
On Detection of Storm Botnets

Yuanyuan Zeng, Kang G. Shin
Real-Time Computing Laboratory, The University of Michigan, Ann Arbor, MI 48109-2121

{gracez, kgshin}@umich.edu

Abstract

A botnet, which is a group of compromised and remotely-
controlled computers (also called bots), poses a serious
threat to the Internet. The commonly-used command and
control (C&C) channel for a botnet is used by a central
server, such as IRC or HTTP. Recently, Storm botnet, a P2P-
based botnet with a decentralized C&C channel has ap-
peared in the wild. In this paper, we propose a distributed
approach to detection of Storm botnets at the network level.
Our approach is composed of two stages. First, we identify
P2P and SMTP packets from each host’s traffic. Second, we
use a machine learning technique to differentiate Storm from
benign P2P traffic based on several distinguishing traffic at-
tributes. Both of the two stages only require packet header
information without analyzing payloads. Our evaluation has
shown the detection strategy to be effective with low false
alarm rates.

1 Introduction

A bot is a computer robot installed via worms, Trojan
horses, or backdoors, under a remote command and control
(C&C) infrastructure. A group of bots is called abotnet,
which can be used for DDoS attacks, mail spamming, etc.
Botnets are now considered to be a major means of bank
fraud, identity theft, and other cyber crimes.

Botnets commonly use the IRC control infrastructure.
The attacker sets up an IRC server and specifies a channel
which the bots all connect and listen to in order to execute
the commands issued by a bot master. To detect the IRC
botnet, the monitoring point is usually is at the IRC server’s
side whose behaviors can be distinguished from legitimate
ones. Once the central IRC is identified, the whole botnet
will be taken down easily. There also exist HTTP-based bot-
nets, which work in a similar way to that of IRC botnets. The
detection mechanisms are also similar. However, recently,a
new class of botnets has emerged. The C&C of such bot-
nets is based on a decentralized P2P protocol, which does
not have a central point of control. This feature makes the
detection and mitigation much harder.

Storm worm (or W32.Peacomm, Nuwar, Zhelatin)
spreads via email spam and is known to be the first piece

of malware to seed a botnet in a P2P fashion without any
centralized control. By late 2007, it was estimated to run
on around 250,000 to 1 million compromised systems. The
Storm botnet has been used in some criminal activities, pri-
marily for sending out spam mails. As a computer foren-
sics specialist pointed out, ’Cumulatively, Storm is sending
billions of messages a day. It could be double digits in the
billions, easily.’

To date, most botnet-detection approaches target IRC or
HTTP based botnets, while the detection of P2P based bot-
nets such as Storm is still in its infancy. In this paper, we pro-
pose a fast and efficient detection strategy for P2P botnets,
especially for Storm botnet. Given the decentralized C&C
nature of Storm botnet, there is no central point for detec-
tion so that the monitoring points are better to be distributed.
Our approach is a network-based one, which monitors traffic
of every host in a network in order to identify if one is part
of the Storm botnet. Considering the large traffic volume
and processing difficulty, to make our approach efficient and
scalable, we only use the information contained in the packet
headers without examining packet payloads. Our approach
can be broken down into two stages. In the first stage, we
identify P2P and SMTP packets out of each host’s traffic.
Our study on Storm traffic shows that it does resemble real
P2P traffic because the underlying P2P protocol used. Thus,
heuristics that differentiate P2P from non-P2P packets can
be applied. Port numbers are used to extract SMTP packets.
In the second stage, trained by a few distinguishing traffic at-
tributes between Storm and benign P2P applications using a
machine learning technique, a classifier is employed to tellif
part of the traffic identified in the first stage belongs to Storm
botnet.

Our contributions are threefold. 1) We develop a detection
strategy of P2P botnets by analyzing several traffic attributes
obtained from the packet headers without accessing packet
payloads. 2) We use those distinguishing traffic attributesto
train a classifier by a machine learning technique to facilitate
the decision process of detection, resulting in a high detec-
tion accuracy. 3) We present the empirical study of Storm
botnet and normal P2P applications at network level.

1

2 Related Work

Although there is a rich body of literature in the area of
botnet detection, almost all of them deal with botnets using
IRC as C&C channel[7, 12, 5, 11, 3]. Since the emergence
of the P2P style Storm botnet in 2007, people have started to
think about the detection and mitigation strategies towards
the decentralized P2P based botnets.

To the best of our knowledge, some people have already
studied the Storm botnet such as [6], but only [8] and [13]
come up with approaches trying to detect or mitigate Storm
botnet. Holz et al.[8] have measured the size of current
Storm net by infiltrating using a crawler. They also propose
two mitigation strategies that introduce controlled peersto
join the network in order to either separate or pollute the
content of the Storm network. Porras et al. [13] try to de-
tect the Storm bot by constructing Storm’s dialogue life cy-
cle model first an then identifying the traffic that matches
this model. Compared with their work, our characterization
of traffic patterns is at a higher level without access to packet
payload. For example, they look for specific eDonkey mes-
sage types such as publicize or search, while we are inter-
ested in the payload-size distribution, TCP/UDP ratio, etc.
which is more robust towards packet encryption and when
payload is not accessible.

The classification of traffic without accessing the packet
payload has been a challenging problem. In our work, we
need to identify P2P traffic for each host by analyzing the
packet header only. Karagiannis et al. [10] provides a nice
framework in this regard. We adopt their heuristics as well
as maintaining a table for protocols with well-defined port
numbers in order to filter out traffic.

3 Overview of Storm Worm

Storm worm is spread via email spam which entices users
to click the attachments or to visit some URLs to download
the binaries for the purpose of installing the bot on the victim.
It seeds botnets based on P2P Overnet (a.k.a Kademila) pro-
tocol [2] as C&C. Once a host system is infected by a Storm
instance, it will connect to the Overnet botnet and become a
bot thereafter.

Storm sets up by adding a system driver into the host. This
driver is injected into ”services.exe”, a Windows process.To
become part of the botnet, it bootstraps by connecting hun-
dreds of IPs contained in a peer list file hard-coded in the
binary. After joining the network, the bot sends out search
requests to find a specific secondary injection such as spam
template, email harvester, rootkit component, etc. If the tar-
get file is successfully located, the bot will download and
execute it. Bots can be programmed to obtain different in-
jections in order to perform different tasks. It is also possible
for a bot to update itself periodically. The P2P architecture
allows each bot to actively seek its task instead of waiting
passively for the C&C from a central server.

So far, there have been numerous Storm outbreaks since

Table 1. Storm campaigns
Date Spam subject
Jan-07 European Storm Spam
Apr-07 Worm Alert Spam
Jun-07 E-card (applet.exe)
Jul-07 231st B-day
Sep-07 Labor Day (labor.exe)
Sep-07 NFL Tracker
Dec-07 Christmas(disnisa.exe)
Jan-08 New Year
Feb-08 Valentine (valentine.exe)
Apr-08 April Fool (sony.exe)
May-08 Storm Codec (codec.exe)

Jan, 2007(Table 1). Storm has shown resilience and effec-
tiveness over a long period of time.

We have selected a few Storm variant binaries that came
out in the major Storm outbreaks such as Christmas last year,
Valentine’s day, April fool’s day this year, etc. We ran them
on a virtual XP system which was connected to the Internet
and collected hours of traffic trace for each using Wireshark.
Storm botnet relies on Overnet protocol for communication
which consists of two phases, localization and download.
Localization including connecting, search, etc. uses UDP
messages, while download is done via TCP/IP. One slight
change Storm made in Oct 2007 to the protocol is to XOR
encrypt each message with a 40 byte long key. But the under-
lying principles are still the same because after decryption all
packets can still be decoded as Overnet message types.

By running several of Storm instances, we have noticed
that the time window between a host getting infected and be-
coming a functional bot is only a couple of minutes. Take
valentine.exe for example. It was observed to start sending
out spam in 5 minutes upon running. Taking advantage of
the P2P protocol, the bot herder has good flexibility in com-
manding and controlling the botnet. As opposed to issuing
C&C to multiple bots at a time, the bot herder may join the
network as a peer and publish its command, say a spam com-
ponent to the whole network as any other peer does. Since
the bots have been programmed in advance to search and
download specific content, they can reach this component
immediately.

4 The Traffic Pattern Characterization of
Normal P2P Applications and Storm Bots

For fast and widely applicable detection of botnet traffic,
we only collect information from packet headers without an-
alyzing payloads. In that case, the information available to
us is limited containing source and destination IPs, source
and destination ports, protocol and payload size. Intuitively,
normal P2P applications aim at file-sharing so that they need
to transfer many data packets, whereas Storm botnets use the
P2P framework for communication purpose and presumably
have small-size packets. In addition, most P2P protocols to
date doing communication such as search, publish, etc. via

2

�������������������������� � ��� 	
� ��	 �� ��� �	� �� ��
 �	�� ��
�
eMule 1 ���������������� � ��� 	
� ��	 �� ��� �	� �� ��
 �	�� ��
�

eMule 2

������������������� � ��� 	
� ��	 �� ��� �	� �� ��
 �	�� ��
�Bittorrent 1 ���������������� � �	� 	�� �
� ��� �	�
�� �
� ���� ��	� �	�� ��
�
Bittorrent 2

Figure 1. Payload-size histograms of Bittor-
rent and eMule

UDP protocol and file transmission via TCP. We expect the
TCP/UDP ratios to be different between Storm and normal
P2P applications. Admittedly, there are exceptions when it
comes to P2P audio and video streaming such as VoIP. If
so, the payload size might be a more distinguishing attribute.
Besides, as we learned that most Storm bots currently serve
as spam senders, the number of SMTP packets may also be
an indicator.

To characterize the traffic patterns of both benign P2P ap-
plications and Storm bots, we have collected traffic traces
respectively. For normal P2P, we selected the application
of most popular P2P protocols such as Bittorrent, eMule,
Gnutella, etc. We show two cases here.

We ran a Bittorrent client on a host and captured 1-hour
trace for file-sharing by Wireshark. The total packet number
is 911,303. For the sake of illustration, we broke down the
traces to 3 pieces, 20-minute each. Figure 1 are histograms
for payload size (Y axis is the frequency divided by total
number of packets). The 3 pieces of trace show identical
pattern in terms of payload size distribution (we show 2 plots
here), which is that around 50% percent of packets have pay-
loads (data) exceeding 1000 bytes. As explained earlier, this
is a common feature for file-sharing programs. Moreover,
the TCP/UDP ratio is worth noticing, which is 122 of the
entire 1-hour trace.

Another prevailing P2P application eMule is also in line
with the observation. eMule [1] allows for connections
to two networks, eDonkey and Overnet. Overnet network
(a.k.a. Kad network) has an implementation of the Kademlia
protocol, which does not rely on central servers as the eDon-
key network does. Since Storm worm makes use of the Over-
net network, we only enabled the Overnet connection while
collecting the eMule traces to observe the traffic of normal
P2P client that uses the same protocol as Storm does. We
obtained 2 pieces of traces: one lasting for 20 minutes and
the other 1-hour. As shown in figure 1, eMule payload size
pattern slightly differs from that of Bittorrent. But the num-
ber of large-size packets is still considerable in both short
and long eMule traces. TCP/UDP ratio is around 11.

������������������� � ��� ��� ��� � � ��� ��� !�� � � ���� ���� ����
valentine.exe

������������������� � ��� ��� ��� � � ��� ��� !�� � � ���� ���� ����disnisa.exe

������������������� � ��� ��� ��� � � ��� ��� !�� � � ���� ���� ����
sony.exe

������������������� � ��� ��� ��� � � ��� ��� !�� � � ���� ���� ����codec.exe

Figure 2. Payload-size histograms of Storm in-
stances

On the other hand, the traffic traces from Storm instances
demonstrate different patterns regarding payload size and
TCP/UDP ratio as compared to that of normal P2P. We col-
lected 1-hour data each from 4 Storm binaries. Interestingly,
their payload size histograms are alike (figure 2). Small-
size packets (< 100 bytes) account for more than 90% of all
packets. There are no packets with greater than 1000 bytes
payload. To compare the packet-size histograms, we show
the difference histograms: one between two Storm variants
and the other between Bittorrent and valentine in Figure 3.
As we can see, codec and valentine’s difference is negligible,
up to 3% only. However, the difference between Bittorrent
and valentine is large, up to 60% when it comes to the large-
size packet percentage and more than 40% of 2 bytes and
25 bytes packets. As mentioned before, in Overnet protocol,
communication packets such as connect, publicize, etc. are
exactly 2 or 25 bytes. Note that the Overnet serves as a C&C
channel other than a propagation means for Storm. Thus, it
is reasonable that a majority of Storm traffic is UDP com-
munication used for connection, publish, search, etc. The
amount of TCP traffic is quite small since the purpose is not
data transmission. For Storm, the TCP/UDP ratios are at the
order of 0.01. Table 2 summarizes the ratios across Storm
variants and normal P2P applications. The ratio of latter is
more than 1000 times larger than that of the former.

Now we already introduced two attributes to distinguish
Storm from normal P2P traffic. However, we need to con-
sider the scenario that a host is infected by Storm and in the
meantime it runs a normal P2P application. We have sim-
ulated this case by adding up Storm and Bittorrent, Storm
and eMule altogether for some time. The number of large-
size packets may not be a sign of ’normal’traffic although
it turns out when normal mixes with Storm traffic the large-
size packets percentage is smaller than that of normal traffic
alone (figure 4). Nevertheless, the TCP/UDP ratio is still
distinguishable due to the aggressive communication pattern
of Storm. Table 2indicates that when Storm mixes with Bit-
torrent or eMule or both, the ratios are all below 1, far from
the normal TCP/UDP ratios.

3

"#$#%"#$#&"#$#'"#$#(##$#(#$#'#$#&
))*) +*) ,*) -*) .*) /*) 0*) 1*) 2*))**)))*))+*)),*))-*)

codec-valentine

"#$3"#$%"#$'##$'#$%#$3#$4
))*) +*) ,*) -*) .*) /*) 0*) 1*) 2*))**)))*))+*)),*))-*)
bittorrent1-valentine

Figure 3. Payload-size histograms differences

0.15

0.2

0.25

0.3

0.35

0.4 valentine+bittorrent

0

0.05

0.1

0.15

1 76 15
1

22
6

30
1

37
6

45
1

52
6

60
1

67
6

75
1

82
6

90
1

97
6

10
51

11
26

12
01

12
76

13
51

14
26

Figure 4. Mix Storm with Bittorrent

Table 2. TCP/UDP ratios
tcp/udp tcp/udp

valentine1 0.030473 emule1 3.373534
valentine2 0.003721 emule2 11.81117
valentine3 0.002707 bittorent1 115.591

codec1 0.001389 bittorent2 327.8396
codec2 0.001256 bittorent3 29.87293
codec3 0.00208 storm+bt1 0.49806
sony 0.027407 storm+bt2 0.50429

disnisa 0.002148 storm+emule 0.042162
storm+bt+emule 0.68621

One may argue that as long as a host runs plenty of P2P
clients the TCP/UDP ratio can reach normal ratios. Running
numerous P2P applications simultaneously on one host is a
rare case though it is possible. That’s why we have the third
attribute – the number of SMTP packets – to observe. Till
now, most Storm variants are observed to send out spam. For
example, the valentine.exe running on our testbed turns out
to send more than 10,000 spam emails in just 20 minutes.
Since within a network it is easy to know the IP of the in-
ternal SMTP server, the hosts that send packets to other do-
main’s IPs with destination port 25, behaving like a SMTP
server can be potential Storm bots.

To sum up, considering the payload-size distribution,
TCP/UDP ratio and number of SMTP packets altogether may
help to reveal a Storm infected host. Note that the first two
traffic attributes only apply to P2P packets, requiring filter-
ing out other traffic on each host. In the next section, we
will discuss the identification of P2P traffic without access-
ing packet payload and our methodology of using the three
attributes to detect Storm bots.

5 Methodology

As described earlier, our approach consists of two stages.
First, identifying the P2P packets and SMTP packets out of
each host’s traffic. Second, using distinguishing traffic at-
tributes to determine if this host conducts Storm botnet ac-
tivities by a machine learning technique. Both of the stages
only obtain information from packet headers without exam-
ining the payloads.

We do not rely on the examination of packet payload to
identify P2P traffic not only because of overhead but also
due to privacy issues and payload encryption. Without look-
ing for specific strings in the payload, one way of identifica-
tion is looking at port numbers. This is applicable to SMTP
packets, because the use of port 25 is the protocol standard.
However, this method is not reliable for P2P case as more
and more P2P applications allow for arbitrarily selected port
nowadays. Thus, we need another approach to distinguish
P2P from other traffic.

We use a set of heuristics proposed in [10]: in a time win-
dow, 1)Looking for source-destination IP pairs that concur-
rently use both TCP and UDP 2)Examining all source sr-
cIP, srcport and dstIP,dstport pairs and seeking pairs thatthe
number of distinct connected IPs is equal to that of distinct
connected ports.1) is based on the observation that most of
the P2P applications use UDP for communication and TCP
for data transfer. 2) comes from the fact that each peer in a
P2P network has an advertised IP, port pair for other peers’
connection and that every other peer will choose a random
source port to connect to the specific peer listening on that
publicized port. In addition to 1) and 2), we also maintain a
table to exclude non-P2P traffic to well-defined port numbers
such as DNS (port: 53), NETBIOS (port: 135,137,139,445,
), etc. The heuristics have been tested among million of traf-
fic flows. It turns out that they can pinpoint more than 95%

4

of P2P with 8% - 12% false positives. Considering that the
payload-size distribution and TCP/UDP ratio will not be af-
fected by a few mislabeled packets, those heuristics are quite
feasible.

Now that we are able to identify P2P and SMTP pack-
ets already, we proceed to the second stage: determining
if a host is part of the Storm botnet. So far, the distin-
guishing attributes we examine are payload-size distribution,
TCP/UDP ratio and number of SMTP packets. To have a bet-
ter detection accuracy, we employs Support Vector Machine
(SVM)[4, 9], a machine learning technique to derive a gen-
eral metric in the form of a liner classifier:

Fx =

{

wT x − b > 0, if x is a benign host
wT x − b ≤ 0, if x is a Storm infected host (Storm bot)

Here,w is a weight vector,b is a bias term andx is a vec-
tor of the three attributes mentioned above. Note that, the
payload-size distribution can not be used directly. We need
to change it to a quantitative value. Recall that all Storm vari-
ants generate similar patterns of payload-size distribution.
We have averaged them and used the sample mean as the
benchmark case. For any other distribution in a time window
of monitoring, we calculate the summation of the absolute
distance of each payload size from 0 to 1500 bytes, which is
given by:

1500
∑

i=0

|yi − si|

whereyi is the percentage of packets with payloadi bytes of
hosty andsi is that of Storm. We will detail our approach in
evaluation section.

6. Evaluation

One of the challenges in our evaluation is the need for
clearly labeled data set for both training and testing. Without
knowing the identity of the data set, we can hardly validate
the detection accuracy. On the other hand, capturing packet
payloads at a large scale are not allowed in our network for
privacy concern. Another problem is the running of Storm
binaries, which can not be conducted freely on the Internet.
To solve the above issues without violating privacy, we have
constructed a small-scale controlled experiment environment
with real and virtual machines.

We captured 8-hour traces with payloads from 4 hosts
under regular use, each of which had run at least one P2P
application for certain amount of time and had frequently
accessed the Internet by web browsing, email checking and
so on. The P2P clients include applications of Bittorrent,
Gnutella, eMule, VoIP, PPStream, etc. covering widely used
P2P protocols. We also executed 20 Storm binaries dating
from Dec 2007 to May this year on our virtual machines.
Each trace lasts 1 or 2 hours. We did not use earlier variants
simply because most peers in hard-coded peer list were no
longer active so that the bots could not join the Storm botnet

and function. All of the 20 Storm instances can connect and
communicate in the botnets. Note that those traces include
payloads for validation purpose.

After obtaining the traces, we mixed the Storm traffic to
host traffic to recreate the following scenarios. On top of
non-P2P traffic a)Storm runs alone. b)Storm runs with 1 or
2 P2P applications simultaneously. c)1 or 2 P2P applications
run alone. Recall that our work consists of two stages. In the
first stage, P2P and SMTP packets are identified out of other
traffic. We do so by applying a set of heuristics and keep-
ing an exclusion table. Using those rules upon the traces,
it turned out the identification rate was more than 90% on
average, which is enough for our further investigation.

In the second stage, we need a classifier to detect Storm
activities based on three traffic attributes. As mentioned ear-
lier, we have employed SVM for classification. We used half
of the dataset for training and half for testing. The three at-
tributes are: payload-size distribution distance from bench-
mark (Dist), TCP/UDP ratio (RatioT/U) and number of
SMTP packets (Nsmtp). Our time window of monitoring
is 20 minutes. In other words, every 20 minutes the three
values are calculated and input to the classifier. We trained
SVM on 40 pieces of data. We intentionally included the
training set with noise free data of a), b) and c) for a better
detection capability. The resulting classifier is given by:

F (x) = wT x − b

= 1.0958 ∗ Dist + 0.0511 ∗ RatioT/U

−0.0003 ∗ Nsmtp − 0.0137

(1)

We found thatDist is the most distinguishing attribute (table
3). The distances of those of Storm instances are all well be-
low 1 from the benchmark. Even if Storm is mixed with Bit-
torrent or eMule, the trend is still similar. On the other hand,
all P2P applications’ distances are almost 2. Interestingly,
the distances of them are quite close no matter how differ-
ent the protocols are such as VoIP and eMule. This may be
due to the following reason. As shown in their payload-size
histograms, their packet sizes are not evenly distributed but
concentrated at some values. For example, the 1460 bytes,
which is commonly specified as the maximum segment size
in TCP transmission.

As for RatioT/U , only under the scenario that P2P and
Storm mix up to a large extent, the ratio will not be very
distinguishable.Nsmtp sometimes equals to 0 on a Storm
infected host in a time window because of the sporadic spam-
ming behavior. We keep this attribute in case that Storm traf-
fic is well hidden to the background traffic and none of the
first two attributes can discern.

Given the classifier, we tested the accuracy of the detec-
tion using the test set data including 40 pieces. 38 out of 40
or 95% were accurately classified. The only 2 misclassifica-
tion was false-negatives. Both of them belong to an instance
of Storm mixed with two P2P applications and no SMTP
packets sent out in that time window. This is a challenging

5

Table 3. Payload-size distribution distances
from that of a benchmark Storm

Storm Dist Normal P2P Dist
valentine1 0.10396489 emule1 1.9224
valentine2 0.03989286 emule2 1.953911

codec1 0.03850181 bittorrent1 1.967289
codec2 0.05115983 bittorrent2 1.962575
sony 0.0479019 gnutella1 1.981724

disnisa 0.04303862 gnutella2 1.981937
storm+bittorrent 0.64127852 voip1 1.991548

storm+emule 0.12805476 voip2 1.965505

situation because all three attributes are similar to that of nor-
mal P2P. Nevertheless, in the following time windows due to
the number of SMTP packets, they were caught finally. Since
our detection is not a one-time shot but a periodic check, it is
able to identify the Storm infected traffic once malicious be-
haviors are demonstrated. Also, we can expect that running
two or more P2P clients and at the same time being infected
by Storm is a rare case. Most of the time, only one of them
is running.

In sum, the current preliminary result shows that our de-
tection works well with 0% false positive and 8% false neg-
ative. We expect to conduct more experiments to test the
detection strategy as more data become available to us.

7 Limitations

Attackers always try to evade the detection mechanism if
possible. Our approach might be evaded if the Storm bots
can successfully mimic benign P2P traffic. It is also possible
that an infected host runs multiple P2P applications simulta-
neously which help to hide the Storm traffic.

From the attacker’s perspective, one possibility is to make
the payload-size distribution and TCP/UDP ratio similar to
that of P2P applications. To do so, Storm bot needs to send
out lots of large-size TCP junk data packets. However, there
is a tradeoff here. By transferring large data packets, the
bandwidth of a host will be significantly consumed, which
may easily draw user’s attention. As we know, bots intend to
communicate in a stealthy way in order to keep alive. Also,
as each Storm bot has to search for and take on specific task
from the network such as sending out spam, it is not bene-
ficial to send useless data packets to lower the efficiency of
performing the task.

Another evasion is to slow down the communication of
Storm in the hope of hiding it into the background traffic.
This can be achieved especially when multiple P2P applica-
tions are running on a host. In that case, we may be able to
detect it if SMTP packets are captured. If not, our detection
can not work but at least raise the bar for the communication
of the Storm bot.

8 Conclusion

The detection of P2P based botnets such as Storm at net-
work level is a challenging problem due to its decentralized
infrastructure. In this work, we have studied the traffic pat-
terns of a number of Storm instances and several benign P2P
applications. We propose an approach to identify the com-
mand and control traffic of Storm botnet without accessing
packet payloads by 1)using a set of heuristics to extract P2P
and SMTP packets out of each host’s traffic and 2)distin-
guishing between the Storm and normal P2P traffic using a
machine learning classification based on payload-size distri-
bution, TCP/UDP ratio and number of SMTP packets. Eval-
uation on real-world traces shows that our approach is ef-
fective in detecting Storm traffic with low false-positive and
false-negative. Detection as the first step, our proposed ap-
proach may work together with mitigation strategies to inca-
pacitate the P2P based botnets.

References

[1] emule. http://en.wikipedia.org/wiki/EMule.
[2] Overnet. http://en.wikipedia.org/wiki/Overnet.
[3] J. R. Binkley and S. Singh. An algorithm for anomaly-based

botnet detection. InSRUTI’06: Proceedings of the 2nd con-
ference on Steps to Reducing Unwanted Traffic on the Inter-
net, pages 7–7, Berkeley, CA, USA, 2006. USENIX Associ-
ation.

[4] C.-C. Chang and C.-J. Lin. Libsvm – a library for support
vector machines. http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[5] J. Goebel and T. Holz. Rishi: identify bot contaminated hosts
by irc nickname evaluation. InHotBots’07: Proceedings of
the first conference on First Workshop on Hot Topics in Un-
derstanding Botnets, pages 8–8, Berkeley, CA, USA, 2007.
USENIX Association.

[6] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and
D. Dagon. Peer-to-peer botnets: overview and case study.
In HotBots’07: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, pages 1–
1, Berkeley, CA, USA, 2007. USENIX Association.

[7] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet
command and control channels in network traffic. InPro-
ceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), February 2008.

[8] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling.
Measurements and mitigation of peer-to-peer-based botnets:
A case study on storm worm. InIn Proc. First USENIX Work-
shop on Large-scale Exploits and Emergent Threats (LEET),
2008.

[9] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A
practical guide to support vector classification.
http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf.

[10] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy.
Transport layer identification of p2p traffic. InIn Proc. In-
ternet Measurement Conference (IMC), 2004.

[11] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale bot-
net detection and characterization. InHotBots’07: Proceed-
ings of the first conference on First Workshop on Hot Topics
in Understanding Botnets, pages 7–7, Berkeley, CA, USA,
2007. USENIX Association.

6

[12] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer. Usilngma-
chine learning technliques to identify botnet traffic. InPro-
ceedings of 2006 31st IEEE Conference on Local Computer
Networks, November, 2006.

[13] P. Porras, H. Saidi, and V. Yegneswaran. a multi-perspective
analysis of the storm(peacomm)worm. Technical report, SRI,
2007.

7

