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Abstract been adopted by many past and current botnets, both of them
are vulnerable to a central-point-of-failure. That is, ernle

Bots are coordinated by a command and control (C&C) in- central IRC or HTTP server is identified and removed, the en-
frastructure to launch such attacks as Distributed-Deuél tire botnet will be disabled.

Service (DDoS), spamming, identity theft and phishing, all  1¢ counter this weakness, attackers have recently shifted t
of which seriously threaten the Internet services and USers ;4.4 a new generation of botnets utilizing decentralizedXC&

Most contemporary botnet-detection approaches have beengiocols such as P2P. This C&C infrastructure makes detec-
designed to function at the network level, requiring thelana 54 and mitigation much harder. A well-known example is

ysis of packets’ payloads. However, analyzing packets: pay the Storm worm (a.k.a. Nuwar, W32.Peacomm, and Zhelatin)
loads raises privacy concemns and incurs large computaion - 4] which spreads via email spam and is known to be the first
overheads. Moreover, network traffic analysis alone can sel ayare to seed a botnet in a hybrid P2P fashion. Storm uses

dom provide a complete picture of botnets’ behavior. By con- neers a5 HTTP proxies to relay C&C traffic and hides the bot-
trast, general in-host detection approaches are usefullémi  qters well behind the P2P network. Storm was estimated

tify each bot's host-wide behavior, but are susceptibleh® t 1 1,1 on between 250,000 and 1 million compromised sys-
host-resident malware if used alone. To address these liMi-ioms in 2007. The Storm botnet has been used in some crim-
tations, we account for both the coordination within a batne 5 activities, primarily for sending spam emails. A reten
and the malicious behavior eaqh bot exhibits at the. host,leve spambot Waledac, which came to the wild at the end of 2008,
and propose a C&C protocol-independent detection frame- 5154 spreads via spam emails and forms its botnet using a C&C
work that combines both host- and network-level informa- gi,ctyre similar to the Storm botnet. Some researchensgubi
tion for making detection decisions. This framework clisste ¢ that Waledac is the new and improved version of the Storm
similarly-behaving hosts into groups based on network-flow 5inet [18].

analysis without accessing packets’ payloads, and then cor - 1, gate most botnet-detection approaches operate at the
relates the clusters with each individual’s in-host beloawor network level; a majority of them target traditional IRC- or

validation. The frameyvork is s_hown to be effective and iscur L r1p_pased botnets [12, 5, 10, 14, 17, 22] by looking for-traf
low false-alarm rates in detecting various types of botnets fic signatures or flow patterns. We are aware of only one ap-
proach [11] designed for protocol- and structure-independ
botnet detection. This approach requires packet-levekicis
tion and depends solely on network traffic analysis unlikely

Botnets have now become one of the most serious securityhave a complete view of botnets’ behavior. We thus need the
threats to Internet services and applicationsbakis a com-  finer-grained host-by-host behavior inspection to comgieim
puter compromised by worms, Trojan horses, or backdoorsthe network analysis. On the other hand, since bots behave
under a remote command and control (C&C) infrastructure. A maliciously system-wide, general host-based detectiorbea
group of coordinated bots is callecbatnet and can cooper-  useful. One such way is to match malware signatures, but it is
atively mount Distributed-Denial-of-Service (DDoS) afta, effective in detecting known bots only. To deal with unknown
spamming, phishing, identity theft, and other cyber crimes  bot infiltration, in-host behavior analysis [6, 15, 8, 21] 20

To control a botnet, a botmaster needs to use a C&C channeeded. However, since some in-host malicious behavior is
nel to issue commands, and coordinate bots’ actions. Tradi-hot exclusive to bots and in-host mechanisms are vulnetable
tional botnets utilize the IRC protocol as their C&C infrast- host-resident malware, host-based approaches aloneiciy ha
ture. Attackers set up an IRC server and specify a channel vigprovide reliable detection results and thus we need externa
which bots connect to, and listen on, in order to receive com-hard-to-compromise (i.e., network-level) information fimore
mands from botmasters. HTTP-based botnets are similaeto th accurate detection of bots’ malicious behavior.
IRC-based ones, but after infection, bots contact a webéas Considering the required coordination within each bothet a
C&C server and notify the server with their system-ideritiéy the network level and the malicious behavior each bot etgibi
information via HTTP. This server sends back commands viaat the host level, we propose a C&C protocol-independent de-
HTTP responses. Although IRC- and HTTP-based C&C havetection framework that incorporates information collect

1 Introduction
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both the host and the network levels. The two sources ofinfor nets with low false-alarm rates.
mation complement each other in making detection decisions  The remainder of the paper is organized as follows. Section
Our framework first identifies suspicious hosts by discow@ri 2 provides an overview of our system architecture. Section
similar behaviors among different hosts using network-flow 3 details the proposed detection methodology. Implemientat
analysis, and validates the identified suspects to be malici  and evaluation results are presented in Section 4 and 5td-imi
or not by scrutinizing their in-host behavior. Since botthwi  tions are discussed in Section 6. Section 7 describes tredel
the same botnet are likely to receive the same input from thework. The paper concludes with Section 8.
botmaster and take similar actions, whereas benign hasiy ra
demonstrate such correlated behavior, our framework looks2 System Architecture
for flows with similar patterns and labels them as triggering
flows. It then associates all subsequent flows with each trig-  Figure 1 shows the architecture of our system, which pri-
gering flow on a host-by-host basis, checking the similarity marily consists of three components: host analyzer, nétwor
among those associated groups. If multiple hosts behave simanalyzer, and correlation engine.
ilarly in the trigger-action patterns, they are groupeda itite As almost all of current botnets target Windows machines,
same suspicious cluster as likely to belong to the same botne our host analyzer is designed and implemented for Windows
Whenever a group of hosts are identified as suspicious by theplatforms. The host analyzer is deployed at each host and con
network analysis, the host-behavior analysis resultsthase tains two modules: in-host monitor and suspicion-level-gen
history of monitored host behaviors are reported. A cotimha  erator. The former monitors run-time system-wide behavior
algorithm finally assigns a detection score to each hostrundetaking place in the Registry, file system, and network stack
inspection by considering both network and host behaviors. on a host. The latter generates a suspicion-level by agplyin
_ . a machine-learning algorithm based on the behavior regoorte
Our contributions are three-fold. First, to the best of our ¢ 4ch time window and computes the overall suspicion-leve
knowledge, this is the f!rst fram.ework that combines both using a moving average algorithm. The host analyzer sends
network- and host-level information to detect botnets. The ihe ayerage suspicion-level along with a few network featur
benefit is that it completes a detection picture by consideri  giatistics to the correlation engine, if required. The roztw

not only the coordination behavior intrinsic to each botnét 5 51y7er also contains two modules: flow analyzer and aluste
also each bot’s in-host behavior. For example, it can detecting

botnets that appear stealthy in network activities withake
sistance of host-level information. Moreover, we extrae-f
tures from NetFlow data to analyze the similarity or dissim-
ilarity of network behavior without inspecting each packet
payload, thus preserving privacy. Second, our detectilesre
on the invariant properties of botnets’ network and hostlveh
iors, which are independent of the underlying C&C prototol.
can detect both traditional IRC and HTTP, as well as recent hy
brid P2P botnets. Third, our approach was evaluated by usin
several days of real-world NetFlow data from a core router of
major campus network containing benign and botnet trases, a
well as multiple benign and botnet data sets collected frism v
tual machines and regular hosts. Our evaluation results sho
that the proposed framework can detect different types tf bo

The flow analyzer takes the flow data from a router as input
and searches for trigger-action botnet-like flow pattemerg
different hosts. It then extracts a set of features that st b
represent those associated flows and transforms them anto fe
ture vectors. Those vectors are then fed to the clusterirdy mo
ule that groups similarly-behaving hosts into the sametetus
assuming them likely to be part of a botnet. Whenever a sus-

icious group of hosts are identified by the network analyzer
heir host analyzers are required to provide the suspilEeal
and network statistics to the correlation engine, which-ver
fies the validity of the host information by comparing the-net
work statistics collected from the network and those resziv
from the host. The correlation engine finally assigns a detec
tion score to each host and produces a detection result.



3 Methodology

Table 1. In-host behavior features

As described earlier, our framework consists of three main Index Behavior Features
. . 1 DLL or EXE Creation into System Directory
components: host analyzer, networ_k analyzer, and coioalat > Modification of Files in System Directory
engine. Each of these components is detailed next. 3 Creation of AutoRun Key in Registry
4 Creation of Process Injection Key in Registrly
3.1 Host Analyzer 5 Modification of Critical Registry Key
(Disabling taskmgr; Overriding antivirus, etc|)
The host-analyzer is composed of two modules: in-host 6 Number of Ports Opened
monitor and in-host suspicion-level generator. 7 Number of Suspicious Ports
8 Number of Unigue IPs Contacted
9 Number of SMTP Flows

3.1.1 In-Host Monitor _ : )
Registry operations, to complement the network-levelrinfo

Each in-host monitor captures system-wide behavior in realmation. However, since a host is vulnerable to being compro-
time at different locations. Before deploying monitors, we mised, we need some information that can be obtained both
need to decide which behavior features to monitor. By study-internally and externally to validate the integrity of thatal
ing contemporary bots’ behaviors, we have observed thgt the provided by a host. As a result, we have added a few network
share certain behavior patterns that are different fromgoen  features (feature 7 to 9) for in-host monitoring; thesefees

applications, and that their behaviors can be grouped into 3will be compared against the same features generated by the
categories taking place at the Registry, file system and netnetwork-level analyzer.

work stack. For example, when infecting a computer, a bot
first creates an exe or dll file in the system directory. It then
registers an autorun key in the Registry to make itself run au 3.1.2 In-Host Suspicion-L evel Gener ator
tomatically whenever the host system boots up. It also isjec
its code into other processes to hide its presence and dssabl
anti-virus software and the task manager, if necessargllizin

it opens one or more ports for further communications and es-
tablishes connections with the botmaster or peers in oaler t
launch DDoS, spamming activities, etc. Note that a single ac
tivity mentioned above may not be malicious because it i3 als

likely to be performed by benign hosts. However, the combi- : . )
nation and aggregation of these activities can reveal thasa from the hyperplane and decides which class it belongs to.

has been infected, since chances are slim that a benign host. To make the most of th!s 'eaf”'r.‘g m_odel, we C".’Il.'br.""te the
conducts all of these activities. Thus, the in-host suspici istance score to a posterior classification probabilitidat-

level analysis considers the behavior features altogethée ing how likely a test be_havior vector k_)elongs to a particylar
making decisions class [16]. The posterior probability is then translatetb in

To facilitate a further analysis, each host’s run-time beha Fhe suspicion Ieyel in [0, 1] Whgre 0 is benign and .1 IS t_:)ot-
ior is transformed into a uniform format known a®ehavior g\fe(_:t(]::-d. T(;le higher the suspicion level, the more likelis it
ot-infected.

vector. Each behavior vector consists of 9 behavior features as X . i
shown in table 1. As mentioned earlier, these features are in . Since the suspicion level for each host is generated every
time window, a bot may intentionally reduce its suspiciorele

trinsic to bot-infected hosts. For example, in the file systa b di lici vities into diff . )
bot always drops its payload into the system directory beeau PY SPreading malicious activities into different time wawas
or even sleeping for a while. To counter such an evasion at-

normal users seldom inspect this directory and the paykad i 4 . ,
less noticeable among thousands of system files. Basedson thi€MPt, we selectively accumulate the value in each fieldef th
behavior feature vector. The features worth accumulatien a

observation, we closely monitor the create and write agsess ; ) .
in the system directory. In the Registry, aimost all botéadd ~ th0Se typical to bot-infected hosts, such as creating raot
key in the Registry or injecting a piece of code into another

a key to automatically run themselves when Windows starts o . . .
up, and some inject themselves into other processes or ynodif Process. In addition, we use the Exponential Weighted Mpvin

critical Registry keys. We are therefore interested ingapg ~ ~verage (EWMA,) algorithm to compute the average suspicion

these typical Registry activities as well. The number oftpor €Vel every time window. _ _
opened is of interest because bots always open new ports for If Y» denotes the suspicion level generated invtH time
communication. The number of suspicious ports provides aWindow, ands,,; is the estimated average suspicion level
hint of malicious activities such as scanning or exploitmgs &t the @ — 1)-th window, the estimated average at thh
nerabilities in LSASS service at port 139 and RPC-DCOM at Window is given byS,, = a * Y, + (1 — @) * S,,—, where
445, As each host's network activities can be captured and an 1S @ constant smoothing factor. We defimeas a function
alyzed at the network level, the in-host monitor should focu of the time interval between two suspicion-level readings.

tn —

tnf .
on behaviors that can’'t be observed externally, suchasfilea o = 1 — e w : wheret, — t,_1 is the length of the

Given each host’'s behavior vector, we employ a supervised
learning algorithm, or theupport vector machingSVM), to
guantify its suspicion level. SVM learns from benign and ma-
licious host behavior profiles prior to predicting unlatuehe-
havior vectors. Based on the training data, the SVM creates a
hyperplane corresponding to a classification rule. Giveeva n
behavior vector, the SVM estimates the distance of the sampl




time window of generating suspicion levels aidis the the
period of time over which the suspicion level is averagede Th
moving average can be expressed as

Table 2. Flow features

tn—tn_1 tn—tn_1

Sp=0—-e W H)xY,+e W (1)

* Sn—l-

Note that there are other weighted moving average algosithm

available, but we use EWMA because it is reasonable to giv

a higher weight to recent observations and still not to ignor

older observations.

3.2 Network Analyzer

Index Flow Features
1to4 | Duration Mean, Variance, Skewness and Kurtosis
5to 8 | Totalbytes Mean, Variance, Skewness and Kurtosis
9to 12 Number of Packets
Mean, Variance, Skewness and Kurtosis

13 Number of TCP Flows

14 Number of UDP Flows

15 Number of SMTP Flows

16 Number of Unique IPs Contacted

17 Number of Suspicious Ports

Considering privacy concerns and computational cost, our
network analyzer, which operates on the network traffic col-
lected from a core router in a major campus network, only
requires analysis of NetFlow data without accessing patket
payload. NetFlow is a network protocol developed by Cisco
for summarizing IP traffic information [1]. A flow is defined

emails within 5 minutes of infection. On the contrary, benig
hosts rarely visit the same IP with the same protocol after we
filter out the internal and legitimate flows. It is therefoear
sonable to associate all of the flows that follow each trigger
flow on a host-by-host basis within a time window. These asso-

as a sequence of packets between a source and a destinati§it€d flows are considered action flows initiated by triguger

within a single session or connection. A NetFlow record con-
tains a variety of flow-level information, such as protocol,
source/destination IP and port, start and end timestanups; n

ber of packets, and flow size, but has no packet content in-

formation. The network analyzer takes flow records from the
router as input and generates host-clustering resulten#ists
of two modules: flow analyzer and clustering.

3.21 Flow Analyzer

The flow analyzer processes the flow records of all hosts in
a network to extract trigger-action patterns of interestc&l
that bots within the same botnet usually receive the same inp
from botmasters and take similar actions thereafter. Soeh ¢
ordinated behaviors are essential and invariant to allsyge
botnets regardless of their C&C structure.

The first step in flow processing is to filter out irrelevant
flows including internal flows and legitimate flows. Internal
flows represent traffic within a network. Legitimate flows are

flows. Our analyzer then extracts a set of features from each
associated flow group to transform it into a flow feature vec-
tor for ease of clustering. Note that there is a possibilittt
benign hosts visit the same IP with the same protocol. Even
so, since their flow patterns are usually different, theyncan
form clusters among themselves. We will detail this scenari
in Section 5.3.

Since a flow record is only a brief summary of a session or a
connection, the information provided is limited. We make th
most of the information by selecting 17 features to contitu
flow feature vector which characterizes not only generdl tra
fic patterns but also distinction between benign and malgio
hosts at network level. We did so because selecting featsres
sential to all types of botnets can make clustering moreceffe
tive and accurate, even if our clustering algorithm seas ¢be
similarly-behaving hosts and does not requrpriori knowl-
edge of benign and malicious behaviors. Table 2 shows our
selections which are mostly statistical features. Noté fee
tures 1 through 14 characterize flow patterns only, which are

those with well-known destination addresses such as Googlgéhe sample mean, variance, skewness and kurtosis of flow dura

and CNN which seldom function as C&C servers. Note that
flow filtering is just an optional operation and not esserttal
our network analyzer. Itis only used to reduce the total neimb
of flow records, and thus, the computational cost.

In the second step, our analyzer searches for triggerractio
patterns at each time window. In the monitored network, it
looks for suspicious flows with the same destination IP and
protocol across all hosts which are presumably receivimg-co
mands, and labels them as triggering flows. By studying a col-
lection of contemporary bot samples, we find that bots uguall

tion, total bytes transferred, the number of packets teaned,

and TCP & UDP break-downs. Features 15 through 17, which
are also captured at host level for validation purpose,aleve
bots’ malicious intent to some degree. For example, spasnbot
usually send a large number of mails using SMTP. Bots also try
to reach a large number of unique IPs by scanning or exploit-
ing vulnerabilities at pre-defined ports. Note that benigsth
seldom conduct above activities. Therefore, even if a group
of benign hosts visit the same destination themselves or the
same as bot-infected hosts do, and cannot be filtered ougby th

connect to the same group of C&C servers or peers to receivdrigger-action association, they may be ruled out by ous-clu
commands and execute the commanded actions immediatelyering module because their network behaviors are usuiily d

upon their receipt from botmasters. For instance, in the oas
Storm bot, an infected host locates the botmaster’s IP addre
through its peers from a hard-coded list, receives emad lis

ferent among themselves and different from bot-infectesddho
Compared to bot-infected hosts, benign hosts are lesy likel
take similar actions after visiting the same IP because dhey

and templates from the botmaster, and then sends out spamot coordinated and commanded to do so.



3.2.2 Clustering

more on the network-level analysis, which is especially im-
portant when a host analyzer is compromised. As more con-

Using a vector representation, each associated group af flow gistency check results are obtained, the trust can be mdlt a

becomes a flow feature vector at every time window; this fa-
cilitates the task of clustering. Our goal is to group simyla

wy increases whilev, decreases until they become (about) the
same.

behaving hosts together by computing the closeness of their .
feature vectors. In the area of data clustering, two types of4 | mplementation

algorithms are available: hierarchical and partitionak Wge
the hierarchical clustering because its clustering résditer-
ministic and has a structure that is more informative than th
result generated by a partitional algorithm. Using thecstru

tured result, we can employ a technique to find a good cut of

We now describe the implementation of each component
and the associated overhead of our framework.

4.1 Host Analyzer

clustering. Specifically, we use the p-value to gauge the de-

gree each clustering is supported by data. We will detasl thi
clustering in Section 4.2.

3.3 Correlation Engine

Our host analyzer consists of two modules: in-host moni-
tor and in-host suspicion-level generator. As describelieea
in-host monitors capture runtime system-wide behaviohat t
Registry, file system, and network stack. The implememnatio
of the in-host monitors was adapted from the per-process mon

As described earlier, whenever a group of hosts is identified!tors Used in our previous work [24]. Every in-host monitor
by the clustering module as a cluster, the respective hest anCONSists of three sub-monitors. The sub-monitors at the Reg

alyzers are required to report the suspicion levels alor wi
network statistics to the correlation engine, since theltes

istry and file system implemented system-call hooking that i
tercepts related-system calls, stores the passed pararaste

generated by flow analysis alone may not be accurate and furStatus information in a kernel buffer, and then copies them t

ther in-host validation is needed. Given the two sourceg-of i
formation as input, the correlation engine produces a tietec
result for each host.

Based on the consistency check of network statistics, there

are two possibilities. First, the network features seninfr@
host may be falsified and thus differ from those observedaat th
network level. In such a case, the correlation engine censid
the host compromised and generates the detection resutimm
diately. Another possibility is that the network-levelués are
consistent, then we need to consider both the in-host sospic
level and the quality of the clustering. The detection resul
should be a function of these two parameters. It is straightf
ward that the higher the suspicion level the more likely & hos
is part of a botnet. To quantify the contribution of the clus-

the user-level application. The two sub-monitors log caetel
information of every activity of interest, including tintesnp,
request type and path. The sub-monitor at the network stack
was implemented based on WinPcap library and monitors all
incoming and outgoing traffic of the host. It collects inf@am
tion including source and destination IPs, ports, and to&opr

col.

Recall that each host’s runtime behavior is transformed to a
behavior vectofor suspicion-level analysis. A behavior vector
contains 9 features (Table 1), each of which is represented b
a tuple <feature index:value. For example, the first tuple
below means the host created 2 files in the system directory.

0:21:22:13:14:25:36:407:558:40[00:10:51, 01:10:51]

The in-host suspicion-level generator employs a SVM al-

tering quality, we need a measure that reflects the closenesgorithm, which produces a value within the interval [0, 1, i
of each host to its clustered group. In other words, the moredicating how likely a host is bot-infected. The SVM needs to

similar a host’s network behavior is to other hosts in theesam
cluster the more likely it is part of a similarly-behavingtbet.

be trained by benign and malicious behavior vectors in order
to generate a suspicion level for an unlabeled vector. Since

This measure can be the average distance from a specific hotots’ in-host behaviors are similar to other types of maévar

to other hosts.

Now, we have two parameters in the correlation algorithm.
One is the suspicion level denoted By, and the other is the
average distance denoted By,. The final detection score is
denoted byScore,, and given by

Score, = wy * Sy, +wsy * f(Dy,). (2)

f is a function that maps each average distaRgeo a value
in [0,1], having the same range as that%f. Functionf is
determined by the distance method being usedandw- are

two weight factors. Since at the beginning we cannot com-

pletely trust the host-level information, we assign a lower
value andw, a higher value, meaning that our detection relies

such as network worms, we did not confine our training data
to bot-infected hosts but also included other malwareeirefe
ones. Benign hosts’ training traces were obtained diréaiin
malware-free hosts which were in normal use. Note that the
training data were only used for the SVM to create a classifi-
cation rule and completely different from the test set ineva
ation. Recall that we need an estimated average of suspicion
level every time window by using EWMA. The in-host gener-
ator produces a suspicion level every 10 minutes and reports
the average to the correlation engine on an hourly basiss,Thu
t, —tn,—1 = 10 and W, the total period of time, is set to

1 % 60 = 60 minutes.S,, is given by:

Sp = (1 —e*%) *Yn—l-e*% * Sn_1.



4.2 Network Analyzer forming al7 x n matrix X = {z;;}. Thei-th row corresponds
to the i-th feature of these hosts and ti¢h column corre-
The network analyzer contains a flow analyzer and a clus-sponds to a flow feature vector. The distance betweendost
tering module both of which were implemented in Perl and R. and host is given by
The flow analyzer obtains flow data—an average of 3,900,000

flows per ho_ur—from a core route_zr_ in our campus net\/\_lork. Do—1 211;1(50ku — T (T — Tp)
It filters out internal flows and legitimate flows as described wo = 47 T — e —
in Section 3.2.1. After the filtering, it removes a majoritly o \/Zk:l(xku —Tu) \/Zk:l(zkv —Ty)

flows that are not of interest, reducing to an average of 25,00
flows including 2,000 hosts per hour. The flow analyzer then wherez, = = 5,", zy, andz, = & >}7 @1,. As the
looks for suspicious flows connecting to the same destinatio correlation is always in the range of [-1,1],,, belongs to
IP and using the same protocol, and labels them as trigger{0,2] and so does the average distarigg. Recall that the
ing flows. All flows from the same host that follow a trigger- smaller the average distance, the more similarly-behasing
ing flow within the time window are associated with that flow host to other hosts in the cluster and the more likely it ig par
and are suspected to be “action” flows. The flow analyzer fi- of a botnet. To reflect this concept in Eq. (2), we selected a
nally represents each associated group with a 17-dimegision gecreasing functioffi(D,,) = 1 — % such that the range gf
flow feature vector, the same format as the in-host behavioris 4150 [0,1]. Thus
feature vector. We observed that the final number of hosts to
be clustered can be reduced from 2000 to less than 100. We D,
found that bots within the same botnet all connect to the same Scoren = wi * Sp +wp * (1= =7).
IPs. Evidently, IRC- and HTTP-based bots talk to their C&C
servers. In the hybrid-P2P-based case, Storm instancés booThe two weight factorsy; andw, are set to 0.1 and 0.9 at
strap by connecting to the IPs in a hard-coded list, makiegth  the beginning to reflect the lack of confidence in host-lewel i
contacted IP lists look alike. Waledac instances dematesira  formation. Every time the network feature consistency &hec
similar behavior. passesw; increases by 0.05 ands decreases by 0.05 until
The clustering module utilizes hierarchical approach to they reach 0.5. The final detectidfaore,, is a value in [0,1].
group flow feature vectors into different clusters. _Spealf}_c 4.4 Overhead
we use thepvclustpackage to calculatp-valuesvia multi- )
scale bootstrap resampling for each cluster in hierartbligs- One may want to know the overhead incurred by the three
tering. The p-value of a cluster is a value in [0, 1], indiogti ~ Components of our framework. To measure the overhead of
how strong the cluster is supported by data. The package prothe host analyzer, we used a common Windows benchmark
vides two types of p-values: AU (Approximately Unbiased) PassMark Software, PerformanceTest [2]. Our host analyzer
p-value and BP (Bootstrap Probability) value. AU p-value is Was implemented on a machine with AMD Athlon 64 3200+
computed by multi-scale bootstrap resampling, a better ap-Processor 2.0GHz, 1GB of memory, 80GB of disk, and Win-
proximation to the unbiased p-value than the BP value com-dows XP operating system. We ran the benchmark program
puted by normal bootstrap resampling [3]. For a cluster with for CPU, memory and disk, respectively, 5 rounds each. The
AU p-value greater than 0.95, the hypothesis that “the efust average overhead for CPU is 3.1%, memory 3.5% and disk
does not exist” is rejected with a significant level (equabto ~ 4.7%. The in-host suspicion-level generator can deteromee
less than 0.05). We thus accept a cluster if its AU p-value is host's suspicion level in about 1@ given the behavior vec-
greater than 0.95. The distance measure used in the higrarchtor. Since the SVM is pre-trained (i.e., the support vectors
cal clustering is the “correlation” method. We do not useeoth ~ are pre-loaded), the training process will not incur any-run
distance measures because the correlation values in aur datime overhead to the host. Our network analyzer and correla-
set are mostly positive. A study [7] has shown that in this sce tion engine were implemented in Linux kernel 2.6.18 on an HP
nario, the “correlation” method performs best. This metleod ~ ServerBlade with 2 Dual-Core AMD Opteron(tm) Processors

detailed next. 2.2 GHz, 4 GB of RAM, and 260 GB of disk space. The net-
. . work analyzer can parse 1-hour flow data and cluster simpilarl
4.3 Correlation Engine behaving hosts within 2 minutes on average. To assign thie fina

suspicion score and produce a detection result, the ctorela
The correlation engine takes the clustering results and theengine spends 1 second per host on average.

respective host-based information as input and outputs eac
host’s detection result. Recall that the suspicion levdl@ns-
tering quality are two parameters in Eq. (2). The clustering
quality is represented by the average distance from one hosg.1 Data Collection
to other hosts in the same cluster calculated by “correiéatio
method. Assume that a cluster consistsnohosts each of We have evaluated the performance of our framework in de-
which is represented by a 17-dimensional flow feature vector tecting 3 types of botnets with real-world traces—IRC-lolse

Evaluation
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Figure 2. Cluster dendrogram with AU/BP values (%) (Left graph: clustering of bots and benign hosts;
Right graph: clustering of benign hosts)

Table 3. Botnet traces

HTTP-based, and hybrid-P2P. We set up VMWare virtual ma- Trace Duration | Number of Bots
chines running Windows XP, connected via a virtual network IRC-rbot 24h 4
to monitor and collect traces. While running these botnets, IRC-spybot 32m 4
we also ran a variety of benign applications at the same time :Ef,:ggggig 240hh i
to make these machines behave similarly to real compro- Storm 28h Z
mised hosts. Both the benign and malicious behaviors at the Waledac 24h 4

Registry, file system, and network stack were captured. Ta-

ble 3 shows the details of these botnet traces, each containg 4iion has commonly been used in malware detection litera-

ing 4 bot instances. The rr_lodified_source code of IRC-rbot ture [12, 11, 23]. Although our botnet traces already coredi
and IRC-spybot were used in the virtual network to generatebenign traffic, the amount of such traffic was limited and we
their respective traces. We obtained the binaries of HTTP-

anted to add more to make it more realistic . Thus, we over-
based BobaxA and BobaxB, and hybrid-P2P-based Storm an(%{;-d ’
the botnet network traces except Storm and Waledac, one
Waledac from public web sites. The IRC- and HTTP-based I W xcep

b ) K level 4 within a azfed at a time, on data set (3), two traces on the first day, and two
otnets’ network-leveltraces were captured within a ._on the second day. For example, the IRC-rbot included 4 bot

environment and transformed from packet data to flow data in; ctances. so we randomly selected 4 hosts from the clean 1-
our experiment. Since Storm and Waledac botnets were StIIIday traffic and replaced the bots’ IPs with the selected IRs. W
active in the wild at the time when we collected data, we care-.aated Storm traces in the same way and intentionally aier]

ful!y configured the firewall setting and connected V"t“‘”'”!'”_" the 1-day Waledac traffic on HTTP-intensive benign hosts, th
chines to the external network so that the bots actuallyepin Furpose of which will be described later. In addition, hosts

the real Storm and Waledac botnets, and our campus routef,\nning p2p clients are important for the evaluation of our

captured all of the bots’ traffic. detection framework as one may wonder if they will be mis-
We also collected 5-day NetFlow data from a campus net-classified as bots. Since NetFlow data could not reliably tel
work core router which covered the flows generated by Stormwhich host had such applicatioin, we ran P2P applicatioos su
and Waledac instances and all other hosts in the networlh Eac 35 eMule and BitTorrent on hosts under our control and col-
day’s data contained an average of 95,000,000 flows. We wergected their host- and network-level traces. Specificallg,
not able to capture host-level data on every single machine i optained 4 sets of hour-long traces for hosts running eMule
the campus network except those under our control. But ourand 3 sets for those running BitTorrent. While conducting P2
campus network administrator confirmed that all hosts in the activities, those hosts also ran other regu|ar networkvesit
5-day flow data except for those running Storm and Waledacapplications, such as web-browsing, ssh and email-chgckin
were benign, meaning that there was no botnet traffic presentimilar to what benign hosts usually do. In what follows, we
in other hosts during that period. Thus, it is valid to assume wil| first report the detection accuracy of our combined ap-

that in our evaluation, these hosts are benign at both hodt-a proach, and then show the benefit of combining both host- and
network-level (other types of malware might run on thosd$0s network-level information.

but they are not our detection targets). The 5-day data con-

sists of three sets: (1) 2-day data that contains 48-hountSto 5.2 Detection Results

traces; (2) 1-day data including Waledac; and (3) othery-da

data. We divided the third data into two subsets, 1-day each. We now report the detection results on 6 botnets. The per-
Note that overlaying malicious traffic on clean traffic foaév ~ formance of our detection framework was measured by false-



09 a group of benign hosts demonstrated similar network behav-
08 ¢ Benign Host 1 iors among themselves (e.g. they ran the same network ap-
w07 Benign Host 2 plications) or behaved similarly to bot-infected hosts. tAs
§ 06 = ===Threshold host-level information was verified to be trustahle, was in-
L 05 e N e mcmcmcccc e m—m————e creased andy, was decreased so that host-level information
-% 04 gradually had a higher weight and was able to correct the de-
Bo3 tection results. Figure 3 shows the change of the detection
Sz scores on two benign hosts which have similar network traffic
01 patterns and form a cluster by themselves. At the beginning,
0 S : both of them have greater than 0.5 detection scores due to the
12345678 9101112131415161718192021222324 high weight assigned to the clustering quality parameteq-
Time (hour) ing to false—posiltives. As time goes by, a host’s §uspidm!§el
parameter receives a more balanced weight. Since their susp
Figure 3. The change of detection scores for cion levels are always low (0 to 0.1), their final detectioorss
two benign hosts decrease below the 0.5 threshold and no longer incur false-
Table 4. False alarm rates positives. Admittedly, since we were not able to obtain host
Trace AVgFP | AvgFP | AvygFN | Avg FN | Duration level data from all machines in the network, the false-posit
PN 202532 _— E'(:)Lszt; - " rate might be underestimatgd. But we have tried our bestto ru
IRC-spybot 5833 1 00014 5 5 >ah a variety of be_mgn app!lca'uons on th(_a hosts unde_r our cbntr
HTTP-BobaxA | 1.000 | 0.0005 0 0 >4h and used their traces in our evaluation. They did not cause
HTTP-BobaxB | 1.083 | 0.0005 0 0 24h many false-positive alarms as shown before. We believe that
Storm 2.563 | 0.0013 0 0 48h network- and host-level information complement each gther
Waledac | 0.9167 ] 0.0005] O 0 24h and hence combining them while making a detection decision

, . is the key to reducing false alarm rates.
alarm rates, i.e., false-positive (FP) and false-neggf¢)

rates. A false-positive is defined as a benign host mistgkenl 5.3 Evaluation with Network Analyzer
classified as bot-infected, and a false-negative meansathat
actual bot-infected host fails to be detected. Using the network analyzer that performs flow analysis and
Recall that the detection score is in the interval [0,1]. The clustering, we found some interesting results. As pointgd o
detection threshold was set to 0.5 in our evaluation toest@ik  in Section 4.2, the trigger-action association done by the fl
balance between FP and FN rates, and this parameter is configanalyzer can significantly narrow the number of hosts fos-clu
urable. Note that there is always a tradeoff between FP and FNering because benign hosts rarely visit the same IP with the
rates. A lower threshold can be set if FNs are a concern, whilesame protocol after traffic filtering, while bot-infectedst®
a higher threshold may be required if FPs are less desirable. connect to the same group of C&C servers or peers. Even if
benign hosts cannot be filtered out by trigger-action associ
Table 4 shows our evaluation results where the averagetion, since they visit the same destination or behave theesam
number of FP or FN hosts is calculated during the entire pe-as bot-infected hosts do, they are likely to be discardedhby t
riod of evaluation. The average FP or FN rate is the number ofclustering module, i.e., their flow patterns are usuallyedif
FP hosts divided by the total number of benign hosts (which ent among themselves and different from bot-infected hosts
was around 2,000), or the number of FN hosts divided by the This fact makes the clustering module effective in redudirey
total number of bot-infected hosts. Our framework was found number of benign hosts appearing in the final clusters.
to be able to identify almost all bot-infected hosts. Thessw Figure 2 shows the hierarchical clustering dendrogram of
only one bot undetected, generating a false-negative. e ve scenarios in which a few benign hosts were ruled out not by the
fied that this bot did not have any C&C or malicious network trigger-action association but by the clustering modulée T
activity and thus failed to form a suspicious cluster withest ~ graph on the left is the scenario when bot-infected and Imenig
bots. hosts happened to visit the same destination and their flaw fe
Our framework also performs well in terms of false- ture vectors were sent to the clustering module for grouping
positives. The highest false-positive rate was no grehtert  There are 6 hosts to be clustered, numbered from 1 t0 6. 1
0.16%. It turned out that almost all false-positive hosts ap to 4 are bot-infected hosts, and 5 to 6 are benign hosts. Re-
peared during the first few hours of the traces due to the val-call that we use hierarchical clustering with AU p-values in
ues of “untuned” weight factors,; andw,. As mentioned in  dicating how strong the clustering is supported by data.- Nor
Section 4.3, we sab; (the weight of suspicion level) to 0.1 mally, clusters with p-values greater than 95% are consitler
andw, (the weight of clustering quality) to 0.9 at the begin- reasonable clusters. The AU p-values and reasonable rduste
ning to reflect lack of confidence in the host-level inforroati are highlighted by rectangles in the figure. In the left graph
During the first few hours our framework relied more on the 4 bot-infected hosts are clustered together with 100% AU val
network-level analysis, resulting in detection inaccynaben ues, meaning that their flow feature vectors are quite simila



The two benign hosts in the graph cannot form a cluster with 5.4 Evaluation with Host Analyzer: A Case
them because of the dissimilarity in flow patterns between th Study of Waledac
benign and bot-infected hosts. The graph on the right repre-

sents the scenario when a few benign hosts visited the same Waledac worm soreads as an attachment to a soam email or
destination. 4 hosts, numbered from 1 to 4, are all benign. rough alink to a rgalicious website. It came into?he wild at
The 4 benign hosts cannot make any cluster among themselvet%e er?d of 2008 and still remains active (as of Dec 2009). Af-
(low AU p-values), since their flow feature vectors diffeg-si . ; . )
nificantly and cannot be grouped together. ter infecting a host, Wal_edac sez_:\rches for email addressms f

the host and sends the information to a set of hard-codedIP ad

dresses. It uses the HTTP protocol for C&C traffic forwarding

and the botmasters are well hidden behind a P2P network [9].

We also collected additional data from several benign hostswe downloaded samples by following Waledac spam'’s links to

running P2P applications to see if they would generate false its malicious domains in Feb 2009.

positives. Four hosts each ran an eMule client, and thre&oth  As mentioned earlier, we ran Waledac instances on virtual
hosts each ran a BitTorrent client nametrrent Besides  machines, and they joined the actual Waledac botnet for 24
P2P file sharing, these hosts also made other network ascess@ours. We intentionally overlaid their network traces oniga
during the period of trace collection including web-browgsi  hosts with heavy HTTP traffic. We did this because Waledac
ssh, and email-checking. This is realistic because noymall appeared stealthy in its network activities, and we wanted t
a P2P user does multi-tasking during file-sharing, rathenth  evaluate how well our framework can perform in the situation
solely waiting for the file-sharing to complete. We used the \yhere the network analyzer cannot distinguish betweergeni
network analyzer to perform flow analysis and clustering on and bot-infected hosts. We observed that these Waledac in-
these P2P data sets. It turned out that the four eMule hoststances did not send any spam emails in the 24-hour period.
did visit the same IPs (servers) so that they were not ruléd ou The only activity was several HTTP sessions every hour for
by the trigger-action association and needed to be clustere cgC such as transferring locally-collected informatiorhid

The same thing happened to the three utorrent clients. How-type of malicious traffic is easy to blend into benign HTTP
ever, during the clustering, those P2P hosts could not makeiows but hard to isolate.

any cluster. We found that the AU p-values generated forthe 5 ar 5 few time windows, our network analyzer mistakenly

four eMule hosts were no greater than 85% and for the three, ;stered one benign host into the same group as 4 Waledac
utorrent ones no greater than 90%, both of which were belowp i« One reason lies in the way we mixed benign and bot's
the 95% bar. That is, these benign hosts did not behave simiy atic for bot-infected hosts (we did this intentionally)t

larly at the network level even though they ran the same P2Py,rneq out that the HTTP-intensive benign host and the 4 bot-

client. One reason for this is that P2P file-sharing is a User-iytected hosts had visited the same destination IP using the
specific activity. Us_ers have different interests and doadl  11p protocol. As shown before, only visiting the same IP
or upload different files so that the flow features, such & tot ;5 ot enough for forming a cluster. To be grouped into the
bytes, number of packets and number of TCP or UDP flows g5 me cluster, the hosts should have similar traffic pattéios

are hardly similar. The other reason is that network a@sit gt pot-infected hosts, although their flows are mixed with
other than P2P also add some dissimilarity to the flow pattern benign flows, their malicious flow patterns may still be con-

among hosts running P2P applications. Although in our ex-
periment, P2P hosts were ruled out by the clustering module

we still inspected their host-level behaviors to make sbiéé t e aviors can be distinguished from benign hosts’ durieg th
even if the network analyzer failed to distinguish them ftbst clustering. However, in the Waledac's case, the stealthfC.C&
analyzer could tell they were benign. These results were i stiic was hidden and diluted into the benign HTTP traffic,

line with our expectation: the suspicion-levels for thossts 5, the clustering module failed to differentiate bot-utésl
were always much less than 0.5, because there was little malip, ysts’ network activities from the benign hosts’, whichtig t

cious behavior demonstrated at the host level. In this segna other reason for the incorrect clustering. Nevertheless, o

since the correlation engine considers both types of id6rm g5 mework still correctly generated the detection restdts
tion, it will generate correct detection results with théphef  \\jedac bot instances, thanks to the information obtairyed b
suspicion-levels. the host analyzer. As the Waledac exhibited malicious behav
ior at the host level, such as creating an autorun Registry ke
and dropping or modifying files in the system directory, each
In summary, our network analyzer—the flow analyzer along bot-infected host's suspicion level was around 0.88 onaayer
with the clustering module—is effective in forming suspics On the other hand, the benign host’s suspicion level wagclos
clusters. But it may fail in some situations where the host an to 0. The final detectioScore,, for bot-infected hosts was as
alyzer needs to come in and help. We described above a hyhigh as 0.85, while that for benign hosts was 0.40, showing a
pothetical scenario for the benign P2P case, but will ptesen  significant difference. Without the host analyzer, benigsth
real case study next. are likely to be misclassified as bot-infected ones in thepre

spicuous because of their distinct and aggressive spanmgend
qand scanning activities. In other words, their networlelev



ence of bots that are stealthy at the network level. In othertact and modifies the suspicion-level information only t@mi
words, relying solely on a network-level analysis cannetcr lead the correlation engine. Even if this happens, thertllis s
ate a complete picture: the inspection of in-host behawor b a high possibility of capturing the bot, because, as desdtiitp

the host analyzer is critical in reducing false-positives. Section 4.3, the weight factor assigned to the host-leel-in
) ) mation by the correlation engine is much lower than the weigh
6 Discussions factor assigned to the network-level information (i.eustér-

ing quality) in the beginning. It means that with a high weigh
factor on network information, as long as the compromised
X e o .. host exhibits correlated malicious network-level acisgtand

_ One possible limitation of our approach is its scalability ¢5:ms g suspicious cluster with other hosts, it will be deec
since the approach requires runtime host-level analyfaus. ity high probability despite the falsified suspicion-lesent
design is intended for use in enterprise networks where a Segrom the host analyzer. To further counter this attack, wg ma

curity framework can be enforced easily on all hosts. Indarg 5154 yse secure hardware or secure VMM to safeguard the OS
scale networks, if host analyzers cannot be installed oryeve ¢ \well as our monitors in each host.

host, we may use available host analyzers to infer the siospic
levels at those without the analyzers if they form the sanse su
picious cluster by network-level analysis. Delving mortoin
this issue is part of our future work.

Since our network analyzer looks for trigger-action paiser
among hosts, bots may delay their coordinated actions ky wai
ing for random period of time. To counter this evasionattemp 7 Reated Work
we may lengthen our time window of analysis, such as a day
as opposed to a few minutes or hours. We can also randomly Numerous approaches have been proposed for detection of
select a time window that cannot be figured out by the attack-botnets. Most of them target centralized botnets, i.e.,-IRC
ers. As the goal of a botnet is to perform malicious actiohs, i based and HTTP-based. @u al. [12] used network-based
each bot does not act maliciously for a very long time, it will anomaly detection to identify centralized botnet C&C chan-
be ineffective, causing few problems. Bots may also attémpt nels based on their spatial-temporal correlation. Binleesl.
randomize their traffic patterns such as injecting random-iu  [5] combined an IRC mesh detection component with a TCP
ber of packets in each flow or they can mimic flow patterns scan detection heuristic. Rishi [10] is a botnet detectymtiesn
of benign hosts. However, these techniques may not help botshat relies on IRC nickname matching. Karasaritisl. [14]
much to evade our detection because our framework also conproposed detection of botnet controllers by flow aggregatio
siders host-level behavior while making detection deaisio and feature analysis. Livada&s al. [17, 22] utilized super-

Since our framework is deployed in a monitored network, vised machine learning to classify network packets in otder
hosts within the network are geographically close to one an-identify the C&C traffic of IRC-based botnets. As hybrid P2P
other. Itis convenient for bots to connect to, or bootstrapt, botnets emerged, some researchers studied the Storm botnet
the same set of nearby IPs to receive commands and take a@nd proposed approaches tailored to P2P-based botnet detec
tions in a coordinated manner. To intentionally evade ottt ne tion. Holz et al. [13] measured the size of the current Storm
work analyzer, bots may use different C&C servers or contactnet by infiltrating through a crawler, and proposed mitigati
a different set of IPs. If there are a large number of bots in strategies that introduce controlled peers to join the ogtw
our network, our approach may group them into several sus-to either separate or pollute the content of the Storm nétwor
picious clusters. However, if there is only one or a few bots Porraset al.[19] tried to detect the Storm bot by constructing
(without contacting the same set of IPs), our detection &am Storm’s dialogue lifecycle model first and then identifyihg
work should obtain information from the host analyzers more traffic that matches this model, a notion similar to that ig][1
frequently. In that case, host analyzers can send the soispic  Compared to the above approaches, our framework is a general
level information to the correlation engine before any susp detection scheme that is not constrained by any C&C protocol
cious clusters are formed. If the suspicion level is highugyin and does not require the learning of C&C profiles prior to de-
the detection result can be generated even without any-suspitection.
cious cluster. To the best of our knowledge, only BotMiner [11] is de-

Another possible evasion of our framework is to compro- signed for protocol-and structure-independent botne¢alet
mise the host analyzers and send falsified information to thetion. It clusters similar communication and malicious fiaf
correlation engine. This can happen only if the bot sits be- and performs cross-plane correlation to identify the htsds
low our host monitoring level and is able to modify or subvert share both patterns. TAMD [23] aimed to detect infected$ost
the system-wide information the in-host monitor receiv@sr within a network by finding those that share common and un-
current solution is to gather a few network statistics fréia t  usual network communications. It employs external destina
host to compare against those observed by the network anation, payload and OS platform aggregation functions to grou
lyzer. It is possible that a bot keeps the network statisties  hosts. TAMD and BotMiner rely solely on network-level anal-

In this section, we discuss several limitations of our frame
work and their potential solutions.

While there is a possibility that our framework could be
evaded, the evaluation results demonstrated that ournsyste
performed well in detecting state-of-the-art botnets witini-
mal impact on benign hosts. Therefore, our system raises the
bar against botnets.
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