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Abstract

Bots are coordinated by a command and control (C&C) in-
frastructure to launch such attacks as Distributed-Denial-of-
Service (DDoS), spamming, identity theft and phishing, all
of which seriously threaten the Internet services and users.
Most contemporary botnet-detection approaches have been
designed to function at the network level, requiring the anal-
ysis of packets’ payloads. However, analyzing packets’ pay-
loads raises privacy concerns and incurs large computational
overheads. Moreover, network traffic analysis alone can sel-
dom provide a complete picture of botnets’ behavior. By con-
trast, general in-host detection approaches are useful to iden-
tify each bot’s host-wide behavior, but are susceptible to the
host-resident malware if used alone. To address these limi-
tations, we account for both the coordination within a botnet
and the malicious behavior each bot exhibits at the host level,
and propose a C&C protocol-independent detection frame-
work that combines both host- and network-level informa-
tion for making detection decisions. This framework clusters
similarly-behaving hosts into groups based on network-flow
analysis without accessing packets’ payloads, and then cor-
relates the clusters with each individual’s in-host behavior for
validation. The framework is shown to be effective and incurs
low false-alarm rates in detecting various types of botnets.

1 Introduction

Botnets have now become one of the most serious security
threats to Internet services and applications. Abot is a com-
puter compromised by worms, Trojan horses, or backdoors,
under a remote command and control (C&C) infrastructure. A
group of coordinated bots is called abotnet, and can cooper-
atively mount Distributed-Denial-of-Service (DDoS) attacks,
spamming, phishing, identity theft, and other cyber crimes.

To control a botnet, a botmaster needs to use a C&C chan-
nel to issue commands, and coordinate bots’ actions. Tradi-
tional botnets utilize the IRC protocol as their C&C infrastruc-
ture. Attackers set up an IRC server and specify a channel via
which bots connect to, and listen on, in order to receive com-
mands from botmasters. HTTP-based botnets are similar to the
IRC-based ones, but after infection, bots contact a web-based
C&C server and notify the server with their system-identifying
information via HTTP. This server sends back commands via
HTTP responses. Although IRC- and HTTP-based C&C have

been adopted by many past and current botnets, both of them
are vulnerable to a central-point-of-failure. That is, once the
central IRC or HTTP server is identified and removed, the en-
tire botnet will be disabled.

To counter this weakness, attackers have recently shifted to-
ward a new generation of botnets utilizing decentralized C&C
protocols such as P2P. This C&C infrastructure makes detec-
tion and mitigation much harder. A well-known example is
the Storm worm (a.k.a. Nuwar, W32.Peacomm, and Zhelatin)
[4] which spreads via email spam and is known to be the first
malware to seed a botnet in a hybrid P2P fashion. Storm uses
peers as HTTP proxies to relay C&C traffic and hides the bot-
masters well behind the P2P network. Storm was estimated
to run on between 250,000 and 1 million compromised sys-
tems in 2007. The Storm botnet has been used in some crim-
inal activities, primarily for sending spam emails. A recent
spambot Waledac, which came to the wild at the end of 2008,
also spreads via spam emails and forms its botnet using a C&C
structure similar to the Storm botnet. Some researchers pointed
out that Waledac is the new and improved version of the Storm
botnet [18].

To date, most botnet-detection approaches operate at the
network level; a majority of them target traditional IRC- or
HTTP-based botnets [12, 5, 10, 14, 17, 22] by looking for traf-
fic signatures or flow patterns. We are aware of only one ap-
proach [11] designed for protocol- and structure-independent
botnet detection. This approach requires packet-level inspec-
tion and depends solely on network traffic analysis unlikelyto
have a complete view of botnets’ behavior. We thus need the
finer-grained host-by-host behavior inspection to complement
the network analysis. On the other hand, since bots behave
maliciously system-wide, general host-based detection can be
useful. One such way is to match malware signatures, but it is
effective in detecting known bots only. To deal with unknown
bot infiltration, in-host behavior analysis [6, 15, 8, 21, 20] is
needed. However, since some in-host malicious behavior is
not exclusive to bots and in-host mechanisms are vulnerableto
host-resident malware, host-based approaches alone can hardly
provide reliable detection results and thus we need external,
hard-to-compromise (i.e., network-level) information for more
accurate detection of bots’ malicious behavior.

Considering the required coordination within each botnet at
the network level and the malicious behavior each bot exhibits
at the host level, we propose a C&C protocol-independent de-
tection framework that incorporates information collected at
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Figure 1. System architecture

both the host and the network levels. The two sources of infor-
mation complement each other in making detection decisions.
Our framework first identifies suspicious hosts by discovering
similar behaviors among different hosts using network-flow
analysis, and validates the identified suspects to be malicious
or not by scrutinizing their in-host behavior. Since bots within
the same botnet are likely to receive the same input from the
botmaster and take similar actions, whereas benign hosts rarely
demonstrate such correlated behavior, our framework looks
for flows with similar patterns and labels them as triggering
flows. It then associates all subsequent flows with each trig-
gering flow on a host-by-host basis, checking the similarity
among those associated groups. If multiple hosts behave sim-
ilarly in the trigger-action patterns, they are grouped into the
same suspicious cluster as likely to belong to the same botnet.
Whenever a group of hosts are identified as suspicious by the
network analysis, the host-behavior analysis results based on a
history of monitored host behaviors are reported. A correlation
algorithm finally assigns a detection score to each host under
inspection by considering both network and host behaviors.

Our contributions are three-fold. First, to the best of our
knowledge, this is the first framework that combines both
network- and host-level information to detect botnets. The
benefit is that it completes a detection picture by considering
not only the coordination behavior intrinsic to each botnetbut
also each bot’s in-host behavior. For example, it can detect
botnets that appear stealthy in network activities with theas-
sistance of host-level information. Moreover, we extract fea-
tures from NetFlow data to analyze the similarity or dissim-
ilarity of network behavior without inspecting each packet’s
payload, thus preserving privacy. Second, our detection relies
on the invariant properties of botnets’ network and host behav-
iors, which are independent of the underlying C&C protocol.It
can detect both traditional IRC and HTTP, as well as recent hy-
brid P2P botnets. Third, our approach was evaluated by using
several days of real-world NetFlow data from a core router ofa
major campus network containing benign and botnet traces, as
well as multiple benign and botnet data sets collected from vir-
tual machines and regular hosts. Our evaluation results show
that the proposed framework can detect different types of bot-

nets with low false-alarm rates.
The remainder of the paper is organized as follows. Section

2 provides an overview of our system architecture. Section
3 details the proposed detection methodology. Implementation
and evaluation results are presented in Section 4 and 5. Limita-
tions are discussed in Section 6. Section 7 describes the related
work. The paper concludes with Section 8.

2 System Architecture

Figure 1 shows the architecture of our system, which pri-
marily consists of three components: host analyzer, network
analyzer, and correlation engine.

As almost all of current botnets target Windows machines,
our host analyzer is designed and implemented for Windows
platforms. The host analyzer is deployed at each host and con-
tains two modules: in-host monitor and suspicion-level gen-
erator. The former monitors run-time system-wide behavior
taking place in the Registry, file system, and network stack
on a host. The latter generates a suspicion-level by applying
a machine-learning algorithm based on the behavior reported
at each time window and computes the overall suspicion-level
using a moving average algorithm. The host analyzer sends
the average suspicion-level along with a few network feature
statistics to the correlation engine, if required. The network
analyzer also contains two modules: flow analyzer and cluster-
ing.

The flow analyzer takes the flow data from a router as input
and searches for trigger-action botnet-like flow patterns among
different hosts. It then extracts a set of features that can best
represent those associated flows and transforms them into fea-
ture vectors. Those vectors are then fed to the clustering mod-
ule that groups similarly-behaving hosts into the same cluster,
assuming them likely to be part of a botnet. Whenever a sus-
picious group of hosts are identified by the network analyzer,
their host analyzers are required to provide the suspicion-level
and network statistics to the correlation engine, which veri-
fies the validity of the host information by comparing the net-
work statistics collected from the network and those received
from the host. The correlation engine finally assigns a detec-
tion score to each host and produces a detection result.
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3 Methodology

As described earlier, our framework consists of three main
components: host analyzer, network analyzer, and correlation
engine. Each of these components is detailed next.

3.1 Host Analyzer

The host-analyzer is composed of two modules: in-host
monitor and in-host suspicion-level generator.

3.1.1 In-Host Monitor

Each in-host monitor captures system-wide behavior in real
time at different locations. Before deploying monitors, we
need to decide which behavior features to monitor. By study-
ing contemporary bots’ behaviors, we have observed that they
share certain behavior patterns that are different from benign
applications, and that their behaviors can be grouped into 3
categories taking place at the Registry, file system and net-
work stack. For example, when infecting a computer, a bot
first creates an exe or dll file in the system directory. It then
registers an autorun key in the Registry to make itself run au-
tomatically whenever the host system boots up. It also injects
its code into other processes to hide its presence and disables
anti-virus software and the task manager, if necessary. Finally,
it opens one or more ports for further communications and es-
tablishes connections with the botmaster or peers in order to
launch DDoS, spamming activities, etc. Note that a single ac-
tivity mentioned above may not be malicious because it is also
likely to be performed by benign hosts. However, the combi-
nation and aggregation of these activities can reveal that ahost
has been infected, since chances are slim that a benign host
conducts all of these activities. Thus, the in-host suspicion-
level analysis considers the behavior features altogetherwhile
making decisions.

To facilitate a further analysis, each host’s run-time behav-
ior is transformed into a uniform format known as abehavior
vector. Each behavior vector consists of 9 behavior features as
shown in table 1. As mentioned earlier, these features are in-
trinsic to bot-infected hosts. For example, in the file system, a
bot always drops its payload into the system directory because
normal users seldom inspect this directory and the payload is
less noticeable among thousands of system files. Based on this
observation, we closely monitor the create and write accesses
in the system directory. In the Registry, almost all bots will add
a key to automatically run themselves when Windows starts
up, and some inject themselves into other processes or modify
critical Registry keys. We are therefore interested in capturing
these typical Registry activities as well. The number of ports
opened is of interest because bots always open new ports for
communication. The number of suspicious ports provides a
hint of malicious activities such as scanning or exploitingvul-
nerabilities in LSASS service at port 139 and RPC-DCOM at
445. As each host’s network activities can be captured and an-
alyzed at the network level, the in-host monitor should focus
on behaviors that can’t be observed externally, such as file and

Table 1. In-host behavior features
Index Behavior Features

1 DLL or EXE Creation into System Directory
2 Modification of Files in System Directory
3 Creation of AutoRun Key in Registry
4 Creation of Process Injection Key in Registry
5 Modification of Critical Registry Key

(Disabling taskmgr; Overriding antivirus, etc.)
6 Number of Ports Opened
7 Number of Suspicious Ports
8 Number of Unique IPs Contacted
9 Number of SMTP Flows

Registry operations, to complement the network-level infor-
mation. However, since a host is vulnerable to being compro-
mised, we need some information that can be obtained both
internally and externally to validate the integrity of the data
provided by a host. As a result, we have added a few network
features (feature 7 to 9) for in-host monitoring; these features
will be compared against the same features generated by the
network-level analyzer.

3.1.2 In-Host Suspicion-Level Generator

Given each host’s behavior vector, we employ a supervised
learning algorithm, or thesupport vector machine(SVM), to
quantify its suspicion level. SVM learns from benign and ma-
licious host behavior profiles prior to predicting unlabeled be-
havior vectors. Based on the training data, the SVM creates a
hyperplane corresponding to a classification rule. Given a new
behavior vector, the SVM estimates the distance of the sample
from the hyperplane and decides which class it belongs to.

To make the most of this learning model, we calibrate the
distance score to a posterior classification probability indicat-
ing how likely a test behavior vector belongs to a particular
class [16]. The posterior probability is then translated into
the suspicion level in [0, 1] where 0 is benign and 1 is bot-
infected. The higher the suspicion level, the more likely itis
bot-infected.

Since the suspicion level for each host is generated every
time window, a bot may intentionally reduce its suspicion level
by spreading malicious activities into different time windows
or even sleeping for a while. To counter such an evasion at-
tempt, we selectively accumulate the value in each field of the
behavior feature vector. The features worth accumulation are
those typical to bot-infected hosts, such as creating an autorun
key in the Registry or injecting a piece of code into another
process. In addition, we use the Exponential Weighted Moving
Average (EWMA) algorithm to compute the average suspicion
level every time window.

If Yn denotes the suspicion level generated in then-th time
window, andSn−1 is the estimated average suspicion level
at the (n − 1)-th window, the estimated average at then-th
window is given bySn = α ∗ Yn + (1 − α) ∗ Sn−1 where
α is a constant smoothing factor. We defineα as a function
of the time interval between two suspicion-level readings.

α = 1 − e−
tn−tn−1

W where tn − tn−1 is the length of the
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time window of generating suspicion levels andW is the the
period of time over which the suspicion level is averaged. The
moving average can be expressed as

Sn = (1 − e−
tn−tn−1

W ) ∗ Yn + e−
tn−tn−1

W ∗ Sn−1. (1)

Note that there are other weighted moving average algorithms
available, but we use EWMA because it is reasonable to give
a higher weight to recent observations and still not to ignore
older observations.

3.2 Network Analyzer

Considering privacy concerns and computational cost, our
network analyzer, which operates on the network traffic col-
lected from a core router in a major campus network, only
requires analysis of NetFlow data without accessing packets’
payload. NetFlow is a network protocol developed by Cisco
for summarizing IP traffic information [1]. A flow is defined
as a sequence of packets between a source and a destination
within a single session or connection. A NetFlow record con-
tains a variety of flow-level information, such as protocol,
source/destination IP and port, start and end timestamps, num-
ber of packets, and flow size, but has no packet content in-
formation. The network analyzer takes flow records from the
router as input and generates host-clustering results. It consists
of two modules: flow analyzer and clustering.

3.2.1 Flow Analyzer

The flow analyzer processes the flow records of all hosts in
a network to extract trigger-action patterns of interest. Recall
that bots within the same botnet usually receive the same input
from botmasters and take similar actions thereafter. Such co-
ordinated behaviors are essential and invariant to all types of
botnets regardless of their C&C structure.

The first step in flow processing is to filter out irrelevant
flows including internal flows and legitimate flows. Internal
flows represent traffic within a network. Legitimate flows are
those with well-known destination addresses such as Google
and CNN which seldom function as C&C servers. Note that
flow filtering is just an optional operation and not essentialto
our network analyzer. It is only used to reduce the total number
of flow records, and thus, the computational cost.

In the second step, our analyzer searches for trigger-action
patterns at each time window. In the monitored network, it
looks for suspicious flows with the same destination IP and
protocol across all hosts which are presumably receiving com-
mands, and labels them as triggering flows. By studying a col-
lection of contemporary bot samples, we find that bots usually
connect to the same group of C&C servers or peers to receive
commands and execute the commanded actions immediately
upon their receipt from botmasters. For instance, in the case of
Storm bot, an infected host locates the botmaster’s IP address
through its peers from a hard-coded list, receives email lists
and templates from the botmaster, and then sends out spam

Table 2. Flow features

Index Flow Features
1 to 4 Duration Mean, Variance, Skewness and Kurtosis
5 to 8 Totalbytes Mean, Variance, Skewness and Kurtosis
9 to 12 Number of Packets

Mean, Variance, Skewness and Kurtosis
13 Number of TCP Flows
14 Number of UDP Flows
15 Number of SMTP Flows
16 Number of Unique IPs Contacted
17 Number of Suspicious Ports

emails within 5 minutes of infection. On the contrary, benign
hosts rarely visit the same IP with the same protocol after we
filter out the internal and legitimate flows. It is therefore rea-
sonable to associate all of the flows that follow each triggering
flow on a host-by-host basis within a time window. These asso-
ciated flows are considered action flows initiated by triggering
flows. Our analyzer then extracts a set of features from each
associated flow group to transform it into a flow feature vec-
tor for ease of clustering. Note that there is a possibility that
benign hosts visit the same IP with the same protocol. Even
so, since their flow patterns are usually different, they cannot
form clusters among themselves. We will detail this scenario
in Section 5.3.

Since a flow record is only a brief summary of a session or a
connection, the information provided is limited. We make the
most of the information by selecting 17 features to constitute a
flow feature vector which characterizes not only general traf-
fic patterns but also distinction between benign and malicious
hosts at network level. We did so because selecting featureses-
sential to all types of botnets can make clustering more effec-
tive and accurate, even if our clustering algorithm searches for
similarly-behaving hosts and does not requirea priori knowl-
edge of benign and malicious behaviors. Table 2 shows our
selections which are mostly statistical features. Note that fea-
tures 1 through 14 characterize flow patterns only, which are
the sample mean, variance, skewness and kurtosis of flow dura-
tion, total bytes transferred, the number of packets transferred,
and TCP & UDP break-downs. Features 15 through 17, which
are also captured at host level for validation purpose, reveal
bots’ malicious intent to some degree. For example, spambots
usually send a large number of mails using SMTP. Bots also try
to reach a large number of unique IPs by scanning or exploit-
ing vulnerabilities at pre-defined ports. Note that benign hosts
seldom conduct above activities. Therefore, even if a group
of benign hosts visit the same destination themselves or the
same as bot-infected hosts do, and cannot be filtered out by the
trigger-action association, they may be ruled out by our clus-
tering module because their network behaviors are usually dif-
ferent among themselves and different from bot-infected hosts.
Compared to bot-infected hosts, benign hosts are less likely to
take similar actions after visiting the same IP because theyare
not coordinated and commanded to do so.
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3.2.2 Clustering

Using a vector representation, each associated group of flows
becomes a flow feature vector at every time window; this fa-
cilitates the task of clustering. Our goal is to group similarly-
behaving hosts together by computing the closeness of their
feature vectors. In the area of data clustering, two types of
algorithms are available: hierarchical and partitional. We use
the hierarchical clustering because its clustering resultis deter-
ministic and has a structure that is more informative than the
result generated by a partitional algorithm. Using the struc-
tured result, we can employ a technique to find a good cut of
clustering. Specifically, we use the p-value to gauge the de-
gree each clustering is supported by data. We will detail this
clustering in Section 4.2.

3.3 Correlation Engine

As described earlier, whenever a group of hosts is identified
by the clustering module as a cluster, the respective host an-
alyzers are required to report the suspicion levels along with
network statistics to the correlation engine, since the results
generated by flow analysis alone may not be accurate and fur-
ther in-host validation is needed. Given the two sources of in-
formation as input, the correlation engine produces a detection
result for each host.

Based on the consistency check of network statistics, there
are two possibilities. First, the network features sent from a
host may be falsified and thus differ from those observed at the
network level. In such a case, the correlation engine considers
the host compromised and generates the detection result imme-
diately. Another possibility is that the network-level results are
consistent, then we need to consider both the in-host suspicion-
level and the quality of the clustering. The detection result
should be a function of these two parameters. It is straightfor-
ward that the higher the suspicion level the more likely a host
is part of a botnet. To quantify the contribution of the clus-
tering quality, we need a measure that reflects the closeness
of each host to its clustered group. In other words, the more
similar a host’s network behavior is to other hosts in the same
cluster the more likely it is part of a similarly-behaving botnet.
This measure can be the average distance from a specific host
to other hosts.

Now, we have two parameters in the correlation algorithm.
One is the suspicion level denoted bySn, and the other is the
average distance denoted byDn. The final detection score is
denoted byScoren and given by

Scoren = w1 ∗ Sn + w2 ∗ f(Dn). (2)

f is a function that maps each average distanceDn to a value
in [0,1], having the same range as that ofSn. Functionf is
determined by the distance method being used.w1 andw2 are
two weight factors. Since at the beginning we cannot com-
pletely trust the host-level information, we assignw1 a lower
value andw2 a higher value, meaning that our detection relies

more on the network-level analysis, which is especially im-
portant when a host analyzer is compromised. As more con-
sistency check results are obtained, the trust can be built and
w1 increases whilew2 decreases until they become (about) the
same.

4 Implementation

We now describe the implementation of each component
and the associated overhead of our framework.

4.1 Host Analyzer

Our host analyzer consists of two modules: in-host moni-
tor and in-host suspicion-level generator. As described earlier,
in-host monitors capture runtime system-wide behavior at the
Registry, file system, and network stack. The implementation
of the in-host monitors was adapted from the per-process mon-
itors used in our previous work [24]. Every in-host monitor
consists of three sub-monitors. The sub-monitors at the Reg-
istry and file system implemented system-call hooking that in-
tercepts related-system calls, stores the passed parameters and
status information in a kernel buffer, and then copies them to
the user-level application. The two sub-monitors log complete
information of every activity of interest, including timestamp,
request type and path. The sub-monitor at the network stack
was implemented based on WinPcap library and monitors all
incoming and outgoing traffic of the host. It collects informa-
tion including source and destination IPs, ports, and the proto-
col.

Recall that each host’s runtime behavior is transformed to a
behavior vectorfor suspicion-level analysis. A behavior vector
contains 9 features (Table 1), each of which is represented by
a tuple<feature index:value>. For example, the first tuple
below means the host created 2 files in the system directory.

0:2 1:2 2:1 3:1 4:2 5:3 6:40 7:55 8:40 [00:10:51, 01:10:51]
The in-host suspicion-level generator employs a SVM al-

gorithm, which produces a value within the interval [0, 1], in-
dicating how likely a host is bot-infected. The SVM needs to
be trained by benign and malicious behavior vectors in order
to generate a suspicion level for an unlabeled vector. Since
bots’ in-host behaviors are similar to other types of malware
such as network worms, we did not confine our training data
to bot-infected hosts but also included other malware-infected
ones. Benign hosts’ training traces were obtained directlyfrom
malware-free hosts which were in normal use. Note that the
training data were only used for the SVM to create a classifi-
cation rule and completely different from the test set in evalu-
ation. Recall that we need an estimated average of suspicion
level every time window by using EWMA. The in-host gener-
ator produces a suspicion level every 10 minutes and reports
the average to the correlation engine on an hourly basis. Thus,
tn − tn−1 = 10 and W , the total period of time, is set to
1 ∗ 60 = 60 minutes.Sn is given by:

Sn = (1 − e−
1

6 ) ∗ Yn + e−
1

6 ∗ Sn−1.
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4.2 Network Analyzer

The network analyzer contains a flow analyzer and a clus-
tering module both of which were implemented in Perl and R.
The flow analyzer obtains flow data—an average of 3,900,000
flows per hour—from a core router in our campus network.
It filters out internal flows and legitimate flows as described
in Section 3.2.1. After the filtering, it removes a majority of
flows that are not of interest, reducing to an average of 25,000
flows including 2,000 hosts per hour. The flow analyzer then
looks for suspicious flows connecting to the same destination
IP and using the same protocol, and labels them as trigger-
ing flows. All flows from the same host that follow a trigger-
ing flow within the time window are associated with that flow
and are suspected to be “action” flows. The flow analyzer fi-
nally represents each associated group with a 17-dimensional
flow feature vector, the same format as the in-host behavior
feature vector. We observed that the final number of hosts to
be clustered can be reduced from 2000 to less than 100. We
found that bots within the same botnet all connect to the same
IPs. Evidently, IRC- and HTTP-based bots talk to their C&C
servers. In the hybrid-P2P-based case, Storm instances boot-
strap by connecting to the IPs in a hard-coded list, making their
contacted IP lists look alike. Waledac instances demonstrate a
similar behavior.

The clustering module utilizes hierarchical approach to
group flow feature vectors into different clusters. Specifically,
we use thepvclustpackage to calculatep-valuesvia multi-
scale bootstrap resampling for each cluster in hierarchical clus-
tering. The p-value of a cluster is a value in [0, 1], indicating
how strong the cluster is supported by data. The package pro-
vides two types of p-values: AU (Approximately Unbiased)
p-value and BP (Bootstrap Probability) value. AU p-value is
computed by multi-scale bootstrap resampling, a better ap-
proximation to the unbiased p-value than the BP value com-
puted by normal bootstrap resampling [3]. For a cluster with
AU p-value greater than 0.95, the hypothesis that “the cluster
does not exist” is rejected with a significant level (equal toor
less than 0.05). We thus accept a cluster if its AU p-value is
greater than 0.95. The distance measure used in the hierarchi-
cal clustering is the “correlation” method. We do not use other
distance measures because the correlation values in our data
set are mostly positive. A study [7] has shown that in this sce-
nario, the “correlation” method performs best. This methodis
detailed next.

4.3 Correlation Engine

The correlation engine takes the clustering results and the
respective host-based information as input and outputs each
host’s detection result. Recall that the suspicion level and clus-
tering quality are two parameters in Eq. (2). The clustering
quality is represented by the average distance from one host
to other hosts in the same cluster calculated by “correlation”
method. Assume that a cluster consists ofn hosts each of
which is represented by a 17-dimensional flow feature vector,

forming a17×n matrixX = {xij}. Thei-th row corresponds
to the i-th feature of these hosts and thej-th column corre-
sponds to a flow feature vector. The distance between hostu
and hostv is given by

Duv = 1 −

∑

17

k=1
(xku − xu)(xkv − xv)

√

∑

17

k=1
(xku − xu)2

√

∑

17

k=1
(xkv − xv)2

.

wherexu = 1

17

∑

17

k=1
xku andxv = 1

17

∑

17

k=1
xkv. As the

correlation is always in the range of [-1,1],Duv belongs to
[0,2] and so does the average distanceDn. Recall that the
smaller the average distance, the more similarly-behavinga
host to other hosts in the cluster and the more likely it is part
of a botnet. To reflect this concept in Eq. (2), we selected a
decreasing functionf(Dn) = 1− Dn

2
such that the range off

is also [0,1]. Thus

Scoren = w1 ∗ Sn + w2 ∗ (1 −
Dn

2
).

The two weight factorsw1 andw2 are set to 0.1 and 0.9 at
the beginning to reflect the lack of confidence in host-level in-
formation. Every time the network feature consistency check
passes,w1 increases by 0.05 andw2 decreases by 0.05 until
they reach 0.5. The final detectionScoren is a value in [0,1].

4.4 Overhead

One may want to know the overhead incurred by the three
components of our framework. To measure the overhead of
the host analyzer, we used a common Windows benchmark
PassMark Software, PerformanceTest [2]. Our host analyzer
was implemented on a machine with AMD Athlon 64 3200+
Processor 2.0GHz, 1GB of memory, 80GB of disk, and Win-
dows XP operating system. We ran the benchmark program
for CPU, memory and disk, respectively, 5 rounds each. The
average overhead for CPU is 3.1%, memory 3.5% and disk
4.7%. The in-host suspicion-level generator can determineone
host’s suspicion level in about 10µs given the behavior vec-
tor. Since the SVM is pre-trained (i.e., the support vectors
are pre-loaded), the training process will not incur any run-
time overhead to the host. Our network analyzer and correla-
tion engine were implemented in Linux kernel 2.6.18 on an HP
ServerBlade with 2 Dual-Core AMD Opteron(tm) Processors
2.2 GHz, 4 GB of RAM, and 260 GB of disk space. The net-
work analyzer can parse 1-hour flow data and cluster similarly-
behaving hosts within 2 minutes on average. To assign the final
suspicion score and produce a detection result, the correlation
engine spends 1 second per host on average.

5 Evaluation

5.1 Data Collection

We have evaluated the performance of our framework in de-
tecting 3 types of botnets with real-world traces—IRC-based,
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Figure 2. Cluster dendrogram with AU/BP values (%) (Left graph: clustering of bots and benign hosts;
Right graph: clustering of benign hosts)

HTTP-based, and hybrid-P2P. We set up VMWare virtual ma-
chines running Windows XP, connected via a virtual network
to monitor and collect traces. While running these botnets,
we also ran a variety of benign applications at the same time
to make these machines behave similarly to real compro-
mised hosts. Both the benign and malicious behaviors at the
Registry, file system, and network stack were captured. Ta-
ble 3 shows the details of these botnet traces, each contain-
ing 4 bot instances. The modified source code of IRC-rbot
and IRC-spybot were used in the virtual network to generate
their respective traces. We obtained the binaries of HTTP-
based BobaxA and BobaxB, and hybrid-P2P-based Storm and
Waledac from public web sites. The IRC- and HTTP-based
botnets’ network-level traces were captured within a controlled
environment and transformed from packet data to flow data in
our experiment. Since Storm and Waledac botnets were still
active in the wild at the time when we collected data, we care-
fully configured the firewall setting and connected virtual ma-
chines to the external network so that the bots actually joined
the real Storm and Waledac botnets, and our campus router
captured all of the bots’ traffic.

We also collected 5-day NetFlow data from a campus net-
work core router which covered the flows generated by Storm
and Waledac instances and all other hosts in the network. Each
day’s data contained an average of 95,000,000 flows. We were
not able to capture host-level data on every single machine in
the campus network except those under our control. But our
campus network administrator confirmed that all hosts in the
5-day flow data except for those running Storm and Waledac
were benign, meaning that there was no botnet traffic present
in other hosts during that period. Thus, it is valid to assume
that in our evaluation, these hosts are benign at both host- and
network-level (other types of malware might run on those hosts
but they are not our detection targets). The 5-day data con-
sists of three sets: (1) 2-day data that contains 48-hour Storm
traces; (2) 1-day data including Waledac; and (3) other 2-day
data. We divided the third data into two subsets, 1-day each.
Note that overlaying malicious traffic on clean traffic for eval-

Table 3. Botnet traces
Trace Duration Number of Bots

IRC-rbot 24h 4
IRC-spybot 32m 4

HTTP-BobaxA 4h 4
HTTP-BobaxB 20h 4

Storm 48h 4
Waledac 24h 4

uation has commonly been used in malware detection litera-
ture [12, 11, 23]. Although our botnet traces already contained
benign traffic, the amount of such traffic was limited and we
wanted to add more to make it more realistic . Thus, we over-
laid the botnet network traces except Storm and Waledac, one
at a time, on data set (3), two traces on the first day, and two
on the second day. For example, the IRC-rbot included 4 bot
instances, so we randomly selected 4 hosts from the clean 1-
day traffic and replaced the bots’ IPs with the selected IPs. We
treated Storm traces in the same way and intentionally overlaid
the 1-day Waledac traffic on HTTP-intensive benign hosts, the
purpose of which will be described later. In addition, hosts
running P2P clients are important for the evaluation of our
detection framework as one may wonder if they will be mis-
classified as bots. Since NetFlow data could not reliably tell
which host had such applicatioin, we ran P2P applications such
as eMule and BitTorrent on hosts under our control and col-
lected their host- and network-level traces. Specifically,we
obtained 4 sets of hour-long traces for hosts running eMule
and 3 sets for those running BitTorrent. While conducting P2P
activities, those hosts also ran other regular network-relevant
applications, such as web-browsing, ssh and email-checking,
similar to what benign hosts usually do. In what follows, we
will first report the detection accuracy of our combined ap-
proach, and then show the benefit of combining both host- and
network-level information.

5.2 Detection Results

We now report the detection results on 6 botnets. The per-
formance of our detection framework was measured by false-
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Figure 3. The change of detection scores for
two benign hosts

Table 4. False alarm rates
Trace Avg FP Avg FP Avg FN Avg FN Duration

hosts Hosts
IRC-rbot 3.208 0.0016 0.125 0.0313 24h

IRC-spybot 2.833 0.0014 0 0 24h
HTTP-BobaxA 1.000 0.0005 0 0 24h
HTTP-BobaxB 1.083 0.0005 0 0 24h

Storm 2.563 0.0013 0 0 48h
Waledac 0.9167 0.0005 0 0 24h

alarm rates, i.e., false-positive (FP) and false-negative(FN)
rates. A false-positive is defined as a benign host mistakenly
classified as bot-infected, and a false-negative means thatan
actual bot-infected host fails to be detected.

Recall that the detection score is in the interval [0,1]. The
detection threshold was set to 0.5 in our evaluation to strike a
balance between FP and FN rates, and this parameter is config-
urable. Note that there is always a tradeoff between FP and FN
rates. A lower threshold can be set if FNs are a concern, while
a higher threshold may be required if FPs are less desirable.

Table 4 shows our evaluation results where the average
number of FP or FN hosts is calculated during the entire pe-
riod of evaluation. The average FP or FN rate is the number of
FP hosts divided by the total number of benign hosts (which
was around 2,000), or the number of FN hosts divided by the
total number of bot-infected hosts. Our framework was found
to be able to identify almost all bot-infected hosts. There was
only one bot undetected, generating a false-negative. We veri-
fied that this bot did not have any C&C or malicious network
activity and thus failed to form a suspicious cluster with other
bots.

Our framework also performs well in terms of false-
positives. The highest false-positive rate was no greater than
0.16%. It turned out that almost all false-positive hosts ap-
peared during the first few hours of the traces due to the val-
ues of “untuned” weight factorsw1 andw2. As mentioned in
Section 4.3, we setw1 (the weight of suspicion level) to 0.1
andw2 (the weight of clustering quality) to 0.9 at the begin-
ning to reflect lack of confidence in the host-level information.
During the first few hours our framework relied more on the
network-level analysis, resulting in detection inaccuracy when

a group of benign hosts demonstrated similar network behav-
iors among themselves (e.g. they ran the same network ap-
plications) or behaved similarly to bot-infected hosts. Asthe
host-level information was verified to be trustable,w1 was in-
creased andw2 was decreased so that host-level information
gradually had a higher weight and was able to correct the de-
tection results. Figure 3 shows the change of the detection
scores on two benign hosts which have similar network traffic
patterns and form a cluster by themselves. At the beginning,
both of them have greater than 0.5 detection scores due to the
high weight assigned to the clustering quality parameter, lead-
ing to false-positives. As time goes by, a host’s suspicion-level
parameter receives a more balanced weight. Since their suspi-
cion levels are always low (0 to 0.1), their final detection scores
decrease below the 0.5 threshold and no longer incur false-
positives. Admittedly, since we were not able to obtain host-
level data from all machines in the network, the false-positive
rate might be underestimated. But we have tried our best to run
a variety of benign applications on the hosts under our control
and used their traces in our evaluation. They did not cause
many false-positive alarms as shown before. We believe that
network- and host-level information complement each other,
and hence combining them while making a detection decision
is the key to reducing false alarm rates.

5.3 Evaluation with Network Analyzer

Using the network analyzer that performs flow analysis and
clustering, we found some interesting results. As pointed out
in Section 4.2, the trigger-action association done by the flow
analyzer can significantly narrow the number of hosts for clus-
tering because benign hosts rarely visit the same IP with the
same protocol after traffic filtering, while bot-infected hosts
connect to the same group of C&C servers or peers. Even if
benign hosts cannot be filtered out by trigger-action associa-
tion, since they visit the same destination or behave the same
as bot-infected hosts do, they are likely to be discarded by the
clustering module, i.e., their flow patterns are usually differ-
ent among themselves and different from bot-infected hosts.
This fact makes the clustering module effective in reducingthe
number of benign hosts appearing in the final clusters.

Figure 2 shows the hierarchical clustering dendrogram of
scenarios in which a few benign hosts were ruled out not by the
trigger-action association but by the clustering module. The
graph on the left is the scenario when bot-infected and benign
hosts happened to visit the same destination and their flow fea-
ture vectors were sent to the clustering module for grouping.
There are 6 hosts to be clustered, numbered from 1 to 6. 1
to 4 are bot-infected hosts, and 5 to 6 are benign hosts. Re-
call that we use hierarchical clustering with AU p-values in-
dicating how strong the clustering is supported by data. Nor-
mally, clusters with p-values greater than 95% are considered
reasonable clusters. The AU p-values and reasonable clusters
are highlighted by rectangles in the figure. In the left graph,
4 bot-infected hosts are clustered together with 100% AU val-
ues, meaning that their flow feature vectors are quite similar.
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The two benign hosts in the graph cannot form a cluster with
them because of the dissimilarity in flow patterns between the
benign and bot-infected hosts. The graph on the right repre-
sents the scenario when a few benign hosts visited the same
destination. 4 hosts, numbered from 1 to 4, are all benign.
The 4 benign hosts cannot make any cluster among themselves
(low AU p-values), since their flow feature vectors differ sig-
nificantly and cannot be grouped together.

We also collected additional data from several benign hosts
running P2P applications to see if they would generate false-
positives. Four hosts each ran an eMule client, and three other
hosts each ran a BitTorrent client namedutorrent. Besides
P2P file sharing, these hosts also made other network accesses
during the period of trace collection including web-browsing,
ssh, and email-checking. This is realistic because normally
a P2P user does multi-tasking during file-sharing, rather than
solely waiting for the file-sharing to complete. We used the
network analyzer to perform flow analysis and clustering on
these P2P data sets. It turned out that the four eMule hosts
did visit the same IPs (servers) so that they were not ruled out
by the trigger-action association and needed to be clustered.
The same thing happened to the three utorrent clients. How-
ever, during the clustering, those P2P hosts could not make
any cluster. We found that the AU p-values generated for the
four eMule hosts were no greater than 85% and for the three
utorrent ones no greater than 90%, both of which were below
the 95% bar. That is, these benign hosts did not behave simi-
larly at the network level even though they ran the same P2P
client. One reason for this is that P2P file-sharing is a user-
specific activity. Users have different interests and download
or upload different files so that the flow features, such as total
bytes, number of packets and number of TCP or UDP flows
are hardly similar. The other reason is that network activities
other than P2P also add some dissimilarity to the flow patterns
among hosts running P2P applications. Although in our ex-
periment, P2P hosts were ruled out by the clustering module,
we still inspected their host-level behaviors to make sure that
even if the network analyzer failed to distinguish them, thehost
analyzer could tell they were benign. These results were in
line with our expectation: the suspicion-levels for those hosts
were always much less than 0.5, because there was little mali-
cious behavior demonstrated at the host level. In this scenario,
since the correlation engine considers both types of informa-
tion, it will generate correct detection results with the help of
suspicion-levels.

In summary, our network analyzer—the flow analyzer along
with the clustering module—is effective in forming suspicious
clusters. But it may fail in some situations where the host an-
alyzer needs to come in and help. We described above a hy-
pothetical scenario for the benign P2P case, but will present a
real case study next.

5.4 Evaluation with Host Analyzer: A Case
Study of Waledac

Waledac worm spreads as an attachment to a spam email or
through a link to a malicious website. It came into the wild at
the end of 2008 and still remains active (as of Dec 2009). Af-
ter infecting a host, Waledac searches for email addresses from
the host and sends the information to a set of hard-coded IP ad-
dresses. It uses the HTTP protocol for C&C traffic forwarding
and the botmasters are well hidden behind a P2P network [9].
We downloaded samples by following Waledac spam’s links to
its malicious domains in Feb 2009.

As mentioned earlier, we ran Waledac instances on virtual
machines, and they joined the actual Waledac botnet for 24
hours. We intentionally overlaid their network traces on benign
hosts with heavy HTTP traffic. We did this because Waledac
appeared stealthy in its network activities, and we wanted to
evaluate how well our framework can perform in the situations
where the network analyzer cannot distinguish between benign
and bot-infected hosts. We observed that these Waledac in-
stances did not send any spam emails in the 24-hour period.
The only activity was several HTTP sessions every hour for
C&C such as transferring locally-collected information. This
type of malicious traffic is easy to blend into benign HTTP
flows but hard to isolate.

Over a few time windows, our network analyzer mistakenly
clustered one benign host into the same group as 4 Waledac
bots. One reason lies in the way we mixed benign and bot’s
traffic for bot-infected hosts (we did this intentionally).It
turned out that the HTTP-intensive benign host and the 4 bot-
infected hosts had visited the same destination IP using the
HTTP protocol. As shown before, only visiting the same IP
is not enough for forming a cluster. To be grouped into the
same cluster, the hosts should have similar traffic patterns. For
most bot-infected hosts, although their flows are mixed with
benign flows, their malicious flow patterns may still be con-
spicuous because of their distinct and aggressive spam sending
and scanning activities. In other words, their network-level
behaviors can be distinguished from benign hosts’ during the
clustering. However, in the Waledac’s case, the stealthy C&C
traffic was hidden and diluted into the benign HTTP traffic,
and the clustering module failed to differentiate bot-infected
hosts’ network activities from the benign hosts’, which is the
other reason for the incorrect clustering. Nevertheless, our
framework still correctly generated the detection resultsfor
Waledac bot instances, thanks to the information obtained by
the host analyzer. As the Waledac exhibited malicious behav-
ior at the host level, such as creating an autorun Registry key,
and dropping or modifying files in the system directory, each
bot-infected host’s suspicion level was around 0.88 on average.
On the other hand, the benign host’s suspicion level was close
to 0. The final detectionScoren for bot-infected hosts was as
high as 0.85, while that for benign hosts was 0.40, showing a
significant difference. Without the host analyzer, benign hosts
are likely to be misclassified as bot-infected ones in the pres-
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ence of bots that are stealthy at the network level. In other
words, relying solely on a network-level analysis cannot cre-
ate a complete picture: the inspection of in-host behavior by
the host analyzer is critical in reducing false-positives.

6 Discussions

In this section, we discuss several limitations of our frame-
work and their potential solutions.

One possible limitation of our approach is its scalability
since the approach requires runtime host-level analyzers.Our
design is intended for use in enterprise networks where a se-
curity framework can be enforced easily on all hosts. In large-
scale networks, if host analyzers cannot be installed on every
host, we may use available host analyzers to infer the suspicion
levels at those without the analyzers if they form the same sus-
picious cluster by network-level analysis. Delving more into
this issue is part of our future work.

Since our network analyzer looks for trigger-action patterns
among hosts, bots may delay their coordinated actions by wait-
ing for random period of time. To counter this evasion attempt,
we may lengthen our time window of analysis, such as a day
as opposed to a few minutes or hours. We can also randomly
select a time window that cannot be figured out by the attack-
ers. As the goal of a botnet is to perform malicious actions, if
each bot does not act maliciously for a very long time, it will
be ineffective, causing few problems. Bots may also attemptto
randomize their traffic patterns such as injecting random num-
ber of packets in each flow or they can mimic flow patterns
of benign hosts. However, these techniques may not help bots
much to evade our detection because our framework also con-
siders host-level behavior while making detection decisions.

Since our framework is deployed in a monitored network,
hosts within the network are geographically close to one an-
other. It is convenient for bots to connect to, or bootstrap from,
the same set of nearby IPs to receive commands and take ac-
tions in a coordinated manner. To intentionally evade our net-
work analyzer, bots may use different C&C servers or contact
a different set of IPs. If there are a large number of bots in
our network, our approach may group them into several sus-
picious clusters. However, if there is only one or a few bots
(without contacting the same set of IPs), our detection frame-
work should obtain information from the host analyzers more
frequently. In that case, host analyzers can send the suspicion-
level information to the correlation engine before any suspi-
cious clusters are formed. If the suspicion level is high enough,
the detection result can be generated even without any suspi-
cious cluster.

Another possible evasion of our framework is to compro-
mise the host analyzers and send falsified information to the
correlation engine. This can happen only if the bot sits be-
low our host monitoring level and is able to modify or subvert
the system-wide information the in-host monitor receives.Our
current solution is to gather a few network statistics from the
host to compare against those observed by the network ana-
lyzer. It is possible that a bot keeps the network statisticsin-

tact and modifies the suspicion-level information only to mis-
lead the correlation engine. Even if this happens, there is still
a high possibility of capturing the bot, because, as described in
Section 4.3, the weight factor assigned to the host-level infor-
mation by the correlation engine is much lower than the weight
factor assigned to the network-level information (i.e., cluster-
ing quality) in the beginning. It means that with a high weight
factor on network information, as long as the compromised
host exhibits correlated malicious network-level activities and
forms a suspicious cluster with other hosts, it will be detected
with high probability despite the falsified suspicion-level sent
from the host analyzer. To further counter this attack, we may
also use secure hardware or secure VMM to safeguard the OS
as well as our monitors in each host.

While there is a possibility that our framework could be
evaded, the evaluation results demonstrated that our system
performed well in detecting state-of-the-art botnets withmini-
mal impact on benign hosts. Therefore, our system raises the
bar against botnets.

7 Related Work

Numerous approaches have been proposed for detection of
botnets. Most of them target centralized botnets, i.e., IRC-
based and HTTP-based. Guet al. [12] used network-based
anomaly detection to identify centralized botnet C&C chan-
nels based on their spatial-temporal correlation. Binkleyet al.
[5] combined an IRC mesh detection component with a TCP
scan detection heuristic. Rishi [10] is a botnet detection system
that relies on IRC nickname matching. Karasaridiset al. [14]
proposed detection of botnet controllers by flow aggregation
and feature analysis. Livadaset al. [17, 22] utilized super-
vised machine learning to classify network packets in orderto
identify the C&C traffic of IRC-based botnets. As hybrid P2P
botnets emerged, some researchers studied the Storm botnet
and proposed approaches tailored to P2P-based botnet detec-
tion. Holz et al. [13] measured the size of the current Storm
net by infiltrating through a crawler, and proposed mitigation
strategies that introduce controlled peers to join the network
to either separate or pollute the content of the Storm network.
Porraset al. [19] tried to detect the Storm bot by constructing
Storm’s dialogue lifecycle model first and then identifyingthe
traffic that matches this model, a notion similar to that in [12].
Compared to the above approaches, our framework is a general
detection scheme that is not constrained by any C&C protocol
and does not require the learning of C&C profiles prior to de-
tection.

To the best of our knowledge, only BotMiner [11] is de-
signed for protocol-and structure-independent botnet detec-
tion. It clusters similar communication and malicious traffic,
and performs cross-plane correlation to identify the hoststhat
share both patterns. TAMD [23] aimed to detect infected hosts
within a network by finding those that share common and un-
usual network communications. It employs external destina-
tion, payload and OS platform aggregation functions to group
hosts. TAMD and BotMiner rely solely on network-level anal-
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ysis, whereas our framework combines both network- and
host-level information to complete a detection picture. More-
over, both TAMD and BotMiner require packet-level inspec-
tion in the traffic analysis, while our network analyzer only
looks into Netflow data avoiding privacy issues and large com-
putational costs. Another difference worth noting is that our
network analyzer looks for trigger-action patterns beforeform-
ing clusters, which was not used by previous work. This tech-
nique significantly reduces the number of benign hosts for
clustering, making the network-level analysis more efficient.

As for host-based solutions, there are many general detec-
tion approaches [6, 15, 8, 21, 20]. They either use signature
matching or behavior analysis by system or API call sequence
modeling. Unless a virtual machine monitor is integrated into
those techniques, they can be disabled or compromised if there
is malware sitting below the detection framework. Our ap-
proach does not rely on one single source of information; it
incorporates both network- and host-level behavior. Also,our
host analyzer sends a few network metrics to the correlation
engine for validation, which adds an additional layer of secu-
rity.

8 Conclusion

Considering the coordination of bots within a botnet and
each bot’s malicious behavior at the host level, we proposed
a C&C protocol-independent botnet detection framework that
combines both host- and network-level information. Our net-
work flow analyzer searches for trigger-action traffic patterns
among different hosts without accessing the packets’ payloads,
and clusters similarly-behaving hosts into suspicious groups.
Our host analyzer then obtains suspicion-level information
along with a few network statistics on a host-by-host basis for
verification. Finally, our correlation engine generates a detec-
tion result for each host by taking into account both suspicion-
level and clustering results. Our experimental evaluationbased
on real-world data has shown the following results. The net-
work analyzer can be effective in forming suspicious clusters
of aggressive bots but may fail to separate benign hosts from
bot-infected hosts if the latter are stealthy at the networklevel.
When the stealthy bots are present, it is the host analyzer that
provides correct detection results by generating distinguishing
suspicion levels. By using combined host- and network-level
information, our framework is shown to be able to detect differ-
ent types of botnets with low false-positive and false-negative
rates.
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