
available auxiliary information, an adversary may learn associa-
tions between certain pseudonyms and identifiers. Worse, because
these associations are consistent across time, the adversary is then
able to learn the locations of these users at all other points in time.
To overcome the shortcomings of the strawman, one might con-

sider shifting the pseudonyms across time. For simplicity, we as-
sume that the users’ locations are reported to the central repository
in discrete time steps, t0, t1, ... In this second approach, at each
time ti we would replace user uj with a unique pseudonym pi

j ,
such that the pseudonyms pi

j for i = 0, ... bear no discernible re-
lationship to one another. Unfortunately, this approach is also inef-
fective. Using multi-target tracking tools, which implicitly model
user motion, it is often still possible to track a particular user across
time [17, 23].
Based on these observations, we arrived at the following guiding

principle for location trace privacy.1 Of course, we will not be able
to prevent an attacker from determining the location of a particular
individual when this information is already available as part of the
auxiliary information. However, he should not be able to use this
information to identify the user at other points in time.

DEFINITION 1 (PRINCIPLE OF TEMPORAL UNLINKABILITY).
Consider an adversary who is able to correctly associate a user uj

1The underlying intuition is similar to that motivating the develop-
ment of mix-zones [4], which seek to maintain similar properties in
a less formal way.

with m sequential pseudonyms, pi
j , ..., p

i+m
j . Under reasonable

assumptions of inference, the adversary should not be able, with
high confidence, to identify the pseudonym ph

j corresponding to uj

at some other point in time, h /∈ {i, .., i + m}.

2.2 Cloaking Mechanism
When thinking about privacy-protection protocols, as in security,

it is often useful to draw a distinction between the privacy policy
(i.e., set of formal guarantees) and the mechanism used to enforce
the policy. The primary focus of this paper is the former; however,
out of necessity, we chose to work with a particular mechanism.
Numerous cloaking, masking, and sampling mechanisms have been
proposed for location-based data. We selected one particular mech-
anism, which appears to generalize several other proposals. Thus,
in this section, we will first describe the mechanism that we se-
lected, and then we will describe why our formal framework for
reasoning about privacy still applies in related settings. Extend-
ing of our policy and formal framework to other mechanisms is an
interesting topic for future research.
Consider a finite population of users, and suppose that each user

has been assigned a unique pseudonym in {p1, ..., pn}. These val-
ues do not identify the users externally, but they are consistent
across time. We assume that the users are traveling in a metric
space, and the system publishes location-based data in discrete epochs,
labeled t0, t1, .... During each epoch, a location snapshot asso-
ciates each user with a particular location.

DEFINITION 2 (LOCATION SNAPSHOT). A location snapshot
associates each user with a single location during a particular
epoch. During epoch tj , D(tj) = {(p1, l

(j)
1 ), ..., (pn, l(j)n )} in-

dicates that user pi is at location l(j)i .

Throughout this paper, we consider publishing modified location
snapshots. Specifically, a release candidate is modeled as a set of
anonymization groups, each of which contains a non-overlapping
set of pseudonyms and a multiset of locations.

DEFINITION 3 (RELEASE CANDIDATE). A release candidate
D∗(tj) forD(tj) is of the form {(C1(tj), L1(tj)), ..., (CB(tj), LB(tj))},
such that ∪i=1..BCi(tj) = {p1, ..., pn}, Ci(tj)∩Cm(tj) = ∅ for
i %= m, and Li(tj) contains the locations at time tj of all users
with pseudonyms in Ci(tj).

Of course, a variety of masking mechanisms have been proposed
in the literature. We chose to abstract the idea of release candidates
this way for maximum flexibility, and we are careful to note the
relationship between this approach and other proposals:

• Spatial Cloaking Spatial cloaking techniques have been pro-
posed in which the precise locations of individuals are re-
placed with regions. We are careful to note that such cloaked
representations (e.g., minimum bounding rectangles [12]) can
be computed from the anonymization groups in our release
candidates, and thus reveal no more information. Further,
such cloaking techniques may still be vulnerable to attacks
based on motion models. For example, in Example 1.1, if we
replaced the precise locations in each anonymization group
with bounding regions, it is still possible to infer that Alice
could not have reached the lower portion of the second region
by 7:50 AM.

• No Pseudonyms (Sampling)An alternative approach would
eliminate the use of consistent pseudonyms entirely. This can
be modeled as a special case of our mechanism, where each
D∗(Tj) contains just one anonymization group.
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Domain Variables Instances
Pseudonym {p1, ..., pn} P, P1, ... p1, p2, ...
Epochs {t0, t1, ...} T0, T1, ... t0, t1, ...
Locations some metric space L, L0, ... l0, l1, ...

Table 1: Summary of notation

• Location Densities A third alternative would publish maps
of user-densities. For example, such a map might indicate
that at 7:45 AM, there are three users in a particular region.
Such maps, at time Tj , can be computed from a release can-
didateD∗(Tj) that contains just one anonymization group.

2.3 Data Quality
When using data cloaking or anonymization, there is often a (for-

mal or informal) tradeoff to be made between the privacy provided
by the mechanism and the quality of the resulting data. In the
pathological case, we could achieve perfect privacy by releasing
no data, but this provides none of the benefits of data sharing.
In the case of our cloaking mechanism (Section 2.2), there are

intuitively two dimensions of data quality to be considered. On one
hand, we want to publish data with spatially-compact anonymiza-
tion groups (maximize spatial precision). On the other hand, we
would like to maximize publication frequency by publishing dur-
ing as many epochs as possible. The relative importance of these
two dimensions varies based on the application. While the data
quality issue is largely separate from the formal framework we will
describe for reasoning about privacy, we will revisit data quality
when describing our publication protocols in Section 4.3.

3. LOCATION TRACE PRIVACY
In this section, we describe our framework for reasoning about

location trace privacy. The framework involves two main compo-
nents: a motion model, and a breach probability function.
The motion model is a probabilistic model, used by both the cen-

tral repository and the adversary to predict the location of a user
given her location during adjacent epochs. The motion model is
defined as a strictly independent (and replaceable) component of
the framework. While it is considered non-standard in security to
assume that we know the adversary’s motion model, in practice we
expect that the publishing organization would develop, tune, and
continuously evaluate a motion model that is appropriate for the
application domain.
Using the motion model as a black box, we formally characterize

the notion of a privacy breach, based on the unlinkability principle
described in the last section.

3.1 Motion Models
Central to our framework is a probabilistic motion model. As

illustrated in Example 1.1, the location of a user at time tj is often
correlated with the user’s location at surrounding points in time.
We use the motion model to define the probability distribution of
locations for a particular user, given the location of the user at the
preceding h epochs (forward motion model), or the following h
epochs (backward motion model).2
For clarity, in the following definitions we use capital letters to

denote variables (locations, epochs, and users), and we use lower-
case letters to denote instances. The notation is in Table 1.

DEFINITION 4 (FORWARD MOTION MODEL TEMPLATE). A
forward motion model is a conditional probability mass function of
2Note that this motion model assumes that the movements of spe-
cific users are independent of one another.

the following form, where 1 ≤ h ≤ j and Loc(P, Tj) = Lj indi-
cates that the location of user P at epoch Tj is Lj:

Pr[Loc(P, Tj) = Lj | Loc(P, Tj−1) = Lj−1, ...,

Loc(P, Tj−h) = Lj−h]

We will view the forward motion model as an hth-order Markov
chain. That is, we assume:

Pr[Loc(P, Tj) = Lj |Loc(P, Tj−1) = Lj−1, ...,

Loc(P, Tj−h) = Lj−h]

= Pr[Loc(P, Tj) = Lj |Loc(P, Tj−1) = Lj−1, ...,

Loc(P, T0) = L0].

Similarly, we define the backward motion model, which we will
also view as an hth-order Markov chain.

DEFINITION 5 (BACKWARD MOTION MODEL TEMPLATE).
A backward motion model is a conditional probability mass func-
tion of the following form, where 1 ≤ h ≤ j:

Pr[Loc(P, Tj) = Lj | Loc(P, Tj+1) = Lj+1, ...,

Loc(P, Tj+h) = Lj+h]

Finally, if a motion model satisfies the symmetry property, then
it can be read forwards and backwards.3

DEFINITION 6 (MOTION MODEL SYMMETRY). Backwards and
forwards motion models are said to be symmetric if

Pr[Loc(P, Tj) = Lj | Loc(P, Tj−1) = Lj−1, ...,

Loc(P, Tj−h) = Lj−h]

= Pr[Loc(P, Tj−h) = Lj−h | Loc(P, Tj−h+1) = Lj−h+1, ...,

Loc(P, Tj) = Lj ]

3.2 Sample Linear Motion Model
The motion model is an independent and replaceable component

of our framework. Nevertheless, for concreteness, we will describe
a simple (forward and backward) linear motion model, which in-
stantiates the more general template for h = 1.4
The sample motion model is based on simple velocity distribu-

tion assumptions. We assume that the speed of each user P is uni-
formly distributed in the range [v1, v2], and that the angle of motion
is uniformly distributed in [θ1, θ2]. (The following description uses
polar co-ordinates.)
Given that P ’s location at epoch T1 is L1, the possible locations

for P at T2 are illustrated in Figure 2(a) as a sector with angles
[θ1, θ2] and distances [r1, r2] where r1 = v1 · (T2 − T1), r2 =
v2 · (T2 − T1).
To view this distribution in terms of discrete locations, we im-

pose a polar “grid" on this sector. Pr[Loc(P, T2) = L2] is assigned
a probability mass based on the density of the cell containing L2. If
r and θ are independent, with pdfs f(r) and f(θ), and the bound-
aries of the cell are given by r ∈ [ε1, ε2] and θ ∈ [β1, β2], then the
probability mass is obtained by integrating over this region:

R β2
β1

R ε2
ε1

f(r)f(θ)drdθ

3Of course, symmetry is a property of the probabilistic motion
model; it does not imply that any particular user actually repeats
his movement backwards.
4Hoh et al. implicitly model motion using one prior time step [19].
However, by making the motion model explicit and replaceable, we
develop a more general and extensible framework.
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(a) Forward

(b) Backward

Figure 2: Sample linear motion model

However, if we assume that the speed and angle are uniformly
distributed, then we have

R β2
β1

R ε2
ε1

1
r2−r1

dr 1
θ2−θ1

dθ = ε2−ε1
r2−r1

· β2−β1
θ2−θ1

.

These probabilities are, of course, computed under the condition
that L2 is within the ranges [r1, r2] and [θ1, θ2], as shown in Fig-
ure 2(a). Otherwise, the probability is 0.
For the reverse motion model, we maintain the same velocity

distribution assumptions. Given that P ’s location at T2 is L1, the
possible locations for P at T1 are illustrated in Figure 2(b) as a
sector with angles (expressed in degrees) [θ1 + 180, θ2 + 180] and
distances [r1, r2]. If we compute the probability mass as before, we
obtainPr[Loc(P, T1) = L1|Loc(P, T2) = L2] = Pr[Loc(P, T2) =
L2|Loc(P, T1) = L1]; thus the simple linear motion model is sym-
metric.
Of course, there are many alternatives to the linear motion model

(e.g., [18, 33, 21]). Many of these models rely on using the previous
locations of an object to predict future locations, and generally fit
within our framework.
3.3 Privacy Breaches
Using the motion model as a building block, we formally de-

fine what constitutes a breach of privacy, based on the unlinka-
bility principle. Intuitively, the forward (respectively, backward)
breach probability represents the certainty with which an adver-
sary can identify the location associated with a particular user P
during epoch Tj , using the motion model, given that he knows the
locations of all users during them preceding (respectively, follow-
ing) sequential epochs, as described by fully-identified snapshots
D(Tj−1), ..., D(Tj−m) (respectively, D(Tj+1), ..., D(Tj+m)).

DEFINITION 7 (FORWARD BREACH PROBABILITY ). The for-
ward breach probability for user P , epoch Tj and location Lj is
defined by the conditional probability

Pr[Loc(P, Tj) = Lj |D(Tj−1), ..., D(Tj−m), D∗(Tj)]

The forward breach probability can be expressed in terms of the
forward motion model. Note that the snapshotsD(Tj−1), ..., D(Tj−m)
identify the locations of each pseudonym P at them previous epochs.
(Denote these locations lPj−1, ..., l

P
j−m.) Assuming h ≤ m, based

on the h-step Markov assumption, we have:

Pr[Loc(P, Tj) = L|D(Tj−1), ..., D(Tj−m)]

= Pr[Loc(P, Tj) = L|Loc(P, Tj−1) = lPj−1, ...,

Loc(P, Tj−h) = lPj−h]

In order to compute the breach probability, we must also condi-
tion onD∗(Tj):

Pr[Loc(P, Tj) = L|D(Tj−1), ..., D(Tj−m), D∗(Tj)]

=
Pr[Loc(P, Tj) = L ∧ D∗(Tj)|D(Tj−1), ..., D(Tj−m)]

Pr[D∗(Tj)|D(Tj−1), ..., D(Tj−m)]

The resulting probabilities can be computed based on the for-
ward motion model. In the following, for simplicity of notation,
the past locations of each pseudonym P are assumed, and we will
simply refer to the conditional probability that the location of P is
L at Tj (as computed form the motion model) as Pr[(P, L)].
Consider the anonymization group in D∗(Tj) that contains the

pseudonym P , and letC(j)
P and L(j)

P denote the sets of pseudonyms
and locations, respectively, contained in this anonymization group.
LetM : C(j)

P → L(j)
P be a one-to-one function mapping pseudonyms

to locations. Notice that there are g = |L(j)
P |! such functions, and

D∗(Tj) implies that one such mapping must be true.
Each unique mappingM can be viewed as a disjoint event. Since

we assume that the movements of users are independent of one an-
other, the probability of one such mappingM = {(c1, $1), ..., (ck, $k)}
is Pr[M ] = Pr[(c1, $1)] · ... · Pr[(ck, $k)].
Finally, the forward breach probability for pseudonym P and

location L can be computed as the sum of probabilities of mappings
Mi such thatMi(P ) = L, divided by the sum of probabilities over
all such mappings. In the following, I(Mi) is an indicator variable,
which takes the value 1 ifMi(P ) = L, and 0 otherwise.

BP =

Pg
i=1 Pr[Mi] · I(Mi)Pg

i=1 Pr[Mi]
(1)

EXAMPLE 3.1. To illustrate, consider the simple example in
Figure 3, and suppose m = h = 1. Suppose that the true snapshot
at epoch t0 is D(t0) = {(p1, l1), (p2, l2), (p3, l3), (p4, l4)}.
Using the 1-step forward motion model, we can compute the fol-

lowing:
e15 = Pr[Loc(p1, t1) = l5|Loc(p1, t0) = l1],
e16 = Pr[Loc(p1, t1) = l6|Loc(p1, t0) = l1],
e25 = Pr[Loc(p2, t1) = l5|Loc(p2, t0) = l2],
e26 = Pr[Loc(p2, t1) = l6|Loc(p2, t0) = l2].

Then, we can compute the breach probabilities.
Pr[Loc(p1, t1) = l5|D(t0), D

∗(t1)] = e15e26
e15e26+e25e16

,
Pr[Loc(p2, t1) = l6|D(t0), D

∗(t1)] = e15e26
e15e26+e25e16

,
Pr[Loc(p1, t1) = l6|D(t0), D∗(t1)] = e25e16

e15e26+e25e16
,

Pr[Loc(p2, t1) = l5|D(t0), D
∗(t1)] = e25e16

e15e26+e25e16
.

In addition to the forward breach probability, we have the back-
ward probability, which is similarly defined, and can be computed
in terms of the backward motion model.

DEFINITION 8 (BACKWARD BREACH PROBABILITY). The back-
ward breach probability for user P , epoch Tj and location Lj is
defined by the conditional probability
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Figure 3: Example of breach probability computation

Pr[Loc(P, Tj) = Lj |D(Tj+1), ..., D(Tj+m), D∗(Tj)]

EXAMPLE 3.2. Consider again the example in Figure 3, and
suppose m = h = 1. Suppose that the true snapshot at epoch t0 is
D(t1) = {(p1, l5), (p2, l6), (p3, l7), (p4, l8)}.
Using the 1-step backward motion model, we can compute the

following:
e15 = Pr[Loc(p1, t0) = l1|Loc(p1, t1) = l5],
e25 = Pr[Loc(p1, t0) = l2|Loc(p1, t1) = l5],
e16 = Pr[Loc(p2, t0) = l1|Loc(p2, t1) = l6],
e26 = Pr[Loc(p2, t0) = l2|Loc(p2, t1) = l6].

Then, we can compute the breach probabilities.
Pr[Loc(p1, t0) = l1|D(t1), D

∗(t0)] = e15e26
e15e26+e25e16

,
Pr[Loc(p2, t0) = l2|D(t1), D

∗(t0)] = e15e26
e15e26+e25e16

,
Pr[Loc(p1, t0) = l2|D(t1), D∗(t0)] = e25e16

e15e26+e25e16
,

Pr[Loc(p2, t0) = l1|D(t1), D
∗(t0)] = e25e16

e15e26+e25e16
.

Finally, a release candidate is said to cause a privacy breach
if there is some (forward or backward) breach probability that is
higher than a user-specified threshold.

DEFINITION 9 (PRIVACY BREACH). A release candidateD∗(Tj)
is said to cause a privacy breach if either of the following state-
ments is true for user-defined breach threshold T :5

maxP,Lj Pr[Loc(P, Tj) = Lj |D(Tj−1), ..., D(Tj−m), D∗(Tj)] > T

maxP,Lj Pr[Loc(P, Tj) = Lj |D(Tj+1), ..., D(Tj+m), D∗(Tj)] > T

In the remainder of the paper, we will refer to a release candidate
D∗(Tj) that fails to satisfy the first condition as causing a forward
breach; similarly, if it fails to satisfy the second condition, it causes
a backward breach.

4. PUBLISHING LOCATION TRACES
Using the framework described in the last section, we turn our at-

tention to developing a protocol for continuously publishing privacy-
preserving location traces.

4.1 Checking for Breaches: Brute-Force
The discussion in Section 3.3 suggests an algorithm that can

be used to check a release candidate D∗(Tj) for forward privacy
breaches, given snapshots D(Tj−h), ..., D(Tj−1). Similarly, there
5This definition is easily adapted to use a different threshold for
each user. We omit the details in the interest of simplicity.

is a related algorithm that checks for backward breaches, given
D(Tj+1), ..., D(Tj+h).
Algorithm 1 shows how to check for forward breaches using

the forward motion model. The time complexity is O(n
k · k!) =

O(nkk), where k is the maximum size of an anonymization group.
Of course, k is often a small constant, in which case the complex-
ity is O(n). (In the event that this is not the case, we provide some
additional optimizations in Section 4.2.)

Algorithm 1 Forward Check (Brute-Force)
Input: D∗(Tj), D(Tj−1), ..., D(Tj−h), T
Output: true if there is a breach, false otherwise
1: for each anonymization group (C < L) ∈ D∗(Tj) do
2: denom = 0
3: numer[|C|][|L|] = initialize all entries to 0
4: for each unique mapping M : C → L do
5: Pr[M ] = <compute from forward motion model>
6: for each p ∈ C do
7: numer[p][M(p)] += Pr[M ]
8: end for
9: denom += Pr[M ]
10: end for
11: for each p ∈ C do
12: for each $ ∈ L do
13: BP = numer[p][$] / denom
14: if BP > T then
15: return true
16: end if
17: end for
18: end for
19: end for
20: return false

The brute-force algorithm for checking for backward breaches is
analogous, but takes as input D∗(Tj), D(Tj+1), ..., D(Tj+h), and
uses the backward motion model.

4.2 Checking for Breaches: Pruning
The brute-force checking algorithm is exponential in k, the max-

imum size of an anonymization group. While this is acceptable for
small fixed k, in this section we describe a fast pruning algorithm.
In many cases, the pruning algorithm is able to identify anonymiza-
tion groups that do and do not cause breaches (have breach prob-
abilities above and below threshold T , respectively), heuristically
reducing the amount of necessary computation.
Recall the formula for computing the breach probability in Equa-

tion 1. If k is the size of the anonymization group, then the numer-
ator of this formula is the sum of (k − 1)! elements, each of which
is the product of k different Pr[(C, L)] values: Pr[(c1, l1)] · . . . ·
Pr[(ck, lk)]. The denominator is the sum of k! elements, each of
which is the produce to k different Pr[(C,L)] values. By choos-
ing the maximum and minimum values of Pr[(C, L)], we can find
(loose) upper and lower bounds for the breach probability in G.

4.2.1 Basic Pruning Approach
The basic pruning procedure consists of the following three steps.

(For simplicity, we describe forward breach probability computa-
tion, but the procedure for backward breach probabilities is com-
pletely analogous.)

1. Consider the locations l1, ..., lk for the set of objects c1, ..., ck

in anonymization group G at Tj . Applying the forward mo-
tion model, we compute PRi = {Pr[(c1, li)], . . . , Pr[(ck, li)]}
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l1 l2 l3
c1 0.5 (P1) 0.31 (p2) 0.19 (p3)
c2 0.35 (p1) 0.45 (P2) 0.2
c3 0.4 0.35 0.25 (P3)

Table 2: Sample PR[(c,l)]

for 1 ≤ i ≤ k at Tj . (Again, we assume that the loca-
tions of each object at the previous m epochs are known,
so these probabilities are easily obtained from the motion
model.) This step takes O(k2).

2. For 1 ≤ i ≤ k, letPi = max(PRi), and let pi = min(PRi).

3. Finally, we can obtain (loose) upper and lower bounds for the
breach probability BP in anonymization group G.

BP ≤ (k − 1)! · P1 · . . . · Pk

k! · p1 · . . . · pk
=

1
k
· P1 · . . . · Pk

p1 · . . . · pk

BP ≥ 1
k
· p1 · . . . · pk

P1 · . . . · Pk

Since there are, on average, n/k anonymization groups, the
total time complexity is O(n

k · k2) = O(nk).

EXAMPLE 4.1. To illustrate the pruning procedure, consider a
simple example. Table 2 shows the set of k2 probabilities generated
in Step 1. In Step 2, the maximum and minimum values per location
are labeled P1, ..., P3 and p1, ..., p3, respectively.
Upper and lower bounds can be computed as follows:

BP ≤ 1
3
· 0.5 · 0.45 · 0.25
0.35 · 0.31 · 0.19

= 90.9%

BP ≥ 1
3
· 0.35 · 0.31 · 0.19

0.5 · 0.45 · 0.25
= 12.2%

Suppose that the breach threshold T = 95%. Since BP ≤
90.9% ≤ T , we know that there is not a breach.

4.2.2 An Improvement
The basic pruning approach uses P1 · . . . ·Pk and p1 · . . . · pk to

estimate the probabilities of the most and least likely assignments
of objects to locations. By plugging these values into Equation 1,
we can obtain upper and lower bounds for the breach probability.
However, if the difference between the maximum and minimum
estimates is large, the estimated bounds can be quite loose.
In order to improve these bounds, we make the following ob-

servation: In Equation 1, notice that each Mi (assignment of ob-
jects to locations) must be unique. Rather then finding the sin-
gle maximum- and minimum-probability assignment, we can im-
prove the tightness of the bounds by finding the x most-probable
and x least-probable assignments, and incorporating these into the
bound.6 The improved pruning algorithm consists of the following
steps:

1. Let S = {s1 · . . . · sk : s1 ∈ PR1, . . . , sk ∈ PRk} denote
the multiset of probabilities obtained by assigning one object
per location. Let max[x] denote the xth largest value in S,
and letmin[x] denote the xth smallest value in S.

6Notice that this is still a conservative (loose) estimate because we
do not enforce the requirement that the mapping of objects to loca-
tions be a function. (I.e., in the resulting estimate, a single user can
be assigned to multiple locations.) For example, in Table 2, c1 is
assigned to locations l2 and l3 in the minimum estimate p1 ·p2 ·p3.

2. Next, we must compute the values max[1], ..., max[x] and
min[1], ..., min[x]. There is a polynomial-time algorithm
for finding these values, but we postpone the full description
of the algorithm to Appendix B.

3. Finally, we can compute upper and lower bounds. (The fol-
lowing assumes that x ≤ (k − 1)!.)

BP ≤ max[1] + . . . + max[x] + ((k − 1)! − x) · max[x]
min[1] + . . . + min[x] + (k! − x) · min[x]

BP ≥ min[1] + . . . + min[x] + ((k − 1)! − x) · min[x]
max[1] + . . . + max[x] + (k! − x) · max[x]

EXAMPLE 4.2. Consider again the example in Table 2, and
suppose x = 2. In this case, we compute the following:

max[1] = 0.5 · 0.45 · 0.25 = 0.05625

max[2] = 0.4 · 0.45 · 0.25 = 0.045

min[1] = 0.35 · 0.31 · 0.19 = 0.020615

min[2] = 0.35 · 0.31 · 0.2 = 0.0217

Then, upper and lower bounds can be computed as follows. No-
tice that the bounds are tighter than those obtained using the basic
pruning approach in Example 4.1.

BP ≤ 0.05625 + 0.045
0.020615 + 0.0217 + 4 · 0.0217

= 78.42%

BP ≥ 0.020615 + 0.0217
0.05625 + 0.045 + 4 · 0.045

= 15.05%

4.3 Publishing Protocols
Generally-speaking, the cloaking mechanism described in Sec-

tion 2.2 gives us two tools to work with in order to guarantee that
a published stream of location trace data does not result in a pri-
vacy breach. First, we can increase the size, or vary the composi-
tion, of anonymization groups. Second, we can limit the frequency
with which we publish a release candidate. In this section, we ex-
plore the space, and with an eye toward practicality, we suggest two
promising initial approaches.

4.3.1 General Case
First, consider the general case in which we have the flexibility to

vary the size and composition of anonymization groups and to limit
the frequency of publication. In this case, if we want to publish a
release candidate D∗(Tj) at epoch Tj , we need to check for back-
ward breaches, and must have future snapshotsD(Tj+1), ..., D(Tj+h)
in hand. A simple solution is to delay publishing for h subse-
quent epochs, after which D∗(Tj) is easily checked for (forward
and backward) breaches.
In the general case, we also have the flexibility to choose a new

set of anonymization groups at each epoch Tj . One might view this
as an optimization problem: Given an objective function, find the
best release candidate that does not cause a breach. However, like
many related problems, this problem is apparently computationally
difficult. For the sake of illustration, consider a simple objective
function that minimizes the maximum radius of any anonymiza-
tion group in D∗(Tj).7 In this case, the problem can be stated as
follows:

PROBLEM 1. Given current snapshot D(Tj), historical snap-
shotsD(Tj−h), ..., D(Tj−1), future snapshotsD(Tj+1), ..., D(Tj+h),
forward and backward motion models, and breach threshold T , find
D∗(Tj) = {(C1(Tj), L1(Tj)), . . ., (CB(Tj), LB(Tj))} such that
7Related objective functions, based on area or volume of resulting
clusters, have been used in prior work [2, 3, 10, 13, 20].
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1. D∗(Tj) does not cause a (forward or backward) privacy
breach, and

2. The objective functionmaxi=1..B R(Ci) is minimized, where
R(Ci) is the radius of Ci.

THEOREM 1. Problem 1 is NP-hard.
PROOF. The proof is provided in Appendix C.

In light of the apparent complexity of the optimization problem,
and the combinatorial nature of the checking algorithms described
in Sections 4.1 and 4.2, it does not seem that solving Problem 1 is
a reasonable goal.
On the upside, however, there is a practical compromise solu-

tion that simply leverages an existing (heuristic or approximation)
algorithm for k-anonymity (e.g., [2, 3, 12, 24]) to generate a re-
lease candidate D∗(Tj). If D∗(Tj) does not cause a breach, it is
published. Otherwise, we simply do not publish during epoch Tj .

4.3.2 Durable Anonymization Groups
While the general case allows us to vary the composition of

anonymization groups and the frequency of publication, in this sec-
tion, we consider a restricted protocol in which the anonymization
groups are fixed, and the only decision to be made at each epoch is
whether or not to publish the release candidate. We will refer to an
anonymization group as durable if it contains the same pseudonyms
at all epochs across time. That is, Ci is considered durable across
epochs ti, ..., tj if Ci(ti) = ... = Ci(tj).
Publication protocols involving only durable clusters have sev-

eral appealing properties. In particular, while the general pub-
lishing approach requires that we check for forward and backward
breaches, this is not necessary if we require durable groups and the
motion model is symmetric. Not checking for backward breaches
has several advantages: (1) It reduces the checking time by half,
and (2) There is no need to delay publishing for h epochs as in the
general case.8

THEOREM 2. If all anonymization groups are durable, and the
forward and backward motion models are symmetric, then it is suf-
ficient to check just for forward breaches.
PROOF. The proof is provided in Appendix C.

EXAMPLE 4.3. Again, consider the example in Figure 3, and
notice that the anonymization groups {p1, p2} and {p3, p4} are
durable across t0 and t1. If the one-step motion model is symmet-
ric, then the forward breach probabilities at t1 are the same as the
backward breach probabilities at t0. Thus, it is sufficient to check
only for forward breaches.

In practice, when using a durable approach, an initial burn-in"period
can be used to discover flocks of users with similar motion pat-
terns.9 Also, note that these anonymization groups do not need to
be durable in perpetuity. It is possible to occasionally re-cluster
the users, temporarily reverting to the general case (forward and
backward checks) when this happens.
8The other more subtle advantage of the durable clusters approach
is that it allows us to use a variable epoch numbering system, in
which we only assign an epoch number at points in time when a
release candidate is actually published. On the other hand, in the
non-durable case, when we also check for backward breaches, it
is assumed that some release candidate will be published in future
epochs Tj+1, . . . , Tj+h, and that these future times will each re-
ceive an epoch number.
9We could use an existing trajectory clustering algorithm (e.g.,
[34]) to find the flocks.

5. EXPERIMENTAL RESULTS
This section describes our experiments, which were designed to

investigate the following issues:
• We use our framework to analyze the occurrence of the mo-
tion prediction inference problem. Much prior work on lo-
cation privacy has focused on applying k-anonymous cloak-
ing to protect the locations of users at a single point in time
[12, 13, 16, 22, 29]. However, to the best of our knowledge,
all of these tools are vulnerable to motion prediction infer-
ence (Section 1). Analyzing the output of two representative
k-anonymization algorithms illustrates the importance of ex-
plicitly considering this threat.

• We evaluate the effectiveness of our publishing algorithms,
including the pruning approach and the effect of using durable
vs. non-durable clusters.

5.1 Experimental Data
As experimental data we used one synthetic and one real dataset.

These datasets are described below.
! Synthetic data The Network-based Generator of Moving Ob-
jects (NG-MO) [6] simulates points moving in a road network. We
use this generator to produce points moving on the road network of
the San Francisco (SF) Bay Area (1735800 × 1372400 (unit2)).
In the simulation, mobile nodes pick their speed from the range
[1419, 5207570] (speed units), and pick their angles from the range
[0, 180] degrees. We generated a dataset with 1200 trajectories.
! Real data We also use real GPS traces from a study conducted
by a Transportation Research Institute in our university. (This data
is not publicly available yet and we omit the details of the orga-
nization to adhere to the rules of double-blind reviewing.) Actual
GPS units were mounted on volunteers’ cars, and data was col-
lected from the cars as the drivers went about their daily activities.
The dataset contains two-hour traces for 87 users. The data sam-
pling rate is one centisecond (0.01 seconds). From these 87 trajec-
tories, we were only able to use 72 trajectories because this is the
maximum number of trajectories that have common time ranges.
For the motion model, we need the range of speed and angles.

These measures were computed from the trajectory dataset. The
speeds ranged from 0 to 170 km/hr, and the angles ranged from
0 to 180 degrees. For the motion model, we assume a uniform
distribution over both of these ranges, as described in Section 3.2.

5.2 Implementation and Experimental Setup
To carry out the evaluation we implemented the following two

protocols for data publication:

1. Durable Clusters In the first protocol, the data is initially
clustered into anonymization groups at epoch 1 using the
clustering method proposed in [2], which we call k-Condense.
This method takes as input a parameter k, and uses a heuris-
tic to cluster the points into groups based on their proxim-
ity, such that each resulting group contains at least k points.
With durable clusters, once the cluster is produced at the first
epoch, the clusters are retained and simply checked at sub-
sequent epochs for forward breaches. Data is published if
the forward breach probability for each cluster is below the
threshold T . (see Definition 9 and Theorem 2)

2. Reclustering In the second protocol, the data is reclustered
at each epoch, using the k-Condense algorithm. At each
epoch the breach probability is computed and the snapshot
at an epoch is published if the forward and backward breach
probability for each cluster is below the threshold T .
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Figure 4: % of groups that exceed the breach threshold T, k-
Condense method, SF Data, k=4 and k=8, T=25%

Figure 5: % of groups that exceed the breach threshold T, r-
Gather method, SF Data, k=4 and k=8, T=25%

Figure 6: % of groups that exceed the breach threshold T, k-
Condense method, GPS Data, k=4 and k=8, T=25%

Figure 7: % of groups that exceed the breach threshold T, r-
Gather method, GPS Data, k=4 and k=8, T=25%

In addition, to illustrate the motion prediction inference prob-
lem, we also tried the r-Gather algorithm [3]. Like k-Condense,
r-Gather was proposed for clustering generic microdata in a metric
space. The algorithm clusters n points into a set of groups, each
of which contains at least k points. (In other words, the algorithm
guarantees k-anonymity for k = r.) We chose these two partic-
ular algorithms as representatives of the class of static publishing
techniques that do not consider motion prediction inference.
All of our code is written in C++, and all experiments were run

on an Intel Pentium 4 2.2 GHz duo workstation with 2GB of main
memory and a 160 GB hard disk, running Windows Vista Ultimate.
In our experiments we use a 1-step linear motion model, as de-

scribed in Section 3.2. We vary the value of k from 4 to 12 and the
breach probability threshold T from 25% to 75%. For the pruning
experiments, we use the improved pruning algorithm described in
Section 4.2.2 with x set to k. In the following, we only report se-
lected results for k = 4, 8, 12 and T = 25%, 50%, 75%, and we
report results for the first ten epochs of the evolving datasets.

5.3 Motion Prediction Inference in Practice
Much prior work on location privacy has focused on applying k-

anonymity to protect the locations on users at a single point in time.
However, these techniques are all potentially vulnerable to motion
prediction inference.
In the experiments described in this section, we ran the static

k-anonymization algorithms on location snapshots for epochs 1 to
10. (In order to effectively check for breaches at epoch 1, we also
generated an initial snapshot at an epoch 0, which is not published.)

5.3.1 Static k-Anonymization on SF Dataset
The results for the NG-MO San Francisco dataset are presented

in Figure 4, which plots the proportion of anonymization groups
generated by the k-Condense method at each epoch that result in a
privacy breach. These results are shown for k = 4, 8 and for breach
probability threshold T = 25%. From this figure, we observe that
the threshold is exceeded in all cases!

By analyzing Figure 4, we also observe that the number of groups
exceeding the breach probability threshold is inversely proportional
to the value of k; the release candidate with smaller k has more
clusters that exceed breach probability T . This is intuitive; we ex-
pect larger clusters to provide better anonymization.
In addition to k-Condense, we performed the same experiment

using r-Gather, and we observed similar results (see Figure 5). The
small difference between the two results can be attributed to a sim-
ple observation: while the cluster size constraint is the same in
both cases, on average, r-Gather generally produces clusters that
are larger than those produced by k-Condense. Nonetheless, some
clusters produced by r-Gather still exceed the breach probability
threshold at all epochs.

5.3.2 Static k-Anonymization on GPS Dataset
In addition to the synthetic SF dataset, we performed the same

experiment using the real GPS data. These results are shown in Fig-
ures 6 and 7. Like the results for the SF data, the breach probability
exceeds the threshold at each epoch.

5.4 Publishing with Durable and Non-Durable
Clusters

Next, we tested the effectiveness of our publishing protocol us-
ing both durable and non-durable clusters, as described in Sec-
tion 4.3.2. (For the results reported in this section, we use the prun-
ing techniques described in Section 4.2.)
For non-durable clusters, we generated a new clustered release

candidate at epochs 1 to 10, and we tested to see whether the release
candidate could be published. For non-durable clusters, this check
involved both forward and backward checks. For durable clusters,
we generated a single clustering at epoch 1; in this case, we only
need to check for forward breaches.
The results for the GPS data with k = 4, 8 and T = 25% and

75% are shown in Figures 8 through 11. In all cases, the time
to check the breach probabilities is significantly smaller with the
durable clusters than with the non-durable clusters, as expected.
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Figure 8: Durability Test, GPS Data, k=4, T=25% Figure 9: Durability Test, GPS Data, k=4, T=75%

Figure 10: Durability Test, GPS Data, k=12, T=25% Figure 11: Durability Test, GPS Data, k=12, T=75%

The performance measurements for non-durable clusters include
the cost of re-clustering at each epoch, as well as forward and back-
ward breach checking. In contrast, in the case of durable clusters,
we only cluster the data once, at epoch 1. In the remaining epochs,
we must only perform a forward breach check.
From Figures 8 and 9, we observe that we can’t publish any re-

lease candidate for T = 25% and k = 4. However, with T = 75%
we can publish a release candidate at nearly every epoch. Also, no-
tice that with a larger threshold T the computation time decreases;
this is because the pruning process is more effective with a larger
threshold.
Next, we examine the effects of increasing k. Figures 10 and 11

show the results with k = 12. Notice that increasing k allows
more release candidates to be published, but also increases compu-
tation time. As discussed previously, larger values of k tend to lead
to better anonymization. However, increasing k also increases the
computational cost of checking for privacy breaches.
We observed similar results using the SF data set, as shown in

Figures 12- 15.

5.5 Efficiency and Effectiveness of Pruning
In the final set of experiments, we evaluate the effectiveness of

the pruning method described in Section 4.2. In the interest of con-
ciseness, we will only present results for k = 8 and T = 50%.
The results are shown in Figure 16 and Figure 17 for the SF and

GPS datasets, respectively. From these figures, we observe that our
pruning method results in significant performance improvements
(by 2X or more in most cases). The reason for this is that the prun-
ing method can save the (expensive) computation of the exact max-
imum breach probability.
Notice that in Figure 16 and Figure 17, when not using the prun-

ing method, regardless of the durable or the non-durable case, when
a release candidate can be published, the processing time is the
same. For example, in the non-durable case (without pruning)
when release candidates can be published, the processing time is
about 27 seconds. The reason for this behavior is that in these cases
the computation cost is the same as exact breach probabilities have
to be computed for all groups.
We also ran the same tests for T = 25% and T = 75% respec-

tively for k = 8. For conciseness, we omit the figures and only

briefly describe these results. We found that for T = 25%, both
durable and non-durable clustering with pruning consumes more
processing time than T = 50% (mainly since pruning is less ef-
fective for lower T ). In addition, for T = 25% the publishing
frequency is smaller compared to the case of T = 50%. Compared
to the case when T = 25%, when T = 75% less time was spent
on processing (due to more effective pruning), and the publishing
frequency is higher because of a more relaxed threshold.
We also explored the effect of pruning when changing the group

size k. We set k = 4 and k = 12, with T = 50%. Again, we only
summarize these results. These results again indicate that smaller
k reduces the processing much faster with pruning.
From these experiments, and those described in the previous sec-

tion, we also observed that an increase in the value of threshold T
is more likely to lead to successful publication than an increase in
k. For example, the clusters generated with k = 8, T = 75%
can be published more frequently than the clusters generated with
k = 12, T = 50%. Also, in Figures 9 and 10, observe that clusters
generated with k = 4, T = 75% have more publications than those
generated with k = 12, T = 25%.

6. RELATED WORK
Problems of privacy and anonymity in location-aware applica-

tions have drawn considerable recent interest. It comes as no sur-
prise that several recent studies involving real GPS traces have re-
vealed that simply removing individual identifiers (e.g., names) is
not sufficient to guarantee anonymity [17, 23], particularly due to
the threat of motion prediction and location-tracking. In this sec-
tion, we give a brief overview of the past research that is most re-
lated to the tools proposed in this paper.
Mix-Zones: The principle of temporal unlinkability (Section 2.1)
is similar in spirit to the motivation for mix-zones, which were pro-
posed by Beresford and Stajano [4]. Mix-zones sought, informally,
to prevent an adversary from following the trajectory of any user for
extended periods of time. This was accomplished by suppressing
trace information while users passed through crowded areas (mix-
zones), the intuition being that this confuses an attacker attempting
to track any particular user. While the intuition is similar, this work
provided no formal guarantees about an attacker’s ability to track
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Figure 12: Durability Test, SF Data, k=4, T=25%
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Figure 13: Durability Test, SF Data, k=4, T=75%

Figure 14: Durability Test, SF Data, k=12, T=25% Figure 15: Durability Test, SF Data, k=12, T=75%

Figure 16: Time Comparisons, SF Data, k=8, T=50%

Figure 17: Time Comparisons, GPS Data, k=8, T=50%

individuals.
Uncertainty-Aware Path Cloaking: The uncertainty-aware path
cloaking approach proposed by Hoh et al. [19] is also similar in
spirit to our work. Mechanistically, they propose to limit the fre-
quency with which individual users’ locations are published. This
publication approach is used as a way to prevent an attacker from
correctly following a user across time, as described by the ideas of
tracking uncertainty and time to confusion.
Our work improves upon this work in three key ways: First, the

model developed by Hoh et al. [19] implicitly predicts user mo-
tion based on speed and one step of history. By making the mo-
tion model explicit and replaceable, we provide a more general and

extensible framework, which is, for example, able to capture di-
rectionality, in addition to speed. Second, our framework admits
privacy-preserving publication mechanisms based on both limiting
publication frequency, as well as clustering / cloaking. Third, and
most importantly, we observe a flaw in their formulation that can
lead to unanticipated privacy breaches. In particular, their defini-
tion of tracking uncertainty treats all users independently, which is
incorrect for finite user populations (e.g., if we are collecting GPS
traces from a fixed set of 200 cars). An extended description of this
observation is provided in Appendix A.
Spatial k-Anonymity for LBS: Many have suggested applying
spatial variations of k-anonymity to protect private location data.
This has been used most often in location-based services (LSB),
where users request services based on their locations (e.g., find the
nearest gas station), but they do not necessarily want to disclose
their precise locations (or queries) to the service provider. A com-
mon solution is to replace the user’s precise location with a spatial
cloaking region containing at least k − 1 other users [12, 13, 16,
22, 29]. Little of the work in location-based services has considered
the possibility of tracking users across multiple requests. Notable
exceptions include Bettini et al. [5] and Chow et al. [9]. However,
neither of these works provide formal privacy guarantees against
motion prediction inference.
Recently, Gkoulalas-Divanis et al. proposed anonymizing LBS

requests using frequent trajectories [15]. The idea is that the user’s
location should not just be k-anonymous at the time of the request,
but also for a surrounding window of time. It is not clear, however,
whether this approach can be applied to the problem of online tra-
jectory publishing, where location updates are published frequently
and in real-time.
k-Anonymous Trajectories: Recent work has also developed vari-
ations of k-anonymity that are used offline to anonymize databases
of fully-specified trajectories [1, 34]. However, after publishing
an anonymized database of trajectories using the proposed tech-
niques, it is unclear whether we would be able to publish future
location information for the same users without causing a privacy
breach. Thus, this work does not naturally extend to the the online
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publishing problem considered in this paper. Xu and Cai also seek
to anonymize fully-specified trajectories using historical trajectory
information [37], but this approach and threat model essentially
eliminate time as an identifiable attribute.
Other Related Work: In other related work, Machanavajjhala et
al. described a synthetic-data approach for masking commuter (ori-
gin, destination) data [27]. This approach provides strong privacy
guarantees based on the idea of differential privacy [11], but it is
designed for one-time publishing of location data, rather than for
an application tracking mobile users.
Privacy and anonymity have also been studied extensively for

publishing generic non-aggregate personal data. This work has
included approaches to probabilistically modeling disclosure by
masked (generalized) data [8, 26, 28, 35], as well as a variety
of generalization mechanisms based on spatial partitioning, spa-
tial indexing, and clustering [2, 3, 10, 14, 20, 24, 25]. Recently,
several techniques have been proposed that aim to extend these
static one-time publishing techniques to a dynamic setting, involv-
ing incrementally-updated data sets and multiple releases [7, 36].
Finally, though not the primary focus of this paper, consider-

able research has focused on motion modeling, trajectory predic-
tion, and tracking for mobile users [33, 21, 18].

7. CONCLUSION
In this paper, we developed a novel formal framework for rea-

soning about anonymity in the context of continuously publishing
location traces. Our framework uses a pluggable motion model to
predict the movements of a population of users. Based on this mo-
tion model, we provide a formal characterization of privacy breach.
Our definition is inspired by a common threat, where an adversary
has access to auxiliary information associating certain users with
particular locations and times. Given that the adversary already
knows the location of a user over a series of time steps, we limit the
certainty with which he can identify this user at surrounding points
in time.
We developed several simple and effective protocols for contin-

uously publishing location traces. Our experimental results on real
and synthetic data indicate the feasibility of the approach. The
results also confirm the intuition that anonymizing static location
snapshots can lead to inference when continuously publishing the
locations of mobile users.
There are several interesting opportunities for future work. While

the motion model is a fully independent and replaceable component
of our framework, in the future we plan to conduct a more extensive
evaluation and comparison of various motion models. In addition,
for cases where reliable motion models are unavailable, we plan
to search for classes of “conservative" motion models, which re-
liably do not underestimate (but perhaps overestimate) the breach
probabilities.
More broadly, we have every reason to believe that the problems

of data evolution and prediction are not limited to GPS data. For
example, consider a longitudinal social science study that tracks a
set of study participants over a period of years, and in which it is
important to publish new findings every year. Just as the location
of an individual at 7 AM is highly correlated with that individual’s
location at 7:05, certain personal attributes (e.g., age, residence,
personal habits) tend to vary in predictable ways over time. For ex-
ample, age progresses linearly, and residence changes probabilis-
tically, based on the observation that most people do not move far
from one year to the next. Future work should investigate apply-
ing the same principles (temporal unlinkability and socio-economic
“motion" prediction) to other domains, such as longitudinal data,
that require online publication of evolving data.
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APPENDIX
A. FLAW IN UNCERTAINTY-BASED

APPROACH
Recent work by Hoh et al. [19] also considered incrementally

publishing location samples produced by a population of users car-
rying GPS devices. At an intuitive level, the goals of this work are
similar to ours. They propose limiting the frequency with which
user locations are published (“sampled") in order to prevent an at-
tacker from correctly tracking a particular user across time. (Their
mechanism is slightly different from ours. They consider sampling
on a per-user basis, and they do not consider the possibility of clus-
tering users into anonymization groups.)
Though stated informally, the privacy goals of Hoh et al. [19]

are nevertheless similar to temporal unlinkability. However, they
formulate a different privacy requirement using mean time to con-
fusion (MTTC) as the privacy metric. In the following, we observe
that their formulation contains at least one important flaw. Specif-
ically, because the population of users is typically finite (e.g., GPS
devices attached to a fleet of 200 cars), it is a mistake to view the
users independently, and doing so may actually lead to unantici-
pated breaches of privacy (under both our definition and theirs).
First, we give a brief overview of the privacy definition of Hoh

et al. [19]. For ease of exposition, we will use notation consistent
with our previous definitions. For simplicity, we will only consider
the case in which all locations are published in a series of discrete
epochs.
Hoh et al. informally constructed a forward motion model, im-

plicitly based on speed and one step of history. (Empirically, they
constructed this model based on a fitted exponential distribution.)
It is reasonable to view the constructed motion model as follows:

Pr[Loc(P, T ) = Lj |D(Tprev)]

Let {L1, ..., Ln} be the set of location samples at time T . For
each user Pi and location Lj , they computed:

p(Pi, Lj) =
Pr[Loc(P, T ) = Lj |D(Tprev)]

Pn
j=1 Pr[Loc(P,T ) = Lj |D(Tprev)]

Then, for each user, they defined the tracking uncertainty:

H(Pi) = −
nX

i=1

p(Pi, Lj) log p(Pi, Lj)

Finally, they defined the mean time to confusion as the mean
tracking time during which the uncertainty remains below a confu-
sion threshold T .

The main flaw in this approach is viewing users independently
when computing p(Pi, Lj). As a concrete example, suppose that
we have only two users p1 and p2, and suppose that the locations
of these users at time t are l1 and l2. Suppose that the above-
mentioned motion model yields the following probabilities:

Pr[Loc(p1, t) = l1|D(t − 1)] = 0.2
Pr[Loc(p2, t) = l1|D(t − 1)] = 0.8
Pr[Loc(p1, t) = l2|D(t − 1)] = 0.8
Pr[Loc(p2, t) = l2|D(t − 1)] = 0.2

Hoh’s methodology would conclude that
H(p1) = −0.2 log 0.2 − 0.8 log 0.8 = 0.7219
H(p2) = −0.2 log 0.2 − 0.8 log 0.8 = 0.7219

However, notice that this is flawed! If we know that there is a
finite set of users, as is generally the case, then there are only two
possibilities at time t: (1) p1 is at l1 and p2 is at l2, or (2) p2 is at
l1 and p1 is at l2.
If we instead re-compute the above probabilities using this ob-

servation (and the methodology described in Section 3.3), we find
Pr[Loc(p1, t) = l1|D(t − 1), D∗(t)] = 0.0588
Pr[Loc(p2, t) = l1|D(t − 1), D∗(t)] = 0.9412
Pr[Loc(p1, t) = l2|D(t − 1), D∗(t)] = 0.9412
Pr[Loc(p2, t) = l2|D(t − 1), D∗(t)] = 0.0588.
Further, we could recompute the entropy-based uncertainty val-

ues from Hoh et al. [19], obtaining the following significantly
lower (i.e., less anonymous) values:

H(p1) = −0.0588 log 0.0588 − 0.9412 log 0.9412 = 0.3226
H(p2) = −0.0588 log 0.0588 − 0.9412 log 0.9412 = 0.3226.
It is interesting and important to observe that computing these

possible combinations (mappings from the set of users to the set of
locations) is the main source of computational complexity in our
privacy checking algorithms (Sections 4.1 and 4.2). While Hoh et
al. present a more computationally efficient publication scheme, it
neglects to capture this important case, and thus is vulnerable to
unanticipated attacks.
B. FINDINGMAX[X] ANDMIN[X]
Here, we describe an algorithm to findmax[1], ..., max[x], which

is critical to the optimized pruning algorithm described in Sec-
tion 4.2.2. (The algorithm for finding min[1], ..., min[x] is analo-
gous.)
The algorithm maintains three main data structures: (In the fol-

lowing, recall that k is the size of the anonymization group.)
• Each set PRi is sorted into descending order. In the follow-
ing, we will use the notation (j1, ..., jk) to refer to a sequence
of positions in the sorted lists PR1, ..., PRk. For example, if
k = 3, then (2, 1, 3) refers to the second entry in PR1, the
first entry in PR2, and the third entry in PR3.

• The algorithm keeps two sets of k cursors. Initially, curr1 =
... = currk = 1 and next1 = ... = nextk = 2.

• Finally, the algorithm maintains a set of (candidate, value)
pairs, where candidate is a sequence of entry positions, and
value is the result of multiplying the constituent probability
entries. These pairs are stored in a heap, which is sorted ac-
cording to value.

Pseudocode is given in Algorithm 2. Notice that the cursors are
used to generate new candidates. When the value of some cur-
sor nexti increases, then candidates are generated by matching
nexti with all natural numbers (c1, . . . , ci−1, ci+1, . . . , ck) such
that c1 ≤ curr1, . . . , ci−1 ≤ curri−1, ci+1 ≤ curri+1, . . . , ck ≤
currk.
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Algorithm 2max[x] Algorithm
1: Input: PR1, . . . , PRk

2: Output: max[1], . . . , max[x]
3: Sort each list PR1, . . . , PRk in descending order
4: max[1] = value of entry (1, ..., 1)
5: Initialize curr1 = ... = currk = 1
6: Initialize next1 = ... = nextk = 2
7: Generate candidates using curr1, . . . , currk and

next1, . . . , nextk

8: Insert new candidates into heap H
9: whileH is not empty and fewer than x values found do
10: Remove the next max entry (j1, . . . , jk) from the heap
11: for i = 1 to k do
12: if ji > curri then
13: curri = ji

14: nexti = ji + 1
15: end if
16: end for
17: Generate new candidates using curr1, . . . , currk and

next1, . . . , nextk

18: Insert new candidates intoH
19: end while
20: Returnmax[1], . . . , max[x]

A simple complexity analysis of the worst-case maximum num-
ber of candidates picked while finding max[x] (x ≤ k) is as fol-
lows. Suppose that the positions examined are uniformly distributed
in the same c lists (c < k), where each list contains x/c checked
positions. The complexity of checking all positional combinations
is (x/c)c. The worst-case complexity is derived by maximizing
this value for 1 ≤ c ≤ x − 1. Also, notice that when c = 1 or
c = x − 1, the algorithm’s complexity is O(x).

C. PROOFS
Proof of Theorem 1: The proof is a straightforward reduction from
r-Gather, which was described in [3], and shown to be NP-hard.
The problem is to cluster n points in a metric space into a set of
clusters, such that each cluster has at least r points, while minimiz-
ing the maximum radius among the clusters.
For any instance of the r-Gather problem, we construct (in poly-

nomial time) an equivalent instance of Problem 1 using an appro-
priately unrestrictive motion model. For example, if we consider
the linear motion model described in Section 3.2 and metric space
R2, then (1) Set the speed distribution [v1, v2] to [0, vmax], where
vmax is large enough so that r2 covers the whole data set; (2) Set
angle distribution [θ1, θ2] to [0, 360] (degrees); and (3) Set breach
threshold T = 1/r, where r is the parameter of r-Gather.
Conditions (1) and (2) guarantee that every point falls in the

region predicted by the motion model and has equal probability.
Thus, the breach probability just depends on the number of points
in each cluster. Condition (3) guarantees that for any point in a
cluster, its breach probability is greater than the threshold T only
if the cluster contains at least 1/T points. Thus, this instance of
Problem 1 is equivalent to the r-Gather problem.
Proof of Theorem 2: The proof is straightforward. Notice that,
if all clusters are durable and the motion model is symmetric, then
the set of forward breach probabilities at Tj is the same as the set
of backward breach probabilities at time Tj−h. If the publishing
protocol guarantees that there is never a forward breach (i.e., all
forward breach probabilities are ≤ T ), then there will never be a
backward breach.
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